猪血凝性脑脊髓炎病毒细胞结合蛋白的原核表达及初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪血凝性脑脊髓炎病毒(Hemagglutinating encephalomyelitis virus,HEV)是引起猪血凝性脑脊髓炎的重要病原,主要引起仔猪呕吐、衰竭或中枢神经系统障碍。1~3周龄的仔猪感染HEV后,死亡率通常高达20~100%。然而,目前还不清楚HEV的细胞受体及由受体介导的感染机制。因此,研究HEV敏感细胞受体的结构组成及其与病毒间的相互作用机制等,对了解病毒感染过程、致病机理以及该病的预防与治疗等都非常重要。
     为初步鉴定猪血凝性脑脊髓炎病毒(HEV)在敏感细胞上的受体基因,本研究根据本课题组已从构建的PK-15细胞cDNA文库中筛选到一段430bp的基因片段PK-CP1为基础,
     根据该基因序列设计特异性引物,以含PK-CP1基因的噬菌体DNA为模板,利用PCR反应扩增长411bp的基因片段,将其亚克隆到原核表达载体Pet-28a(+)中,构建重组质粒pET-28a-PKCP1,并转化到宿主菌E.coli BL-21中进行诱导表达,利用SDS-PAGE和Western-Blot对表达产物进行分析和鉴定。重组蛋白经Ni-NTA亲和层析柱纯化,并进行稀释透析复性,用纯化的重组蛋白免疫BALB/c小鼠制备出抗pkCP1蛋白的多抗,之后应用间接免疫荧光对目的蛋白在PK细胞和SK细胞的分布进行定位。结果表明,该基因在原核系统中获得高效表达,表达产物以包涵体形式存在;western-blot试验表明表达的蛋白具有良好的反应原性;免疫荧光检测表明PK-CP1蛋白位于PK-15细胞和sk细胞的细胞上,这些研究结果初步鉴定出PK-CP1基因片段为HEV在PK-15细胞和sk细胞上的结合基因,可能的受体基因,从而为进一步研究HEV感染细胞的过程或其致病机制奠定了基础。
Porcine hemagglutinating encephalomyelitis is caused by hemagglutinating encephalomyelitis virus (HEV). It is a acute and strong contagious disease between swines. The mortality rate for piglets under 3 week old high reach 20%-100%. However, the receptor of HEV and the machnism of HEV infect cell are still not clear .we are researching on the frame compose of HEV recepotor and the mechanism of action from HEV to sensitivity cell .because it is very significant to understand the process of effect , mechanism of pathogenesis and to cure virus disease.
     The virus first to infect cell recptor ,then a series of dymanics will start to help virus enter in to cell.the receptor is proteinic molecule located on the cell membrane or inner cell can specific bind and interact with some definite chemical signal that usually called ligandin .They have syntrophic functions of identification combining transfering signal and producing correspond biological effect .the research and study are not only limite to interaction between recptor and ligandin but also comprised the activate mechanism of recptor .After that we have to research how to start the mechanism of transfering and passway signal and how to cause the correspond biological effect .The recptors of animals and human cells are not prepared to virus invading .they have normal physiologic function .the recptor located on the host cell surface is adsporptioned by virus and recongnized by proteins .At present , Almost all the recptor relatived to host cell membrane we have known are lipoprotein and glycoprotein which participate to execute respective normal physiologic function.some research indicate. Some research proved that coronavirus particles bind to cell recptor by spike protein and hemagglutinin(hemagglutinin-esterase,HE)protein which were located on the surface of coronavirus ,then invad host cells by membrane fusion and cell internalization.while distribution of receptor host cells in different kinds of host cells are correlated with extent of virus infect host animals .
     To preliminay identify the HEV receptor gene in sensitive cells ,this research was based on the collaborators successed constructed the cDNA library of PK-15cell and screened a segment new possible receptor gene,430bp,according to this gene containing PKCP1,the 411bp gene containing PKCP1 was amplified by PCR using phage DNA as template.The recovered target fragment was subcloned into Pet-28a(+)prokaryoutic high-expressing vector,was transformed to E.coli BL-21 competent cell, then picked white bacterial colony to extract plasmid. The recombinant plasmid was sequenced after the PCR and enzyme digension identification.,the result showed that The recombinant plasmids pET-28a- PKCP1 was constructed and transformed into E.coli BL-21. And the cells were cultured and induced by IPTG. Then the pET-28a-PKCP1 protein was checked by SDS-PAGE and Western blot analysis of the cell lysates.
     Target protein and multimetric histidine vector were confluently expressed, and a target band is approximative of 14.9kDa. Then we studied the expressing condition of recombinant protein. There are more recombinant proteins expressing with more time and 5h after being induced, recombinant protein reach its maximum. The expressing quantity of recombinant protein is influenced by the concentration of IPTG In the condition of 1mmol/L IPTG being induced 5 hours, at 24℃the extrinsic protein of bacteria is more than in any other conditions. In order to obtain active protein of nature conformation, we optimized the condition for extraction and purification of recombinant protein from cytorrhyctes of bacteria. In the present study, we obtained high purity recombinant protein through Ni2+ affinity chromatography. The purity of protein reached 88.7% by renature; the purified pET-28a-PKCP1 protein was checked by Western Blotting with anti-his goat monoclonal antibodies, A target band is approximative of 14.9kDa. It demonstrated that pET-28a-PKCP1 gene can be expressed in prokaryotic expression system and this protein have biologic activity
     To primary idenitify whether the screened PKCP1 gene is a receptor gene of HEV and the distribution in cells, Immunoprotection response induced by PKCP1 protein against cell in BALB/c mice were immunized with PKCP1 protein by intraperitoneal injection.The immunoprotection of PKCP1 protein against PK-15 and SK cell were studied .the localization of PKCP1 in PK-15 and SK cell were determined by immunofluorescence using antibodies for PKCP1 .Immunofluorescence staining of PK-15 and SK cell showed that PKCP1 protein was present in the cytoplasm of PK-15 and SK cell. It primary idenitified the screened PKCP1 gene is a receptor gene of HEV in PK-15. Moreover, these results establish a foundation of studying the infectious mechanism and disoperation of cell or organism mediated by receptors .
引文
[1] Enserink M. Calling all coronavirologists[J]. Science, 2003, 300: 413.
    [2] Ksiazek T G., Erdman D, Goldsmith C S, et al. A novel coronavirus associated with severe acute respiratory syndrome[J]. N Engi J Med, 2003. 348: 1953-1966.
    [3] Holmes K V. SARS-associated coronavirus[J]. N Engi J Med, 2003. 348:1948-1951
    [4] Thomas C.MettenleiterBrief overview on cellular virus receptors [J].Virus Research. 2002,82: 3-8.
    [5]McIntosh K. Coronaviruses: a comparative review [J]. Curr Top Microbiol Immunol, 1974, 63: 85-129
    [6]Oshiro LS, Schieble JH, Lennette EH. Electron microscopic studies of coronavirus[J] . J Gen Virol, 1971, 12(2): 161-168
    [7] Brian DA, Baric RS. Coronavirus genome structure and replication[J]. Curr Top Microbiol Immunol. 2005;287:1-30.
    [8]金奇.医学分子病毒学[M].北京:科学出版社, 2001.
    [9] Pyrc K, Jebbink MF, Berkhout B, van der Hoek L. Genome structure and transcriptional regulation of human coronavirus NL63[J]. Virol J. 2004 Nov 17;1(1):7.
    [10] Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication[J]. J Virol. 1999 Oct;73(10):8349-55.
    [11] Miller W A, Dreher T W, Hall T C. Synthesis of brome mosaic virus subgenomic RNA in vitro by internal initiation on (-) sense genomic RNA[J]. Nature, 1985. 313: 68-70.
    [12] Yamanaka M, Crisp T, Brown R, Dale B. Nucleotide sequence of the inter-structural gene region of feline infectious peritonitis virus[J]. Virus Genes. 1998;16(3):317-8.
    [13] Antoine A F de Vries, Marian C Horzinek, Peter J M Rottier, Raoul J de Groot. The genome organization of the nidovirales: similarities and differences between arteri-, toro-, and coronaviruses[J]. Virology, 1997. 8:33-47.
    [14]徐耀先,周晓峰,刘立德.分子病毒学[M].湖北科学技术出版社.
    [15] Vennema H, Rossen JW, Wesseling J, Horzinek MC, Rottier PJ. Genomic organization and expression of the 3’end of the canine and feline enteric coronaviruses[J]. Virology. 1992, 191(1): 134-140.
    [16] Sit T L, Vaewhongs A A, Lommel S A. RNA-mediated transactivation of transcription from a viral RNA[J]. Science, 1998. 281:829-832.
    [17] Sawicki D, Wang T, Sawicki S. The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus[J]. J Gen Virol. 2001 Feb;82(2):385-96.
    [18] Hasoksuz M, Sreevatsan S, Cho K O, Hoet A E, Saif L J. Food. Molecular analysis of the Sl subunit of the spike glycoprotein of respiratory and enteric bovine coronavirus isolates[J]. Virus Res, 2002.84: 101-109.
    [19] Mounir S, Talbot. Molecular characterization of the S protein gene of human coronavirus OC43[J]. J GenVirol, 1993. 74: 1981-1987.
    [20] Jurgen Schneider-Schaulies. Cellular receptor for viruses: links to tropism and pathogenesis[J]. Journal of General Virology. 2000. 81:1413-1429.
    [21] Kunkel F, Herrler G Structural and functional analysis of the surface protein of human coronavirus OC43[J]. Virology, 1993. 195:195-202.
    [22] Gallagher T M, Buchmeier M J. Coronavirus spike proteins in viral entry and pathogenesis[J]. Virology, 2001. 279: 371-374.
    [23] Bernard S and Laude H. Site-specific Alteration of Transmissible Gastroenteritis Virus Spike Protein Results in Markedly Reduced Pathogenicity[J]. Journal of Gen. Virol 1995, 76: 2235-2241.
    [24] Bingham R W, Madge M H, Tyrrell D A. Haemagglutination by avian infectious bronchitis virus-a coronavirus[J]. J Gen Virol, 1975. 28:381-390.
    [25] Schultze B, Enjuanes L, Cavanagh D, Herrler G N-acetylneuraminic acid plays a critical role for the haemagglutinating activity of avian infectious bronchitis virus and porcine transmissible gastroenteritis virus[J]. Adv Exp Med Biol, 1993. 342:305-310.
    [26] Schultze B, Gross N J, Brinhard R and Herrler G. The S protein of Bovine Coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant [J]. J Virol, 1991, 11(65): 6232-6237.
    [27] Motokawa K, Hohdatsu T, Aizawa C, Koyama H, Hashimoto H. Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I[J]. Arch Virol. 1995;140(3):469-80.
    [28] Spiga O, Bernini A, Ciutti A, Chiellini S, Menciassi N, Finetti F, Causarono V, Anselmi F, Prischi F, Niccolai N. Molecular modelling of S1 and S2 subunits of SARS coronavirus spike glycoprotein[J]. Biochem Biophys Res Commun. 2003 Oct 10;310(1):78-83.
    [29] Wesley RD. The S gene of canine coronavirus, strain UCD-1, is more closely related to the S gene of transmissible gastroenteritis virus than to that of feline infectious peritonitis virus[J]. Virus Res 1999 Jun;61(2):145-52.
    [30] Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus[J]. J Virol. 1998 May;72(5):4508-14.
    [31] Wang FI, Fleming J, Lai MM. Sequence analysis of the spike protein gene of murine coronavirus variants: study of genetic sites affecting neuropathogenicity[J]. Virology,1992.186:742-749.
    [32] Das Sanna J, Fu L, Hingley S T, Lai M M, Lavi E. Sequence analysis of the S gene of recombinant MHV-2/A59 coronaviruses reveals three candidate mutations associated with demyelination and hepatitis[J]. Neurovirol, 2001. 7: 432-436.
    [33] Simkins RA, Weilnau PA, Bias J, Saif LJ. Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV[J]. Am J Vet Res. 1992 Jul;53(7):1253-8
    [34]Prabkaran.P, Xiao.X, Dimitrov.D.S. A model of the ACE2 structure and function as a SARS-CoV receptor[J]. Biochem.Biophys.Res.Commun, 2004, 314: 235~241.
    [35] Ballesteros L, Sanchez C, and Enjuanes L. Two Amino Acid Changes at the N-terninus of TGEV Spike Protein Result in the Loss of EntericTropism[J]. Virology 1997, 227(2): 378-388.
    [36] Christine K, Graham D, Yolken R. et al. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV[J]. Journal of Virol 1997, 71(4): 3285-3287.
    [37] Rest J S, Minjdell DP. SARS associated coronavirus has a recombinant polymerse and coronavirus has a history of host-shifting[J]. Infect Genel Evol,2003(3): 219-225.
    [38] Godet M, Grosclaude J, Delmas B, Laude H. Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein[J]. J Virol, 1994. 68:8008-8016.
    [39] Yoo D, Deregt D. A single amino acid change within antigenic domain II of the spike protein of bovine coronavirus confers resistance to virus neutralization[J]. Clin Diagn Lab Immunol, 2001.8:297-302.
    [40] Delmas B, Gelfi J, and Laude H. Antigenic Structure of Transmissible Gastroenteritis Virus[J]. Journal of Virol .1986, 67: 1405-1418.
    [41] Popova R, Zhang X. The spike but not the hemagglutinin/esterase protein of bovine coronavirus is necessary and sufficient for viral infection[J]. Virology, 2002, 294: 222-236.
    [42]赵荣乐,郑光宇.冠状病毒研究进展[J].生物学通报, 2003, 38 (6): 3-5.
    [43]贺福初. SARS严重急性呼吸系统综合征[M].北京:科学出版社, 2003.
    [44] Enjuanes L. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion[J]. J Virol. 1995 Sep;69(9): 5269-5277.
    [45] Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein. El glycoprotein, from a coronavirus[J]. Nature, 1984. 308:751-752.
    [46] Raamsman MJ, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, Rottier PJ. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E[J]. J Virol. 2000 Mar;74(5):2333-42.
    [47] Kuo L, Masters PS. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus[J].J Virol. 2002 May;76(10):4987-99.
    [48] He R, Leeson A, Ballantine M, Andonov A, Baker L, Dobie F, Li Y, Bastien N, Feldmann H, Strocher U, Theriault S, Cutts T, Cao J, Booth TF, Plummer FA, Tyler S, Li X. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus[J]. Virus Res. 2004 Oct;105(2):121-5.
    [49] 1Escors D, Ortego J, Laude H, Enjuanes L.The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability[J]. J Virol. 2001 Feb;75(3):1312-24.
    [50] Saif LJ. Coronavirus immunogens[J]. Vet Microbiol. 1993 Nov;37(3-4):285-97.
    [51] Haan CA, de Wit M, Kuo L, Montalto-Morrison C, Haagmans BL, Weiss SR, Masters PS, Rottier PJ.The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain[J]. Virology. 2003 Aug 1;312(2):395-406.
    [52] Pulford DJ, Britton P. Expression and cellular localisation of porcine transmissible gastroenteritis virus N and M proteins by recombinant vaccinia viruses [J]. Virus Res, 1991, 18 (2-3): 203–217.
    [53] Nelson GW, Stohlman SA, Tahara SM. High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA[J]. J Gen Virol. 2000 Jan;81(Pt 1):181-8.
    [54] Risco C, Anton IM, Enjuanes L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins[J]. J Virol. 1996,70(7):4773-7.
    [55] Krishna Narayanan, Akihiko Maeda, Junko Maeda, Shinji Makino. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells[J]. J Virol, 2000. 74 (17): 8127-8134.
    [56] He R, Leeson A, Ballantine M, Andonov A, Baker L, Dobie F, Li Y, Bastien N, Feldmann H, Strocher U, Theriault S, Cutts T, Cao J, Booth TF, Plummer FA, Tyler S, Li X. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus[J]. Virus Res. 2004 Oct;105(2):121-5.
    [57] Dede Haan CA, Smeets M, Vernooij F, Vennema H, Rottier PJ. Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein[J]. J Virol. 1999 Sep;73(9):7441-52.
    [58] Liu C, Kokuho T, Kubota T, et al. DNA mediated immunization with encoding the nucleoprotein gene of porcine transmissible gastroenteritis virus [J] . Virus Res, 2001, 80(1-2): 75–82
    [59] Holmes KV, Doller EW, Sturman LS. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein [J]. Virology, 1981, 115: 334-344
    [60] Emily C, Carolyne M. Infection bronchitis virus E protein is targeted to Golgi complex and directs release of viru S-like particles [J]. J Virol, 2000, 74: 4319-4326
    [61] Baudox P, Carrat C, Besnardeau L, et al. Coronavirus pseudoparticle formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes [J]. J Virol, 1998,72: 8636-8643
    [62] Lim KP, Liu DX. The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins[J]. J Biol Chem. 2001 May 18;276(20):17515-23.
    [63]黄建峰.冠状病毒(Coronavirtls) [J].中国航天医药杂志. 2004, 1(6): 74-75.
    [64]郭爱珍,陆承平.病毒的细胞膜受体[J].中国病毒学. 1997, 12(4): 295-301.
    [65] Pandey A and Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837- 846.
    [66] Look AT, Ashmun RA, Shapiro LH, Peiper SC. Human myeloid plasma membrane glycoprotein CD13(gp150) is identical to aminopeptidase N[J].J Clin Invest. 1989, 83: 1299-1307.
    [67] Schneider-Schaulies. Cellular receptors for viruses: links to tropism and pathogenesis[J]. J Gen Virol,2000.81:1413-1429.
    [68] Benbacer L, Kut E, Besnardeau L, Laude H, Delmas B. Interspecies aminopeptidase-N chimeras reveal species-specific receptor recognition by canine coronavirus, feline infectious peritonitis virus, and transmissible gastroenteritis virus[J]. J Virol, 1997. 71:734-737.
    [69] Tresnan D B, Levis R, Holmes K V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I[J]. J Virol, 1996. 70:8669-8674.
    [70] 0Tresnan DB, Holmes KV. Feline aminopeptidase N is a receptor for all group Icoronaviruses[J]. Adv Exp Med. 1998; 440: 69-75.
    [71] Delmas B, Gelfi J, Kut E, et al. Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase N that is distint from the enzymatic site [J]. J Virol, 1994, 68(8):5216-5224.
    [72] Kolb AF, Hegyi A, Siddell SG.Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N [J]. J Gen Virol, 1997, 78(Pt11): 2795-2802.
    [73] Schwegmann-Wessels C, Zimmer G, Laude H, Enjuanes L, Herrler G Binding of transmissible gastroenteritis coronavirus to cell surface sialoglycoproteins[J]. J Virol. 2002, 76: 6037-6043.
    [74] Wentworth DE, Holmes KV. Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation[J]. J Virol. 2001, 75(20): 9741-9752.
    [75]Kolb A F, Hegyi A, Maile J, Heister A, Hagemann M, Siddell S G Molecular analysis of the coronavirus-receptor function of aminopeptidase N[J]. Adv Exp Med Biol, 1998. 440: 61-67.
    [76] Schultze B, Herrler G Recognition of cellular receptors by bovine coronavirus[J]. Arch Virol/SuppI,1994.9: 451-459.
    [77]陈怀涛,许乐仁.兽医病理学[J].北京:中国农业出版社. 2005: 967-969.
    [78] Schultze B., Gross HJ, Brossmer R, et al. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: comparison with bovine coronavirus and influenza C virus [J]. Virus Res. 1990, 16: 185- 194.
    [79] Lewicki DN, Gallagher TM. Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen-related cell adhesion molecule cellular receptors [J]. J Biol Chem, 2002, 277(22): 19727-19734.
    [80] Kuo L, Godeke GJ, Raasmsman MJ, et al. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier[J]. J Virol. 2000, 74(30): 1393-1406.
    [81] Tsai J C, Zeius B D, Holmes K V, Weiss S R. The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain[J]. J Virol, 2003.77:841-850.
    [82] Wessner D R, Shick P C, Lu J H, Cardellichio C B, Gagneten S E, Beauchemin N, Holmes K V,Dveksler G S. Mutational analysis of the virus and monoclonal antibody binding sites in MHVR, the cellular receptor of the murine coronavirus mouse hepatitis virus strain A59[J]. J Virol, 1998.72:1941-1948.
    [83] Krempl C, Schultze B, Laude H, Herrler G. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus[J]. J Virol. 1997 Apr; 71(4): 3285-3287.
    [84] Compton S R, Stephensen C B, Snyder SW, Weismiller D G, Holmes K V. Coronavirus species specificity: murine coronavirus binds to a mouse-specific epitope on its carcinoembryonic antigen-related receptor glycoprotein[J]. J Virol, 1992. 66:7420-7428.
    [85] Wurzer W J, Obojes K, Vlasak R. The sialate-4-O-acetylesterases of coronaviruses related to mouse hepatitis virus: a proposal to reorganize group 2 Coronaviridae[J]. J Gen Virol,2002.83: 395-402.
    [86] Krernpl C, Schultze B, Herrler G Analysis of cellular receptors for human coronavirus OC43[J]. Adv Exp Med Biol, 1995, 380: 371-374.
    [87] Collins A R. HLA class I antigen serves as a receptor for human coronavirus OC43[J]. Immunol Invest, 1993. 22: 95-103.
    [88] Collins A R. Human coronavirus OC43 interacts with major histocompatibility complex class I molecules at the cell surface to establish infection[J]. Immunol Invest, 1994. 23: 313- 321.
    [89] Schultze B, Herrler G Bovine coronavirus use N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells[J]. J Gen Virol. 1992, 73: 901- 906.
    [90]贺福初. SARS严重急性呼吸系统综合征[M].北京:科学出版社, 2003.
    [91] Kim L, Hayes J, Parwani P, et al. Molecular Characterization and Pathogenesis of Transmissible Gastroenteritis Virus (TGEV) and Respirartory Coronavirus (PRCV) Field Isolates Co-circulating In a Swine Herd. [J] Arch Virology. 2000, 145: 1133-1147.
    [92] Miguel B, Pharr G T. Wang C, The role of feline aminopeptidase N as a receptor for infectious bronchitis virus[J]. Arch Virol, 2002. 147:2047-2056.
    [93]Lu , Y.Ding J , and Chen YH.Immunogenicity and sPecificity of the candidate Multi-ePitoPe-vaccines against HIV-1.ImmunoPharmacol immunotoxocol,2001 Nov,23(4):87-94
    [93] Sawicki S G, Sawicki D L. A new model for coronavirus transcription. [J] Adv Exp Med Biol,1998. 440:215-21915
    [94] Milleri W Alien, Gennadiy Koev. Minireview: synthesis of subgenomic RNAs by positive-strand RNA viruses[J]. Virology, 2000. 273, 1-8.
    [95] Sims AC, Ostermann J, Denison MR. Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes[J]. J Virol. 2000 Jun;74(12):5647-54.
    [96] Wang Y, Zhang X. The leader RNA of coronavirus mouse hepatitis virus contains an enhancer-like element for subgenomic mRNA transcription[J]. J Virol. 2000 Nov;74(22):10571-80.
    [97] Ziebuhr J. The coronavirus replicase[J]. Curr Top Microbiol Immunol. 2005; 287:57-94.
    [98] Nguyen VP, Hogue BG. Protein interactions during coronavirus assembly[J]. J Virol. 1997 Dec;71(12):9278-84.
    [99] Sawicki D, Wang T, Sawicki S. The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus[J]. J Gen Virol. 2001 Feb;82(2):385-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700