RGD-重组蛛丝蛋白和柞蚕丝素蛋白作为组织工程支架材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜘蛛丝蛋白纤维具有较高的强度、弹性、柔韧性、伸长度以及良好的生物降解性,在组织工程支架材料领域引起了极大的研究兴趣。RGD(Arg-Gly-Asp)三肽序列是细胞表面整合素的特异配体,能够促进细胞的黏附。本室建立了利用基因工程和高密度发酵技术生产RGD-重组蜘蛛蛋白以及重组蛋白规模纯化的工艺,为其后续研究奠定了基础。柞蚕丝是以野柞蚕茧为原料缫制而成的天然蚕丝纤维,是我国的宝贵资源,但目前主要用作普通的纺织原料。柞蚕丝可以编织成形状类似肌腱的编织带,同时,其优异的力学性能使其能够承受机体的拉伸应力。此外,柞蚕丝中还含有天然存在的RGD序列。因此,柞蚕丝纤维作为一种潜在的组织工程肌腱支架材料,有着广泛的应用前景。
     本研究制备了两种RGD蛋白(重组蛛丝蛋白pNSR-16和柞蚕丝素蛋白)的多孔复合支架材料,并首次利用静电纺丝技术制备了pNSR-16纳米复合支架材料;通过傅立叶转换红外光谱(FTIR)和力学性能的测定,对制膜过程中两种蛋白分子构象或复合材料力学性能的影响因素进行了探讨,结果表明:甲酸能促进pNSR-16分子构象向无规卷曲转变,溴化锂、醇类、高分子材料(聚乙烯醇和壳聚糖)可以诱导pNSR-16分子构象向β-折叠转化;小分子增塑剂、高分子量PVA能够促进柞蚕丝素蛋白分子构象向β-折叠转变,提高加热温度、交联、增塑剂PEG则破坏了其β-折叠构象,高分子量PVA、甘油增塑、化学交联、75%乙醇变性均能提高柞蚕丝素蛋白复合材料的力学性能。
     通过浸提液毒性实验和细胞与支架的体外联合培养,考察了两种蛋白支架材料的细胞相容性。根据细胞毒性实验ISO10993制定的评价标准得出,两种支架材料的浸提液毒性为1级,反应合格。扫描电镜观察结果表明两种支架均能促进NIH3T3细胞的黏附和生长,具有良好的细胞相容性。
     分别利用肌腱细胞和兔跟腱损伤模型,从体外和体内两个水平对柞蚕丝纤维作为组织工程肌腱支架材料的可行性进行了研究。细胞与支架的体外联合培养结果表明:柞蚕丝纤维能够支持肌腱细胞的黏附和生长。体内实验通过大体观察、组织学染色、免疫组化、扫描电镜观察以及生物力学测定等结果表明,柞蚕丝能够支持兔跟腱的修复,初步认为其作为组织工程肌腱支架材料具有一定的可行性。
Owning to its excellent strength, elasticity, flexibility, elongation and biodegradability, spider silk has caused great attention in tissue engineering scaffold material field. RGD (Arg-Gly-Asp) tripeptide sequence, which can promote cell adhesion, is the specific ligand to the integrin on the cell surface. Our lab staff has set up a method to prepare recombinant spider silk by gene engineering and high density fermentation technique. Antheraea pernyi silk is produced by wild A. pernyi silkworm cocoon. It is a precious resource in China. However, it is noly used as a raw material of textile industry presently. Reports on its application in tissue engineering scaffold were scarce. With its RGD tripeptide sequence, to be richly endowed by nature, A. pernyi silk fibroin has superiority in tissue engineering scaffold material field. A. pernyi silk fibroin can be knitted to a tendon-shaped braid, and it can also endure the elongation stress of the body with its outstanding mechanical properties. Therefore, the application of A. pernyi silk fibroin as tissue engineering tendon scaffold has a widely perspective.
     In this research, porous complex scaffolds of the two RGD-containing proteins (recombinant spider silk fibroin pNSR-16 and A. pernyi silk fibroin) were prepared. As a first, we obtained recombinant spider silk fibroin complex nanofiber scafflod by electrospinning. Application of Fourie transform infrared spectroscopy (FTIR) and mechanical property determination, the influencing factors to the protein molecular conformation and mechanical properties of the complex scaffold were discussed. Results showed that Formyl Acid promote the transformation of pNSR-16 to random coil, while LiBr, heating, denaturation and macromolecule material (PVA and CS) promte the transformation toβ-fold. It was also found that micromolecule elasticizer and PVA with high molecular weight promote the transformation toβ-fold of A. pernyi silk fibroin, while raising heating temperature, crosslinking and PEG destroy theβ-fold conformation of A. pernyi silk fibroin. According to the differences of mechanical properties between different materials, it can be concluded that PVA with high molecular weight, elasticizer glycerol, chemical crosslinking and denaturation by 75% ethyl alocohol enhance the mechanical properties of A. pernyi silk fibroin complex material.
     Cyto-compatibility of the porous complex scaffold of the two RGD-containing proteins was investigated by cytotoxicity determination of the extract of the scaffolds and preparation of Cell-scaffold constructs. According to the evaluation criterion in ISO10993, cytotoxicity of the extract of the two scaffolds is of ranking I and qualified. Results showed that both the scaffolds promote the adhesion and propagation of NIH3T3, namely, both the scaffolds have good cyto-compatibility.
     The feasibility of A. pernyi silk fibroin to be used as tissue engineering tendon scaffold was investigated in vitro and in vivo, respectively, utilizing tenocytes and tendon injury rabbit model. In vitro results showed that A. pernyi silk fibroin promote the adhesion and propagation of the tenocytes. Results on macrographic examination, histological examination, immunohistochemical examination, scanning electron micrograph examination and biomechanical determination reveled that A. pernyi silk fibroin promote the recovery of the injury tendon of the rabbit in vivo. Prelimanary, we conclude that the application of A. pernyi silk fibroin as tissue engineering tendon scaffold is feasible.
引文
[1]焦国豪.组织工程支架材料研究进展[J].化工中间体,2007,34(04):26-29.
    [2]孙雪奚,廷斐.生物材料和再生医学的进展[J].中国修复重建外科杂志,2006,20(2):189-192.
    [3]陈发明,金岩,黄沙.《组织工程·生物材料》教学中的“杂交”与整合[J].牙体牙髓牙周病学杂志,2007,17(5):301-303.
    [4]Dietmar W H.Scaffolds in tissue engineering bone and cartilage[J].Biomaterials,2000,21(5):2529-2543.
    [5]胡蕴玉.把握契机加快我国组织工程学的应用研究[J].中华骨科杂志,2000,20(9):517-519.
    [6]方丽茹,翁文剑,等.骨组织工程支架及生物材料研究[J].生物医学工程杂志,2003,20(1):148-152.
    [7]马朋高,游秀东,姚康德,等.骨组织工程及可吸收高分子支架的研究进展[J].化学通报,2001,64(7):407-410.
    [8]李冰一,蔺嫦燕.组织工程支架材料的研究进展[J].生物医学工程与临床,2007,11(3):241-245.
    [9]史嘉玮,董念国.RGD肽在组织工程领域的应用[J].中华实验外科杂志,2005,22(9):1150-1152
    [10]Clark EA,Brugge J S.Integrins and signal transduction pathways:the road taken[J].Science,1995,268(4):233-239.
    [11]Healy KE,Rezania A,Stile RA.Designing biomaterials to direct biological responses[J].Ann N Y Acad Sci,1999,875(1):24-35.
    [12]Bayless K J,Salazar R,Davis GE.RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three dimensional fibrin matrices in volves the alpha(v)beta(3)and alpha(5)beta(1)integrins[J].Am J Pathol,2000,156:1673-1683.
    [13]李俊杰,姚康德.组织工程用生物材料[J].大学化学,2007,22(2):1-6.
    [14]李敏,黄建坤,涂桂云.RGD-蜘蛛拖丝蛋白聚合物的生物合成与纯化[J].中国生物工程杂志,2004,21(6):1006-1010.
    [15]姚菊明,祝永强,李媛等.桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析[J].化学学报,2006,64(12):1273-1278.
    [16]李敏,章文贤,黄智华,等.蜘蛛拖丝蛋白基因的构建及在大肠杆菌中的表达[J].生物工程学报,2002,18(3):331-334.
    [17]Hinman M B,Jones J A,Lewis R V.Synthetic spider silk:a modular fiber[J].Trends Biotechnol,2000,18(9):374-379.
    [18]吕靖.蚕丝和蜘蛛丝的结构与生物纺丝过程[J].现代纺织技术,2004,12(1):40-42.
    [19]Guhrs K H,Klaus W,Frank G..Lessons from nature-protein fibers[J].Reviews in Molecular Biotechnology,2000,74(2):121-134.
    [20]John T P,Kevin P M,Carla M D,et al.Construction,Cloning,and Expression of Synthetic Genes Encoding Spider Dragline Silk[J].Biochemistry,1995,34(8):10879-10885.
    [21]Fritz V.Biology of spider silk[J].International Journal of Biological Macromolecules,1999,24(2):81-88.
    [22]刘海洋,王伟霞,刘长军,等.纺织新材料—蜘蛛丝[J].纤维技术,2004,1:28-31.
    [23]黄智华,李敏.蜘蛛丝的分子结构与力学性能研究[J].中国生物工程杂志,2003,23(7):84-88.
    [24]K.C.迪伊,D.A.普莱奥,R.比齐奥斯编著.组织-生物材料相互作用导论[M].北京:化学工业出版社,2005
    [25]曹惠,戴礼兴,左葆齐.丝蛋白在生物医学领域中应用的研究进展[J].丝绸,2005(6):48-51
    [26]Gregory H.Altman,Frank Diaz,Caroline Jakuba,et al.Silk-based biomaterials[J],2003,24(3):401-416.
    [27]Sreekanth Vadlamudi,M.Delwar Hussain,Randolph V.Lewis et al.Spider silk:potential for biomedical application[J].PDD 7171.
    [28]F.Vollrath,P.Barth,A.Basedow,et al.Local tolerance to spider silks and protein polymers in Vivo[J].In Vivo,2002,16(4):229-234.
    [29]Lam K H,Nijenhuis A J,Bartels H,et al.Reinforced poly(1-Lactic Acid)fibers as structure material[J].J Appl Biomater,1995,(6):191-197.
    [30]Minorua N,Tsukada M,Nagura M.Physico-chemical properties of silk fibroin membrane as a biomaterial[J].Biomaterials,1990,(11):430-434.
    [31]袁辉.蜘蛛丝的研究与开发利用[J].国外纺织技术,2003,(6):7-8.
    [32]Seidel A,Liivak O,Jelinski L W.Artificial spinning of spider silk[J].Macromolecules,1998,31(19):6733-6736.
    [33]Liivak O,Blye A,Shah N,et al.A microfabricated wet-spinning apparatus to spin fibers of silk proteins.Structure-property correlations[J].Macromolecules,1998,31(9):2947-2951.
    [34]Fahnestock..Recombinantly produced spidersilk[P].United States Patent,6,268,169,July 31, 2001.
    [35]Lock.Process for spinning polypeptide fibers[P].United States Patent.5,171,505,December 15,1992.
    [36]Steven Arcidiacono,Charlene M.Mello,Michelle Butler,et al.Aqueous Processing and Fiber Spinning of Recombinant Spider Silks[J].Macromolecules 2002,35(4):1262-1266.
    [37]Zarkoob et al.Synthetically spun silk nanofibers and a process for making the same[P].United States Patent 6,110,590,August 29,2000.
    [38]李明忠,卢神,吴徵宇,等.多孔丝素膜的制备及其形态结构[J].纺织学报,2000,21(5):268-271.
    [39]KIRIMURA J.Studies on amino acid composition and chemical structure of silk protein by microbiological determination[J].Sanshi Shikenjo Houkoku,1962,17:447-522.
    [40]HIRABAYASHI K,KONDO Y,GO Y.Studies on the fine structure of silk fibroin(1)[J].Sen-I Gakkaishi,1967,23(5):199-207.
    [41]FREDDI G,MONTI P,NAGURA M,et al.Structure and molecular conformation of tussah silk fibroin films:effect of heat treatment[J].Polym SciB:PolymPhy,1997,35:841-847.
    [42]TSUKADA M,FREDDI G;KASAI N.Physical and chemical properties of tussah silk fibroin films[J].J PolymSciB:Polym Phys,1998,36:2717-2724.
    [43]KWEON H Y,PARK Y H.Structure and conformational changes of regenerated Antheraea peruyi silk fibroin films treated with methanol solution[J].J Appl PolymSci,1999,73:2887-2894.
    [44]KWEON H Y,WOO S O,PARK YH.Effect of heat treatment on the structural and conformational changes of regenerated Antheraea pernyi silk fibroin films[J].J Appl PolymSci,2000,81:2271-2276.
    [45]TAO W,LI M,ZHAO C.Structure and properties of regenerated Antheraea pemyi silk fibroin in aqueous solution[J].Int J Biol Macromol,2007 Apt 10,40(5):472-478.
    [46]MINOURA N,AIBA S I,HIGUCHI M.Attachment and growth of fibroblast cells on silk fibroin [J].Biochemical and Biophysical Research Communications,1995,208(2):511-516.
    [47]Li MZ,TAO W,KUGA S,et al.Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment[J].Polymers for Advanced Technologies,2003,14(10):694-698.
    [48]Li MZ,TAO W,LU S Z,et al.Compliant film of regenerated Antheraea pemyi silk fibroin by chemical crosslinking[J].International Journal of Biological Macromolecules,2003,32(3):159-163.
    [49]FREDDI G,TSUKADA M,BERETTA S,et al.Structure and physical properties of silk fibroin/polyacry-lamide blend films[J].Journal of Applied Polymer Science,1999,71(10):1563-1571.
    [50]YANG G,ZHANG L,CAO X D.Structure and microporous formation of cellulose/silk fibroin blend membranes.Part Ⅱ:effect of post-treatment by alkali[J].Journal of Membrane Science,2002,210(2):379-387.
    [51]HaeYong Kweon,In Chul Urn,Young Hwan Park.Structure and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film[J].Polymer,2001,42(7):6651-6656.
    [52]Dewair M,Baur X,Ziegler K.Use of immunoblot technique for detection of human IgG antibodies to individual silk proteins[J].J Allergy Clin Immunol,1985,76:537-542.
    [53]Zaoming W,Codina R,Fernandez-Caldas E,et al.Partial characterization of the silk allergens in mulberry silk extract[J].J Inv Allergy Clin Immunol,1996,6:237-241.
    [54]Altman GH.,Diaz F,Jakuba C,et al.Silk-based biomaterials[J].Biomaterials,2003,24:401-416.
    [55]Altman G H.,Horan,Rebecca L,et al.Silk matrix for tissue engineered anterior cruciate ligaments[J].Biomaterials,2002,23:4131-4141.
    [56]陶伟,李明忠,卢神州.再生柞蚕丝素蛋白膜的制备及其结构研究[J].东华大学学报(自然科学版),2005,31(06):26-29
    [57]Li MZ,TAO W,LU S Z,et al.Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking[J].International Journal of Biological Macromolecules,2003,32(3):159-163.
    [58]Jun M,Yoshiko M,Mary A.Crystallization of silk fibroin from solution[J].Termochimica Acta,2000,352(3):165-169.
    [59]栾希英,段巧艳,段祥,等.再生柞蚕丝素蛋白对人骨髓间充质干细胞体外扩增的支持作用[J].中国生物医学工程学报,2007,26(2):276-281.
    [60]李冀,张育敏,王志强,等.骨组织工程支架材料合成技术的进展[J].中华创伤骨科杂志,2006,8(8):773-776.
    [61]Liao CJ,Chen CF,Chen JH,et al.Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method[J].J Biomed Mater Res,2002,59:768-676.
    [62]Cooper AI.Porous materials and supercritical fluids[J].Adv Mater,2003,15:1049-1059.
    [63]Yang SF,Leong KF,Du ZH,et al.The design of scaffolds for use in tissue engineering[J].Part 11.Rapid prototyping techniques.Tissue Eng,2002(8):1-11.
    [64]王海宁,万怡灶,李建,等.纳米纤维组织工程支架及其纳米效应研究进展[J].材料导报,2007,21(4):13-16.
    [65]陈登龙,李敏,房乾.电纺丝技术在纳米结构高分子支架中的应用[J].中国修复重建外科杂志,2007,21(4):411-415.
    [66]Boudriot U,Dersch R,Greiner A,et al.Electrospinning Approaches toward scaffold engineering-a brief overview[J].Artificial organs,2006,30(10):785-792.
    [67]Townsend-Nicholson A,Jayasinghe SN.Cell electrospinning:a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds[J].Biomacromolecules,2006,7(12):3364-3369.
    [68]谢慧琪,杨志明.组织工程肌腱研究进展[J].基础医学与临床,2001,21(6):497-499.
    [69]Alexander H,Weiss AB,Parsons JR,et al.Ligament and tendon repair with an absorbable polymer-coated carbon fiber stunt[J].Bull Hosp Jt Dis Orthop Inst,1986,46(2):155-173.
    [70]Yang ZM,Xie HQ,Li T.Tissue engineering of the musculo-skeletal system-Basic research and clinical applications[J].Hand Surgery,2000,5(1):49-55.
    [71]Cao Y,Vacanti JP,Ma X,et al.Generation of neo-tendon using synthetic polymers seeded with tenocytes[J].Transplant Proc,1994,26(61):3390-3391.
    [72]Cao YL,liu YT,Liu W,et al.Bridging tendon defects using autologous tenocyte engineered tendon in a hen model[J].Plast Reconstr Surg,2002,(6):1280-1289.
    [73]Dejardin LM,Ewers BJ,Ewers BJ.Tissue-engineered rotator cuff tendon using porcine small intestine submucosa.Histologic and mechanical evaluation in dogs[J].Am J Sports Med,2001,29(2):175-184
    [74]王铁丹.人工腱材料实验与临床[M].昆明:云南科学技术出版社,1996:10-33.
    [75]李春晓,李祥明,丁晶等.CQD人工腱的实验研究及临床应用[J].中华临床医学杂志,2004,5(5):17-19.
    [76]杨志明,解慧珙,项舟,等.转化人胚肌腱细胞的体外培养及生物学特性研究[J].中国修复重建外科杂志,1999,13(2):99-104.
    [77]杨志明,魏人前,项舟,等.转化人胚腱细胞致瘤性实验研究[J].中华显微外科杂志,2001, 24(1):36-39.
    [78]裴国献,魏宽海,金丹.组织工程学实验技术[M].北京:人民军医出版社,2006,258-265.
    [79]钱国坻,姚予梁.[J].苏州丝绸工学院学报,1983(4):26-30.
    [80]陈新,周丽,邵正中.时间分辨红外光谱对丝蛋白膜构象转变动力学的研究——再生蚕丝蛋白膜在高浓度醇溶液中的构象转变[J].化学学报,2003,61(4):625-629.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700