含SiO_2、TiO_2单分散杂化核壳微球的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的不断进步,材料科学的研究开始转向微观领域,如何制备纳米级别可控的新型材料成为当今化学家研究的重点。在众多材料中,核壳材料因其特殊结构和组成不同而呈现光、电、磁等特性,近年来倍受关注。但是制备形貌可控,具有功能性的核壳材料一直是具有挑战性的课题。
     本论文利用无皂乳液聚合方法和溶胶-凝胶法及其联合应用,制备了聚合物微球、无机物-聚合物核-壳复合微球、聚合物-无机物核-壳复合微球、聚合物-无机物-聚合物核-壳-壳复合微球的杂化材料。在无皂乳液聚合方法和溶胶-凝胶法详细研究的工作基础上,将无皂乳液聚合原理用于制备聚合物-无机物-聚合物核-壳-壳复合微球。这些研究工作实现了对纳米微球杂化新材料的设计、合成以及纳米微球粒子的形态可控制备,为扩展纳米微球材料在各领域的实际应用提供了可能。利用FT-IR,DLS,TEM,SEM和TGA等检测手段对功能性乳胶粒以及核壳粒子进行表征和测定。
In recent years, the organic-inorganic nanocomposites of growing concern by the researchers. The structural design and controllable preparation of hybrid nanomaterials for the purpose of obtaining expectant properties is a focus of research in materials science. Hybrid nanomaterials can display the advantages of each component, furthermore give significant play to their cooperative advantages due to the hybridization between their components. Hybrid nanomaterials hence have varied functions and can be used for both constructional materials and function materials, and have a vast range of prospects for applying. The size of uniform spherical nano-composite materials is expected to also because of its self-assembly, photonic crystals, biological testing, and other aspects of the broad application of the experiment aroused great interest in the research . This paper used soap-free emulsion polymerization methods and Sol-gel material prepared the core-shell structure of the silica/PMMA, PS/Titania narrow distribution microspheres . And on this basis, has been with core-shell-shell narrow distribution of organic-inorganic-organic composite microspheres.The studies and the results are as follows:
     1: Methyl methacrylate (MMA) or styrene (St) as the monomer, in the 2,2'-Azobis (2-methylpropionamide)(AIBA) or potassium sulfate (KPS) as initiator, use soap-free emulsion polymerization methods, respectively, the polymethyl methacrylate (PMMA) and polystyrene (PS) microspheres with narrow distribution polymer particle in diameter of 200-400 nm obtained. On to AIBA as the initiator of the latex microspheres surface with positive charge, and to KPS as the initiator of the latex microspheres surface with negatively charged.
     2: Herein, we describe a new approach to generate polymer coated inorganic capsules. Monodispersed silica-polymer core-shell nanospheres were prepared by soap-free emulsion polymerization. To coat the cores by polymer, silica nanoparticles were modified by 3-(trimethoxysilyl) propyl methacrylate (MPS). The thicknesses of polymer shells were found to be dependent on the amount of monomer and grafted silica nanoparticles. The formation mechanism of SiO2-PMMA core-shell nanoparticles was speculated. This method used for the preparation of core-shell particles is simple, and therefore advantageous over traditional emulsion polymerization methods.
     3: Herein, we describe a new approach to generate inorganic coated polymer nanospheres. The key is to use a sulfonation polystyrene particles with absorbed water as templates that allow an inward diffusion and growth of the precursor inorganic materials inside the gel particle. The desired the thickness of the inorganic shell are determined by a one step sol-gel process. The core template particles were synthesized by an sulfonation of polystyrene particles with concentrated sulfuric acid. The monodispersity of the sulfonation polystyrene particles was ensured by synchronous sulfonation and soap-free emulsion polymerization.
     4: Herein, we describe a new approach to generate polymer coated inorganic-organic nanoparticles. Monodispersed core-shell-shell nanoparticles were prepared by soap-free emulsion polymerization. To coat the core-shell nanoparticles by polymer, TiO2 coated core-shell nanoparticles were modified by MPS. The thicknesses of polymer shells were found to be dependent on the amount of monomer and grafted core-shell nanoparticles. This method used for the preparation of core-shell-shell particles is simple, and therefore advantageous over traditional emulsion polymerization methods.
     The produces were characterized by scanning electron microscopy (SEM), Transmission Electron Microscopy(TEM), Fourier transform-infrared spectrometer (FT-IR), Thermogravimetric Analysis (TGA), and Dynamic Light Scattering(DLS).
引文
1. Burns, A., H. Ow, and U. Wiesner, Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle'' architectures for nanobiotechnology. Chemical Society Reviews, 2006. 35(11): p. 1028-1042.
    2. Antonietti, M. and K. Landfester, Polyreactions in miniemulsions. Progress in Polymer Science, 2002. 27(4): p. 689-757.
    3. Caruso, F., Nanoengineering of particle surfaces. Advanced Materials, 2001. 13(1): p. 11-23.
    4. Chen, X. and S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007. 107(7): p. 2891-2959.
    5. Schartl, W., Crosslinked spherical nanoparticles with core-shell topology. Advanced Materials, 2000. 12(24): p. 1899-+.
    6. Zhang, Y.P. and Y. Chu, The fabrication of core-shell functional materials with templates method. Progress in Chemistry, 2007. 19(1): p. 35-41.
    7. Guan, J.G., et al., Preparation of well-defined core-shell nanocomposite particles based on colloidal templates. Progress in Chemistry, 2004. 16(3): p. 327-334.
    8. McCormick, C.L., S.E. Kirkland, and A.W. York, Synthetic routes to stimuli-responsive micelles, vesicles, and surfaces via controlled/living radical polymerization. Polymer Reviews, 2006. 46(4): p. 421-443.
    9. Rodriguez-Hernandez, J., et al., Toward 'smart' nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science, 2005. 30(7): p. 691-724.
    10. Ni, G., et al., Advances in surface initiated polymerization. Progress in Chemistry, 2005. 17(6): p. 1074-1080.
    11. Gates, B.D., et al., New approaches to nanofabrication: Molding, printing, and other techniques. Chemical Reviews, 2005. 105(4): p. 1171-1196.
    12. Katz, E. and I. Willner, Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angewandte Chemie-International Edition, 2004. 43(45): p. 6042-6108.
    13. Daniel, M.C. and D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004. 104(1): p. 293-346.
    14. Shon, Y.S. and H. Choo, Organic reactions of monolayer-protected metal nanoparticles. Comptes Rendus Chimie, 2003. 6(8-10): p. 1009-1018.
    15. Li, F.M., et al., A strategy to prepare anemone-shaped polymer brush by controlled/livingradical polymerization, in Advances in Controlled/Living Radical Polymerization. 2003, Amer Chemical Soc: Washington. p. 342-351.
    16. Arici, E., et al., Core/shell nanomaterials in photovoltaics. International Journal of Photoenergy, 2003. 5(4): p. 199-208.
    17. Waychunas, G.A., Structure, aggregation and characterization of nanoparticles, in Nanoparticles and the Environment. 2001, Mineralogical Soc America: Washington. p. 105-166.
    18. Horn, D. and J. Rieger, Organic nanoparticles in the aqueous phase - theory, experiment, and use. Angewandte Chemie-International Edition, 2001. 40(23): p. 4331-4361.
    19. Zhang, Y.P., et al., Fabrication of polystyrene-PbS core-shell and hollow PbS microspheres with sulfonated polystyrene templates. Colloid and Polymer Science, 2007. 285(9): p. 1061-1066.
    20. Zeng, H.C., Ostwald ripening: A synthetic approach for hollow nanomaterials. Current Nanoscience, 2007. 3(2): p. 177-181.
    21. Xu, Z.Z., et al., Synthesis of raspberry-like magnetic polystyrene microspheres. Materials Chemistry and Physics, 2007. 103(2-3): p. 494-499.
    22. Wang, Y.Q., et al., Microwave-assisted fabrication of PS@CdS core-shell nanostructures and CdS hollow spheres. Chemistry Letters, 2007. 36(5): p. 674-675.
    23. Tuval, T. and A. Gedanken, A microwave-assisted polyol method for the deposition of silver nanoparticles on silica spheres. Nanotechnology, 2007. 18(25): p. 7.
    24. Shi, L., et al., Synthesis and morphology of polyethylene chains grafted onto the surface of crosslinked polystyrene microspheres. Journal of Polymer Science Part a-Polymer Chemistry, 2007. 45(19): p. 4477-4486.
    25. Qiao, R., et al., Fabrication of superparamagnetic cobalt nanoparticles-embedded block copolymer microcapsules. Journal of Physical Chemistry C, 2007. 111(6): p. 2426-2429.
    26. Qian, H.S., et al., A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation. Nanotechnology, 2007. 18(35): p. 6.
    27. Mangeney, C., et al., Magnetic Fe2O3-polystyrene/PPy Core/shell particles: Bioreactivity and self-assembly. Langmuir, 2007. 23(22): p. 10940-10949.
    28. Jeong, U., et al., Microscale fish bowls: A new class of latex particles with hollow interiors and engineered porous structures in their surfaces. Langmuir, 2007. 23(22): p. 10968-10975.
    29. Zoldesi, C.I., C.A. van Walree, and A. Imhof, Deformable hollow hybrid silica/siloxane colloids by emulsion templating. Langmuir, 2006. 22(9): p. 4343-4352.
    30. Yu, J.G., et al., Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Advanced Functional Materials, 2006. 16(15): p. 2035-2041.
    31. Yang, X.M., et al., Polymerization of pyrrole on a polyelectrolyte hollow-capsulemicroreactor. Polymer, 2006. 47(13): p. 4596-4602.
    32. Xu, X.Q., et al., Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Advanced Materials, 2006. 18(24): p. 3289-+.
    33. Wang, L.Y., P.S. Tsai, and Y.M. Yang, Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion. Journal of Microencapsulation, 2006. 23(1): p. 3-14.
    34. Wang, C.C., A.L. Chen, and I.H. Chen, Preparation of a highly luminescent nanocomposite by chelating copolymer. Polymers for Advanced Technologies, 2006. 17(7-8): p. 598-603.
    35. Tian, C.G., et al., Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique. Journal of Solid State Chemistry, 2006. 179(11): p. 3270-3276.
    36. Phan, K.X., et al., Fabrication of modified-poly(divinylbenzene)/Au core-shell structure. Synthetic Metals, 2006. 156(11-13): p. 872-877.
    37. Moinard-Checot, D., et al., Nanoparticles for drug delivery: Review of the formulation and process difficulties illustrated by the emulsion-diffusion process. Journal of Nanoscience and Nanotechnology, 2006. 6(9-10): p. 2664-2681.
    38. Lau, K.K.S. and K.K. Gleason, Particle surface design using an all-dry encapsulation method. Advanced Materials, 2006. 18(15): p. 1972-+.
    39. Grzelczak, M., M.A. Correa-Duarte, and L.M. Liz-Marzan, Carbon nanotubes encapsulated in wormlike hollow silica shells. Small, 2006. 2(10): p. 1174-1177.
    40. Ding, S.J., et al., Template synthesis of composite hollow spheres using sulfonated polystyrene hollow spheres. Polymer, 2006. 47(25): p. 8360-8366.
    41. Cheng, X.J., et al., Novel and facile method for the preparation of monodispersed titania hollow spheres. Langmuir, 2006. 22(8): p. 3858-3863.
    42. Zoldesi, C.I. and A. Imhof, Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Advanced Materials, 2005. 17(7): p. 924-+.
    43. Salgueirino-Maceira, V., M. Spasova, and M. Farle, Water-stable, magnetic silica-cobalt/cobalt oxide-silica multishell submicrometer spheres. Advanced Functional Materials, 2005. 15(6): p. 1036-1040.
    44. Pich, A., et al., Composite polymeric particles with ZnS shells. Polymer, 2005. 46(19): p. 7931-7944.
    45. Liu, R.X., P. Dong, and S.L. Chen, Monodisperse SiO2/TiO2 core-shell colloidal spheres: Synthesis and ordered self-assembling. Chemistry Letters, 2005. 34(4): p. 548-549.
    46. Jiang, C.L., et al., Synthesis and characterization of ZnSe hollow nanospheres via a hydrothermal route. Nanotechnology, 2005. 16(4): p. 551-554.
    47. Im, S.H., U.Y. Jeong, and Y.N. Xia, Polymer hollow particles with controllable holes in their surfaces. Nature Materials, 2005. 4(9): p. 671-675.
    48. Fu, G.D., et al., Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations. Macromolecules, 2005. 38(18): p. 7867.
    49. Chen, Z.M., et al., A simple and controlled method of preparing uniform Ag midnanoparticles on Tollens-soaked silica spheres. Journal of Colloid and Interface Science, 2005. 285(1): p. 146-151.
    50. Yang, H.G. and H.C. Zeng, Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angewandte Chemie-International Edition, 2004. 43(39): p. 5206-5209.
    51. Nersessian, N., et al., Hollow and solid spherical magnetostrictive particulate composites. Journal of Applied Physics, 2004. 96(6): p. 3362-3365.
    52. Lu, Y., J. McLellan, and Y.N. Xia, Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir, 2004. 20(8): p. 3464-3470.
    53. Chan, Y., et al., Incorporation of luminescent nanocrystals into monodisperse core-shell silica microspheres. Advanced Materials, 2004. 16(23-24): p. 2092.
    54. Guo, H.X., et al., Synthesis of Ni/polystyrene/TiO2 multiply coated microspheres. Langmuir, 2003. 19(12): p. 4884-4888.
    55. Deng, Y.H., et al., A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure. Advanced Materials, 2003. 15(20): p. 1729-+.
    56. Wang, D.Y., A.L. Rogach, and F. Caruso, Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly. Nano Letters, 2002. 2(8): p. 857-861.
    57. Chu, L.Y., et al., Preparation of micron-sized monodispersed thermoresponsive core-shell microcapsules. Langmuir, 2002. 18(5): p. 1856-1864.
    58. Ji, T.H., et al., Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads. Advanced Materials, 2001. 13(16): p. 1253-1256.
    59. Imhof, A., Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir, 2001. 17(12): p. 3579-3585.
    60. Caruso, F., et al., Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Advanced Materials, 2001. 13(10): p. 740-744.
    61. Caruso, F., et al., Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir, 2000. 16(23): p. 8932-8936.
    62. Caruso, F. and H. Mohwald, Preparation and characterization of ordered nanoparticle andpolymer composite multilayers on colloids. Langmuir, 1999. 15(23): p. 8276-8281.
    63. 马光辉等, 高分子微球材料. 2005, 北京: 化学工业出版社.
    64. Komarneni. S.; Roy, R.B., E.; Ollinen, M.; Suwa, Y., Adv. Ceram. Mater., 1986(1): p. 87.
    65. Ariga, K., J.P. Hill, and Q.M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007. 9(19): p. 2319-2340.
    66. Vinu, A., M. Miyahara, and K. Ariga, Assemblies of biomaterials in mesoporous media. Journal of Nanoscience and Nanotechnology, 2006. 6(6): p. 1510-1532.
    67. Landfester, K., Synthesis of colloidal particles in miniemulsions. Annual Review of Materials Research, 2006. 36: p. 231-279.
    68. Solans, C., et al., Nano-emulsions. Current Opinion in Colloid & Interface Science, 2005. 10(3-4): p. 102-110.
    69. Shi, X.Y., M.W. Shen, and H. Mohwald, Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials. Progress in Polymer Science, 2004. 29(10): p. 987-1019.
    70. Guo, X.L., et al., Developments of bionic polymers. Progress in Chemistry, 2004. 16(6): p. 1023-1029.
    71. Sundberg, D.C. and Y.G. Durant, Latex particle morphology, fundamental aspects: A review. Polymer Reaction Engineering, 2003. 11(3): p. 379-432.
    72. Landfester, K., Miniemulsions for nanoparticle synthesis, in Colloid Chemistry Ii. 2003, Springer-Verlag Berlin: Berlin. p. 75-123.
    73. Schottner, G., Hybrid sol-gel-derived polymers: Applications of multifunctional materials. Chemistry of Materials, 2001. 13(10): p. 3422-3435.
    74. Sanchez, C., et al., Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chemistry of Materials, 2001. 13(10): p. 3061-3083.
    75. Bourgeat-Lami, E., Organic-inorganic nanostructured colloids. Journal of Nanoscience and Nanotechnology, 2002. 2(1): p. 1-24.
    76. Caruso, F., R.A. Caruso, and H. Mohwald, Production of hollow microspheres from nanostructured composite particles. Chemistry of Materials, 1999. 11(11): p. 3309-3314.
    77. Tissot, I., et al., Hybrid latex particles coated with silica. Macromolecules, 2001. 34(17): p. 5737-5739.
    78. Zhang, J.G., et al., A new approach to hybrid polymer-metal and polymer-semiconductor particles. Advanced Materials, 2002. 14(23): p. 1756-+.
    79. Hernandez-Padron, G., et al., Development of hybrid materials consisting of SiO2 microparticles embedded in phenolic-formaldehydic resin polymer matrices. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003. 355(1-2): p. 338-347.
    80. Zhang, K., et al., Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromolecular Materials and Engineering, 2003. 288(4): p. 380-385.
    81. Molvinger, K., et al., Porous chitosan-silica hybrid microspheres as a potential catalyst. Chemistry of Materials, 2004. 16(17): p. 3367-3372.
    82. Chen, M., et al., A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres. Macromolecules, 2005. 38(15): p. 6411-6417.
    83. Cheng, X.J., et al., Preparation of SiO2/PMMA composite particles via conventional emulsion polymerization. Journal of Polymer Science Part a-Polymer Chemistry, 2006. 44(12): p. 3807-3816.
    84. Herrera, N.N., et al., Synthesis of polymer latex particles decorated with organically-modified laponite clay platelets via emulsion polymerization. Journal of Nanoscience and Nanotechnology, 2006. 6(2): p. 421-431.
    85. Perro, A., et al., Synthesis of hybrid colloidal particles: From snowman-like to raspberry-like morphologies. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2006. 284: p. 78-83.
    86. Zhang, J.J., et al., ZnO/PS core-shell hybrid microspheres prepared with miniemulsion polymerization. Journal of Colloid and Interface Science, 2006. 301(1): p. 78-84.
    87. Liu, G.Y., et al., Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres. Polymer, 2007. 48(20): p. 5896-5904.
    88. Qiao, X.G., et al., Synthesis of raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. Journal of Polymer Science Part a-Polymer Chemistry, 2007. 45(6): p. 1028-1037.
    89. Song, X.F. and L. Gao, Fabrication of hollow hybrid microspheres coated with silica/titania via sol-gel process and enhanced photocatalytic activities. Journal of Physical Chemistry C, 2007. 111(23): p. 8180-8187.
    90. Tan, W., et al., Bionanotechnology based on silica nanoparticles. Medicinal Research Reviews, 2004. 24(5): p. 621.
    91. Advincula, R.C., Surface initiated polymerization from nanoparticle surfaces. Journal of Dispersion Science and Technology, 2003. 24(3-4): p. 343-361.
    92. Cao, G.Z., Growth of oxide nanorod arrays through sol electrophoretic deposition. Journal of Physical Chemistry B, 2004. 108(52): p. 19921-19931.
    93. Castelvetro, V. and C. De Vita, Nanostructured hybrid materials from aqueous polymer dispersions. Advances in Colloid and Interface Science, 2004. 108-09: p. 167-185.
    94. Radhakrishnan, B., R. Ranjan, and W.J. Brittain, Surface initiated polymerizations from silica nanoparticles. Soft Matter, 2006. 2(5): p. 386-396.
    95. Stein, A. and R.C. Schroden, Colloidal crystal templating of three-dimensionally orderedmacroporous solids: materials for photonics and beyond. Current Opinion in Solid State & Materials Science, 2001. 5(6): p. 553-564.
    96. Hofman-Caris, C.H.M., Polymers at the surface of oxide nanoparticles. New J. Chem., 1994. 18: p. 1087-1096.
    97. Oyama H T, S.R., Xie Y, Partch E R, Matijevic E., J. Colloid Interface Sci., 1993(160): p. 298.
    98. R. Partch, S.G. Gangolli, E. Matijevic, W. Cal and S. Araja, Surface induced polymerization of pyrrole on iron (III) oxide and cerium (IV) oxide particles, J. Colloid Interface Sci. 144 (1991) (1), 27–34.
    99. Marinakos S M, S.D.A., Feldheim D L. Gold Nanoparticles as Templates for the Synthesis of Hollow Nanometer-Sized Conductive Polymer Capsules . Adv. Mater., 1999(11): p. 34-37.
    100. Fleming, M.S., T.K. Mandal, and D.R. Walt, Nanosphere-microsphere assembly: Methods for core-shell materials preparation. Chemistry of Materials, 2001. 13(6): p. 2210.
    101. Ottewill, R.H., Schofield, A.B., Waters, J.A., Preparation of core-shell polymer colloid particles by encapsulation. Colloid Polym. Sci., 1997(275): p. 274.-283
    102. Tiarks, F., K. Landfester, and M. Antonietti, Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization. Langmuir, 2001. 17(19): p. 5775-5780.
    103. Landfester K, R.R., Antonietti M., Convenient Synthesis of Fluorinated Latexes and Core-Shell Structures by Miniemulsion Polymerization. Macromolecules, 2002(35): p. 1658-1662.
    104.Bechthold N, T.F., Willert M, Landfester K, Antonietti M., Miniemulsion polymerization: applications and new materials. Macromol. Symp., 2000(151): p. 549-555.
    105. Hoffmann D, L.K., Antonietti M., Encapsulation of magnetite in polymer particles via the miniemulsion polymerization process. Magnetohydrodynamics, 2001(37): p. 217-221.
    106. Decher G, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites.Science, 1997(277): p. 1232-1237.
    107. Caruso, F., et al., Investigation of electrostatic interactions in polyelectrolyte multilayer films: Binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules, 1999. 32(7): p. 2317-2328.
    108. Caruso, F. and H. Mohwald, Protein multilayer formation on colloids through a stepwise self-assembly technique. Journal of the American Chemical Society, 1999. 121(25): p. 6039-6046.
    109. Caruso, F. and C. Schuler, Enzyme multilayers on colloid particles: Assembly, stability, and enzymatic activity. Langmuir, 2000. 16(24): p. 9595-9603.
    110. Caruso, F., et al., Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Advanced Materials, 2001. 13(14): p. 1090.
    111. Caruso, F., et al., Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chemistry of Materials, 2001. 13(1): p. 109.
    112. Caruso, F., Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly, in Colloid Chemistry Ii. 2003, Springer-Verlag Berlin: Berlin. p. 145-168.
    113. Ohmori M.; Matijevic E. J., Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite .J. Colloid Interface Sci., 1992. 150: p. 594.-598
    114. Ohmori M.; Matijevic E. J., Preparation and Properties of Uniform Coated Inorganic Colloidal Particles 8. Silica on Iron. Colloid Interface Sci., 1993. 160: p. 288-288.
    115. Guo X C, D.P., Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres. Langmuir, 1999. 15: p. 5535-5540.
    116. Hanprasopwattana A, S.S., Sault A. G, Datye A K., Langmuir, 1996. 12: p. 3173.
    117. Giesche H, Matijevic.E., Preparation, characterization, and sinterability of well-defined silica/yttria powders. J. Mater. Res., 1994. 9: p. 436-450.
    118. Partch R, X.Y., Oyama S T, Matijevic E. , Preparation and properties of uniform coated colloidal particles. VIII. Titanium nitride on silica. J. Mater. Res., 1993. 8: p. 2014-2018.
    119. St?ber W, F.A., Bohn E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968. 26: p. 62-69.
    120. Liz-Marzan L M, G.M., Mulvaney P. , Synthesis of Nanosized Gold-Silica Core-Shell Particles. Langmuir 1996. 12: p. 4329-4335.
    121. Liz-Marzan L M, G.M., Mulvaney P., Homogeneous silica coating of vitreophobic colloids. Chem. Commun. , 1996: p. 731-732.
    122. Ung T, L.-M.L.M., Mulvaney P., Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions. Langmuir, 1998. 14: p. 3740-3748.
    123. Correa-Duarte M A, G.M., Liz-Marzan L M., Chem. Phys. Lett., 1998. 286: p. 497.
    124. Atkin, R., M. Bradley, and B. Vincent, Core-shell particles having silica cores and pH-responsive poly(vinylpyridine) shells. Soft Matter, 2005. 1(2): p. 160.
    125. Huang, Z.B. and F.Q. Tang, Preparation of the core/shell dispersion composite particles. Acta Polymerica Sinica, 2004(6): p. 835-838.
    126. Yuan, W.Z., et al., Synthesis and characterization of polystyrene/nanosilica organic-inorganic hybrid. Chemical Research in Chinese Universities, 2006. 22(6): p. 797-802.
    127. Yang, Z.Q., et al., Synthesis of monodispersed poly(butyl acrylate)-silica core-shell particles. Chemical Journal of Chinese Universities-Chinese, 2004. 25(9): p. 1774-1776.
    128. Tissot, I., et al., SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles. Chemistry of Materials, 2002. 14(3): p. 1325-1331.
    129. Caruso, F., H. Fiedler, and K. Haage, Assembly of beta-glucosidase multilayers on spherical colloidal particles and their use as active catalysts. Colloids and Surfacesa-Physicochemical and Engineering Aspects, 2000. 169(1-3): p. 287-293.
    130. Rhodes, K.H., et al., Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chemistry of Materials, 2000. 12(10): p. 2832-+.
    131. Mayya, K.S., et al., Nanotubles prepared by templating sacrificial nickel nanorods. Nano Letters, 2001. 1(12): p. 727-730.
    132. Park, M.K., et al., Cross-linked, luminescent spherical colloidal and hollow-shell particles. Langmuir, 2001. 17(24): p. 7670-7674.
    133. Pastoriza-Santos, I., B. Scholer, and F. Caruso, Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins. Advanced Functional Materials, 2001. 11(2): p. 122-128.
    134. Schuler, C. and F. Caruso, Decomposable hollow biopolymer-based capsules. Biomacromolecules, 2001. 2(3): p. 921-926.
    135. Yang, W.J., et al., Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications. Journal of Colloid and Interface Science, 2001. 234(2): p. 356-362.
    136. Kumaraswamy, G., A.M. Dibaj, and F. Caruso, Photonic materials from self-assembly of "tolerant" core-shell coated colloids. Langmuir, 2002. 18(10): p. 4150-4154.
    137. Liang, Z.J., A.S. Susha, and F. Caruso, Metallodielectric opals of layer-by-layer processed coated colloids. Advanced Materials, 2002. 14(16): p. 1160-1164.
    138. Schuetz, P. and F. Caruso, Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chemistry of Materials, 2002. 14(11): p. 4509-4516.
    139. Shi, X.Y., T. Cassagneau, and F. Caruso, Electrostatic interactions between polyelectrolytes and a titania precursor: Thin film and solution studies. Langmuir, 2002. 18(3): p. 904-910.
    140. Kaltenpoth, G., et al., Conductive core-shell particles: An approach to self-assembled mesoscopic wires. Advanced Materials, 2003. 15(13): p. 1113-+.
    141. Liang, Z.J., A. Susha, and F. Caruso, Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chemistry of Materials, 2003. 15(16): p. 3176-3183.
    142. Mayya, K.S., B. Schoeler, and F. Caruso, Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Advanced Functional Materials, 2003. 13(3): p. 183-188.
    143. Park, M.K., et al., Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir, 2003. 19(20): p. 8550-8554.
    144. Salgueirino-Maceira, V., F. Caruso, and L.M. Liz-Marzan, Coated colloids with tailoredoptical properties. Journal of Physical Chemistry B, 2003. 107(40): p. 10990-10994.
    145. Katagiri, K. and F. Caruso, Functionalization of colloids with robust inorganic-based lipid coatings. Macromolecules, 2004. 37(26): p. 9947-9953.
    146. Wang, Y.J. and F. Caruso, Macroporous zeolitic membrane bioreactors. Advanced Functional Materials, 2004. 14(10): p. 1012-1018.
    147. Caruso, F., C. Schuler, and D.G. Kurth, Core-shell particles and hollow shells containing metallo-supramolecular components. Chemistry of Materials, 1999. 11(11): p. 3394-3399.
    148. Caruso, F., et al., Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Advanced Materials, 1999. 11(11): p. 950-+.
    149. Rhodes, K.H., et al., Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks. Chemistry of Materials, 2000. 12(10): p. 2832.
    150. Susha, A.S., et al., Formation of luminescent spherical core-shell particles by the consecutive adsorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000. 163(1): p. 39-44.
    151. Caruso, F., Generation of complex colloids by polyelectrolyte-assisted electrostatic self-assembly. Australian Journal of Chemistry, 2001. 54(6): p. 349-353.
    152. Caruso, F., et al., Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Advanced Materials, 2001. 13(14): p. 1090-+.
    153. Bizdoaca, E.L., et al., Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. Journal of Magnetism and Magnetic Materials, 2002. 240(1-3): p. 44-46.
    154. Wang, D.Y. and F. Caruso, Polyelectrolyte-coated colloid spheres as templates for sol-gel reactions. Chemistry of Materials, 2002. 14(5): p. 1909-+.
    155. Caruso, F. and K. Katagiri, Preparation of core-shell colloid particles using layer-by-layer assembly of polyelectrolytes and lipid bilayer membranes. Abstracts of Papers of the American Chemical Society, 2004. 227: p. U546-U546.
    156. Gittins, D.I., et al., Dense nanoparticulate thin films via gold nanoparticle self-assembly. Advanced Materials, 2002. 14(7): p. 508-+.
    157. Wang, D.Y. and F. Caruso, Lithium niobate inverse opals prepared by templating colloidal crystals of polyelectrolyte-coated spheres. Advanced Materials, 2003. 15(3): p. 205-+.
    158. Obare, S.O., N.R. Jana, and C.J. Murphy, Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Letters, 2001. 1(11): p. 601-603.
    159. Sun, Y., Gates, B., Mayers, B. and Xia, Y.,, Crystalline Silver Nanowires by Soft Solution Processing. Nano Lett., 2002. 2: p. 165-168.
    160. Yin, Y., Lu, Y., Sun, Y. and Xia, Y., Silver Nanowires Can Be Directly Coated with Amorphous Silica to Generate Well-Controlled Coaxial Nanocables of Silver/Silica. Nano Lett. , 2002. 2: p. 427-430.
    161. Caruso F, C.R.A., M?hwald H., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating . Science, 1998. 282: p. 1111-1114.
    162. Lin, Y.W., C.W. Liu, and H.T. Chang, Synthesis and properties of water-soluble core-shell-shell silica-CdSe/CdS-silica nanoparticles. Journal of Nanoscience and Nanotechnology, 2006. 6(4): p. 1092-1100.
    163. Zhu, M.D., J.J. Han, and A.D.Q. Li, CdSe/CdS/SiO2 core/shell/shell nanoparticles. Journal of Nanoscience and Nanotechnology, 2007. 7(7): p. 2343-2348.
    164. 曹同玉等, 聚合物乳液合成原理性能及应用. 2000, 北京: 化学工业出版社.
    165. Matsumoto T., O.A., Polymerization of styrene in aqueous solution. Kobunshi Kagaku, 1965. 22(244): p. 481-487.
    166. Fitch R. M., M.B., Prenosi L. et al., The mechanism of particle formation in polymer hydrosols. I. Kinetics of Aqueous Polymerization of Methyl Methacrylate. J. Polym. Sci., C., 1969. 27(1)95-118.
    167. Berrett K E J., Dispersion Polymerization in Organic Media. . New York, 1975: Wiley.
    168. Hansen F. K., U.J., Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation .J. Polym. Sci. Polym. Chem. ED., 1978. 16(8): p.1953-1979.
    169. Arai, M.,Arai K., Polymer particle formation in soapless emulision polymerization J. Polym. Chem. E.D., 1979. 17: p. 3655-3665.
    170. D. Munro, A. R. Goodall, M. C. Wilkinson, K. Randle, J. Hearn , Study of particle nucleation, flocculation, and growth in the emulsifier-free polymerization of styrene in water by total intensity light scattering and photon correlation spectroscopy .J. Coll. Inter. Sci., 1979(1): p. 1-13.
    171. Vanderhoff, J.W., Mechanism of emulsion polymerization. J. Polym. Sci. Polym. Symp., 1985. 72:p161-198.
    172. Feeney, P.J., Konald H. N., Robert G. G. et al., Surfactant-free emulsion polymerization: predictions of the coagulative nucleation theory. Macromolecules, 1987. 20: p. 2922-2930
    173. Goodwin, J.W.e.a., The preparation and characterisation of polymer latices formed in the absence of surface active agents. Br. Polym. J., 1973. 5: p. 347-362.
    174. D. Munro, A. R. Goodall, M. C. Wilkinson, K. Randle, J. Hearn , Study of particle nucleation, flocculation, and growth in the emulsifier-free polymerization of styrene in water by total intensity light scattering and photon correlation spectroscopy .J. Coll. Inter. Sci., 1979(1): p. 1-13..
    175. Song, Z.Q., Gary W. Poehlein., Particle nucleation in emulsifier-free aqueous-phase polymerization: Stage 1. J. Colloid Int. Sci., 1989. 128(2): p. 486-500.
    176. 魏德卿,魏立光,韩荣英等, 聚偶氮酯的合成及用于乳液聚合,高分子学报, 1989(6): p. 107-109+.
    177. Juang M. S., I.M.K., Emulsifier-free emulsion polymerization with ionic comonmer. J. Polym. Sci. Polym. Chem. ED., 1976. 14: p. 2089-2107.
    178. Chang H. S., C.S.A.,Kinetics and mechanism of emulsifier-free emulsion polymerization.II.Styrene/Water soluble comonomer(sodium methallyl sulfonate)system. J. Polym. Sci. Polym. Chem. ED., 1988. 26: p.1207-1229.
    179. Guilaume, J.L.e.a., Emulsifier-free emulsion copolymerization of styrene and butyl acrylate. II. Kinetic studies in the presence of ionogenic comonomers J. Polym. Sci. Polym. Chem. ED., 1988. 26: p. 1937-1959.
    180. Homola A. M., I.M., Robertson A. A. et al., Experiments with soap-free polymerization of styrene in the presence of alcohols .J. Appl. Polym. Sci., 1975. 19: p. 3077-3086.
    181. Okubo M., Y.A., Shibao S. et al., Studies on suspension and emulsion. XLVI. Emulsifier-free emulsion polymerization of styrene in acetone-water . J. Appl. Polym. Sci., 1981. 26(5): p.1675-1679.
    182. Chonde Y., K.I.M., Emulsion polymerization of styrene with ionic comonomer in the presence of methanol .J. Appl. Polym. Sci., 1981. 26(6): p.1819-1827.
    183. Hansen F. K., Particle nucleation in emulsion polymerization. II. Nucleation in emulsifier-free systems investigated by seed polymerization , J. Polym. Sci. Polym. Chem. ED., 1979. 17: p. 3033-3045.
    184. Greene D. P., e.a., In situ polymerization of surface-active agents on latex particles I. Preparation and characterization of styrene/butadiene latexes. J. Colloid. Int. Sci., 1970. 32(1): p. 90-95.
    185. Guilaume J. L., P.C., Guillot J. et al., Emulsifier-free emulsion copolymerization of styrene and butyl acrylate. III. Kinetic studies in the presence of a surface active comonomer, the sodium acrylamido undecanoate . J. Polym. Sci. Polym. Chem. ED., 1990. 28: p. 137.-152
    186. Kim J. H., C.M., El-Aasser M. S. et al., Preparation of highly sulfonated polystyrene model colloids.J. Polym. Sci. Polym. Chem. ED., 1989. 27: p. 3187.-3199
    187. Ebelmen, C.R., Acad. Sci., 1845. 21: p. 502.
    188. Ebelmen, C.R., Ann, 1846. 57: p. 331.
    189. Roy, R., Aids in Hydrothermal Experimentation: II, Methods of Making Mixtures for Both "Dry" and "Wet" Phase Equilibrium Studies .J. Am. Ceram. Soc., 1956. 39(4): p. 145-146.
    190. Roy, R., Gel Route to Homogeneous Glass Preparation. J. Am. Ceram. Soc., 1969. 52(6): p. 344.
    191. Mccarthy, G.J.R., R.; et. al., Preliminary Study of Low-Temperature "Glass" Fabrication from Noncrystalline Silicas. J. Am. Ceram. Soc., 1971. 54: p. 637-638.
    192. Iler, R.K., The Chemistry of Silica. 1955, New York: Wiley.
    193. Mayeral, J.R., J.; Moya, S.; Lopez, C.; Cintas, A.; Miguez, H., 3D Long-range ordering in ein SiO2 submicrometer-sphere sintered superstructure.Adv. Mater., 1997. 9: p. 257-260.
    194. Dimitrov, A.S.M., T.; Nagayama, K., A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles. Langmuir, 1999. 15: p. 5257-64.
    195. Levy, D.Q., X.; Oton, J.M., SPIE Proc, 1994.vol. 2288.
    196. MacCraith, B.D., SPIE Proc, 1994.vol. 2288.
    197. Livage, J.D., J.M.; Desportes, I., SPIE Proc, 1994.vol. 2288.
    198. (a).Hench L.L.; Ulrich, D.R.; Science of Ceramic Chemica Processing, Wiley, NY, 1988; (b). Aegerter, M.A.; Jafelicci,M.; Souza, D.F.; Zanotto, E.D.; Sol-Gel Science and Technology, World Scientific, Singaore, 1989.(c) Brinker, C.J.; Scherer, G.W.; Sol-Gel Science, The Physics and Chemistry of Sol-Gel Science Academic Press, New York, 1990.
    199. Colomban, Ceramics International, 1989, 23, 15 Larry, H.; Jon, K.W.; Chem. Rev., 1990, 90, 33. Mukherjee, S.P.; J. Non-Cryst. Solids 1980, 64, 477.
    200. Sherwood, T.K., The drying of solids III. Ind. Eng. Chem., 1930. 22: p. 132-136.
    201. Hench, L.L.; Wang, S.H.; Nogues, J.L. In Multifunctional materials; Gunshor, R.L., Ed.; SPIE; Bellingham, WA, 1988; Vol.878, p 76.
    202. Ewell, R.H. and H. Insley, J Res. NBS, 1935. 15: p. 173.
    203. Leitheiser, M. and H.G. Snowman, Non-Fused Alumina Based Abrasive Material U.S. Patent Appl. 145, 383. 1980.
    204. Overbeek, J.T.G., Adv. Colloid Interface Sci., 1982. 16: p. 17.
    205. Overbeek, J.T.G., Adv. Colloid Interface Sci. , 1982. 15: p. 251.
    206. Sugimoto, T., Adv. Colloid Interface Sci., 1987. 28: p. 65.
    207. Matijevic, E.B., M.; Meites, L., Preparation and mechanism of formation of titanium dioxide hydrosols of narrow size distribution. J. Colloid Interface Sci., 1977. 61: p. 302-311.
    208. (a)Matijevic, E. In Ultrastructre Processing of Ceramics Glass and Composites: Hench, L.L., Ulrich, D.R., Eds.; Wiley; New York, 1984; p 334 (b)Matijevic, E. In Science of Ceramic Chemical Processing; Hench, L.L.; Ulrich, D.R., Eds.; Wiley: New York, 1986; p 463. (c)Matijevic, E. In Ultrastructre Processing of advanced Ceramics; Mackenzie, J.D., Ulrich, D.R., Eds.; Wiley: New York. 1988: p 429. .
    209. Huang, Y.Y.; Zhao, B.Y.; Xie, Y.C.; A novel way to prepare silica supported sulfated titania Appl. Catal. A. 1998, 171, 65-73.
    210. Sohn, J.R.; Jang, H.J.; Characterization of ZrO2-SiO2 unmodified or modified with H2SO4 and acid catalysis..J. Mol. Catal. 1991, 64, 349-360.
    211. Makishima, A.; Tani, T.; Preparation of Amorphous Silicas Doped with OrganicMolecules by the Sol-Gel Process. J Am. Ceram. Soc. 1986, 69, C-72–C-74.
    212. Adair, J.H.T., S.A.; Melling, P.J., Chemically derived multilayer ceramics. Am. Ceram. Soc. Bull., 1987. 66(10): p. 1490-1494.
    213. Abboud M., T.M., Duguet E, Fontanille M., PMMA-based composite materials with reactive ceramic fillers. Part 1.—Chemical modification and characterisation of ceramic particles. J. Mater. Chem. , 1997. 7: p. 1527-1532.
    214. Zhang, K., et al., Silica-PMMA core-shell and hollow nanospheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 277(1-3): p. 145.
    215. Wu, T. and Y. Ke, Preparation of silica-PS composite particles and their application in PET. European Polymer Journal, 2006. 42(2): p. 274.
    216. Bourgeat-Lami, E.a.J.L., Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 1. Silica Nanoparticles Encapsulated by Polystyrene. J. Colloid Interface Sci., 1998. 197: p. 293-308.
    217. Perruchot, C., et al., Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP. Langmuir, 2001. 17(15): p. 4479-4481.
    218. Ding, X., et al., Silicon dioxide as coating on polystyrene nanoparticles in situ emulsion polymerization. Materials Letters, 2004. 58(11): p. 1722.
    219. Abboud M., T.M., Duguet E, Fontanille M., PMMA-based composite materials with reactive ceramic fillers. Part 1.—Chemical modification and characterisation of ceramic particles. J. Mater. Chem. , 1997. 7: p. 1527-1532.
    220. Srinivansan, S.M., R. Stevens, P. Yang, C, Annu. Rev.Energy Environ., 1999. 24: p. 281.
    221. Hsu, W.P.Y., R.; Matijevic, E. , Paper Whiteners: I. Titania Coated Silica. J. Colloid Interface Sci., 1993. 156: p. 56-65.
    222. Yang, M., et al., General synthetic route toward functional hollow spheres with double-shelled structures. Angewandte Chemie-International Edition, 2005. 44(41): p. 6727-6730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700