组蛋白去乙酰化酶抑制剂丙戊酸对多发性骨髓瘤细胞株KM3细胞增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:多发性骨髓瘤(MM)是一种浆细胞恶性克隆性疾病,骨髓瘤细胞分泌的血管内皮生长因子(VEGF)以自分泌的方式与MM细胞表面VEGFR-1/Flt-1结合,通过细胞外调节蛋白激酶(MEK-ERK)和蛋白激酶C(PKC)途经分别促进MM细胞增生和迁徙是MM发病机制之一。丙戊酸(VPA)是一种治疗癫痫的传统药物,近年研究发现其具有组蛋白去乙酰化酶(HDACs)抑制剂的作用,可抑制多种肿瘤细胞增殖。
     目的:研究VPA对多发性骨髓瘤细胞株KM3细胞增殖的影响,观察KM3细胞中乙酰化的组蛋白H4(Ac-histone H4)和VEGF受体(VEGFR)表达的变化,探讨其抗多发性骨髓瘤细胞的分子生物学机制。
     方法:采用四氮唑蓝(MTT)比色法检测KM3细胞增殖;Annexin V和PI染色后应用流式细胞仪检测细胞凋亡率;RT-PCR检测KM3细胞中VEGFR mRNA的表达;采用免疫细胞化学法观察KM3细胞VEGFR蛋白、Ac-histone H4蛋白的表达。
     结果:VPA可明显抑制KM3细胞增殖,且具有时间剂量依赖性(P<0.05);不同浓度VPA处理KM3细胞48h后,可明显诱导细胞凋亡,呈剂量依赖性(P<0.05),不同浓度的VPA(0.5、1、2、4mmol/L)诱导KM3细胞的凋亡率分别为(11.77±4.64)%、(22.13±1.20)%、(23.95±2.57)%和(42.72±4.61)%,呈剂量依赖性(P<0.05);RT-PCR结果显示,KM3细胞仅表达VEGFR-1/fit-1,且VPA能在mRNA水平抑制VEGFR-1的表达;免疫细胞化学结果显示,4mmol/L的VPA作用KM3细胞48h后,与未处理组KM3细胞相比较,细胞中Ac-histone H4吸光度值明显增加,同时VEGFR-1的吸光度明显降低(P<0.05)。
     结论:VPA通过上调Ac-histone H4水平、下调KM3细胞表面VEGFR-1的表达,从而阻断骨髓微环境中VEGF的自分泌促增殖作用发挥对KM3细胞的增殖抑制作用。VPA作为一种新型的组蛋白去乙酰化酶抑制剂(HDAIs)对多发性骨髓瘤细胞株KM3细胞具有抗肿瘤作用。
Background:Despite of the recent advances in the treatment of multiple myeloma(MM),it is still an incurable disease in the majority of patients.In the bone marrow microenvironment of MM,VEGF is essential for tumor growth and survival, and myeloma cells are known to produce VEGF and express VEGF receptors. Binding of VEGF_(165)to MM cells triggers VEGFR-1 tyrosine phosphorylation. Subsequently the downstream signaling pathways are activated,as follows:(1) PI3-kinase/protein kinase Cα(PKCα)-dependent cascade mediating MM cell migration on fibronectin,(2)MEK-extracellular signal-regulated protein kinase(ERK) pathway mediating MM cell proliferation.Now histone deacetylase inhibitors(HDAIs) have been regarded as a new kind of anticancer drug and several of them are currently being investigated in clinical trials.Valproic acid(VPA)is a shortchain fatty acid with a long history of clinical use as an anticonvulsant.However,VPA also inhibits histone deacetylases(HDACs)and induces apoptosis in selected solid tumors as well as in hematologic neoplasms.
     Objective:To define the effects of VPA on multiple myeloma cell line KM3 cells in vitro and the underlying mechanism of VPA in the treatment of MM were investigated.
     Methods:KM3 cells were cultured in RPMI1640 medium and treated with VPA in different concentration.The cell proliferation was measured by 3-[4, 5-dimehyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide(MTT)assay;the AnnexinⅤand PI staining was used to detect the apoptosis rates;the mRNA level of VEGFR was determined by RT-PCR;and immunocytochemistry was used to detect the protein level of acetylated-histone H4(Ac-histone H4)and VEGFR.
     Results:The proliferation rate of KM3 cells was decreased in VPA- treated group in a time-dose dependent manner(P<0.05).And the AnnexinⅤand PI staining showed VPA can induce apoptosis of KM3 cells,treatment with VPA(0.5、1、2 and 4mmol/L) for 48h,the apoptosis rates of KM3 cells were(11.77±4.64)%、(22.13±1.20)%、(23.95±.2.57)%and(42.72±4.61)%respectively.The RT-PCR results demonstrated the KM3 cells only express VEGFR-1 and it was decreased in VPA(0.5、1、2 and 4 mmol/L for 48h)treated groups compared with control(P<0.05).Results of immunocytochemistry show the protein of Ac-histone H4 was increased significantly in VPA(4 mmol/L for 48h)treated group whereas the VEGFR-1/Flt-1 was decreased (P<0.05).
     Conclusion:VPA,as an histone deacetylase inhibitor,can increase the expression of Ac-histone H4 and inhibit the expression of VEGFR-1 in KM3 cells and it plays an important role in regulating proliferation and apoptosis of multiple myeloma cell line KM3 cells in vitro.
引文
[1]Carey N, Thangue NB.Histone deasetylase inhibitors:gathering pace.Curr.Opin Pharmacol[J].2006;6 (4) :369-375.
    [2]Glozak MA, Sengupta N, Zhang XH, et al.Acetylation and deacetylation of non-histone proteins.gene[J] .2005 ;363:15-23.
    [3]Shukla PK, Tikoo KB. Histone Deacetylase' Inhibitor Inhibitors as therapeutic Target. Curr Res Info Pharmaceu Sci [J]. 2004; 5(1):9-18.
    [4]Rosato RR, Maggio SC, Almenara JA, et al.The Histone Deacetylase Inhibitor LAQ824 Induces Human Leukemia Cell Death through a Process Involving XIAP Down-Regulation, Oxidative Injury, and the Acid Sphingomyelinase-Dependent Generation of Ceramide.Mol Pharmacol[J].2006;69(1): 216-225.
    [5]Duan H, Heckman CA, Boxer LM. Histone Deacetylase Inhibitors Down-Regulate bcl-2 Expression and Induce Apoptosis in t(14;18) Lymphomas.Molecular and Cellular Biology[J].2005;25 (5) .1608-1619.
    [6]Xu Y, Voelter-Mahlknecht S, Mahlknetht U. The histone deacetylase inhibitor suberoylanilide hydroxamic acid down-regulates expression levels of Bcr-abl, c-Myc and HDAC3 in chronic myeloid leukemia cell lines. Int J Mol Med[J].2005;I5(1):169-72.
    [7]Hu J, Colburn NH.Histone Deacetylase Inhibition Down-Regulates Cyclin D1 Transcription by Inhibiting Nuclear Factor-KB/p65 DNA Binding. Mol Cancer Res[J].2005;3(2): 100-9.
    [8]Guo F, Sigua C, Tao J, et al. Cotreatment with Histone Deacetylase Inhibitor LAQ824 Enhances Apo-2L/Tumor Necrosis Factor-Related Apoptosis Inducing Ligand-Induced Death Inducing Signaling Complex Activity and Apoptosis of Human Acute Leukemia Cells.Cancer Res[J].2004;64(7):2580-2589.
    [9]Nebbioso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells.Nat Med[J].2005;11(1):77-84.
    [10]Qiu L, Burgess A, Fairlie DP, et al. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell[J].2000;11(6):2069-83.
    [11]George P, Bali P, Annavarapu S, et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3. Blood[J]. 2005; 105 (4) :1768-76. 8
    [12]Blagosklonny MV, Robey R, Sackett DL, et al. Histone Deacetylase Inhibitors All Induce p21 but Differentially Cause Tubulin Acetylation, Mitotic Arrest, and Cytotoxicity. Mol Cancer Ther[J].2002;1(11):937-41.
    [13]Warrell RP Jr, He LZ, Richon V, et al. Therapeutic Targeting of Transcription in AcutePromyelocytic Leukemia by Use of an Inhibitor of Histone Deacetylase. J Natl Cancer Inst[J].1998;90 (20) :1621-1625.
    [14]Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood[J].2001 ;98 (9) :2865-2868.
    [15]Byrd JC, Marcucci G, Parthun MR, et al. Aphase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood[J].2005; 105 (3) :959-67.
    [16]O'Connor OA, Heaney ML, Schwartz L, et al.Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies J Clin Oncol[J].2006;24(1): 166-73.
    [17]Gozzini A, Santini V. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts. Ann Hematol[J].2005;84 (suppl 13) :54-60.
    [18]Kuendgen A, Schmid M, Schlenk R, et al. The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia.Cancer[J].2006;106(1):112-9.
    [19]Kang JH , Chen J, Zhang DW, et al. Synergistic killing of human leukemia cells by antioxidants and trichostatin A.Cancer Chemother Pharmacol[J]. 2004;54: 537-45.
    [20]张之南,杨天楹,郝玉书。血液病学[M]。第1版。北京:人民卫生出版社,2003:1341.
    [21]Higgins MJ,Fonseca R.Genetics of multiple myeloma.Best Pract Res Clin Haematol[J].2005;18:525-536.
    [22]Tassone P,Yagliaferri P,Rossi M,et al.Genetics and molecular profiling of multiple myeloma:novel tools for clinical management? Eur J Cancer[J].2006;42(11):1530-8.
    [23]Hideshima T,Bergsagel PL,KuehlWM,et al.Advances in biology of multiple myeloma:clinical applications.Blood[J].2004;104:607-18.
    [24]Hideshima T,Podar K,Chauhan D,et al.Cytokines and signal transduction.Best Pract Res Clin Haematol[J].2005;18:509-524.
    [25]Bommert K,Bargou RC,Stuhmer T.Signalling and survival pathways in multiple myeloma.Eur J Cancer[J].2006;42(11):1574-80.
    [26]Vacca A,Ria R,Ribatti D,et al.A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma.Haematologica[J].2003;88:176-85.
    [27]Podar K,Anderson KC.The pathophysiologic role of VEGF in hematologic malignancies:therapeutic implications.Blood[J].2005,105:1383-1395.
    [28]Khan SB,Maududi T,Barton K,et al.Analysis of histone deacetylase inhibitor,depsipeptide(FR901228),effect on multiple myeloma.Br J Haematol[J].2004;125:156-61.
    [29]Catley L,Weisberg E,Tai YT,et al.NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma.Blood[J].2003;102:2615-22.
    [30]DeVane CL.Pharmacokenetics,drug interaction,and tolerability of valproate.Psychopharmacol Bull[J].2003,37(Suppl 2):25-42.
    [31]Got tlicher M,Minucci S,Zhu P,et al.Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells.EMBO J[J].2001,20(24):6969.
    [32]Takai N,Desmond JC,Kumagai T,et al.Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res[J]. 2004; 10:1141-9.
    [33]Olsen CM, Meussen-Elholm ET, Roste LS, et al. Antiepileptic drugs inhibit cell growth in the human breast cancer cell line MCF7. Mol Cell Endocrinol[J]. 2004;213:173-9.
    [34]Tang R, Faussat AM, Majdak P, et al. Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia[J] .2004; 18:1246-51.
    [35]Gurvich N, Tsygankova OM, Meinkoth JL, et al. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res[J]. 2004; 64(3): 1079-86.
    [36]Thelen P, Schweyer S, Hemmerlein B, et al. Expressional changes after histone deacetylase inhibition by valproic acid in LNCaP human prostate cancer cells. Int J Oncol[J].2004;24(1):25-31.
    [37]Zgouras D, Becker U, Loitsch S, et al. Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun[J]. 2004; 316(3):693-7.
    [38]McGarry LC, Winnie JN, Ozanne BW. Invasion of v-Fos(FBR)-transformed cells is dependent upon histone deacetylase activity and suppression of histone deacetylase regulated genes. Oncogene[J]. 2004; 23(31):5284-92.
    [39]Podar K, Tai YT, Davies FE, et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood[J]. 2001;98 (2) : 428-435.
    [40]Vacca A, Ria R, Ribatti D, et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica[J]. 2003; 88(2): 176-85.
    [41]Vincent L, Jin DK, Karajannis MA, et al. Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-a/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells.Cancer Res[J].2005 ;5(8):3185-92.
    [42]Le Gouill S, Podar K, Amiot M, et al.VEGF induces MCL-1 upregulation and protects multiple myeloma cells against apoptosis. Blood[J]. 2004; 104(9): 2886-2892.
    [1]Senger DR,Galli S J,Dvorak AM,et al.Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science[J].1983;219(4587):983-985.
    [2]Ferrara N.Vascular endothelial growth factor:basic science and clinical progress.Endocr Rev[J].2004;25(4):581-611.
    [3]Kumar S,Witzig TE,Timm M,et al.Expression of VEGF and its receptors by myeloma cells.Leukemia[J].2003;17(10):2025-31.
    [4]Kimlinger T,Kline M,Kumar S,et al.Differential expression of vascular endothelial growth factors and their receptors in multiple myeloma.Haematologica[J].2006;91(8):1033-40.
    [5]Podar K,Tai YT,Davies FE,et al.Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration.Blood[J].2001;98(2):428-435.
    [6]Rajkumar SV,Leong T,Roche PC,et al.Prognostic value of bone marrow angiogenesis in multiple myeloma.Clin Cancer Res[J].2000;6(8):3111-3116.
    [7]Bhatti SS,Kumar L,Dinda AK,et al.Prognostic value of bone marrow angiogenesis in multiple myeloma:use of light microscopy as well as computerized image analyzer in the assessment of microvessel density and total vascular area in multiple myeloma and its correlation with various clinical,histological,and laboratory parameters.Am J Hematol[J].2006;81(9):649-56.
    [8]Kumar S,Witzig TE,Dispenzieri A,et al.Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma.Leukemia[J].2004;18(3):624-627.
    [9]Hlatky L,Hahnfeldt P,Folkman J.Clinical application of antiangiogenic therapy:microvessel density,what it does and doesn't tell us.J Natl Cancer Inst[J].2002;94(12):883-893.
    [10]Mitsiades CS,Mitsiades NS,Munshi NC,et al.The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma:interplay of growth factors,their receptors and stromal interactions.Eur J Cancer[J].2006;42(11):1564-73.
    [11]Vacca A,Ria R,Semeraro F,et al.Endothelial cells in the bone marrow of patients with multiple myeloma.Blood[J].2003;102(9):3340-3348.
    [12]Streubel B,Chott A,Huber D,et al.Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas.N Engl J Med[J].2004;351(3):250-259.
    [13]郭益群,陈世伦。多发性骨髓瘤骨髓基质细胞分泌IGF-1、VEGF和IL-6的动态变化。中华血液学杂志[J]。2006;27(4):231-234。
    [14]Mitsiades CS,Mitsiades NS,McMullan CJ,et al.Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma,other hematologic malignancies,and solid tumors.Cancer Cell[J].2004;5(3):221-230.
    [15]Hurt EM,Wiestner A,Rosenwald A,et al.Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell[J].2004;5(2): 191-199.
    [16]Tai YT, Podar K, Gupta D, et al. CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood[J].2002;99(4): 1419-1427
    [17]Mirshahi P, Toprak SK, Faussat AM, et al. Malignant hematopoietic cells induce an increased expression of VEGFR-1 and VEGFR-3 on bone marrow endothelial cells via AKT and mTOR signalling pathways.Biochem Biophys Res Commun [J].2006;349(3):1003-10.
    [18]Vacca A, Ria R, Ribatti D, et al. A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma.Haematologica[J].2003;88(2):176-85.
    [19]Vincent L, Jin DK, Karajannis MA,et al. Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-a/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells.Cancer Res[J]. 2005 ;65(8):3185-92.
    [20]Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6- and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem[J]. 2003;278: 5794-5801
    [21]Podar K, Anderson KC. The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications.Blood[J].2005; 105(4): 1383-95.
    [22]Le Gouill S, Podar K, Amiot M, et al.VEGF induces MCL-1 upregulation and protects multiple myeloma cells against apoptosis. Blood[J].2004; 104(9): 2886-2892.
    [23]Kumar S, Rajkumar SV. Thalidomide and lenalidomide in the treatment of multiple myeloma.Eur J Cancer[J]. 2006 ;42(11):1612-22.
    [24]Hideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.Blood[J].2003;101(4): 1530-1534.
    [25]Roccaro AM, Hideshima T, Raje N, et al.Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells.Cancer Res[J].2006;66(1):184-91.
    [26]Podar K, Catley LP, Tai YT, et al. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment.Blood[J]. 2004; 103(9): 3474-3479.
    [27]Lin B, Podar K, Gupta D, et al.The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment.Cancer Res[J].2002;62(17): 5019-5026.
    [28]Podar K, Tonon G, Sattler M,et al.The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma.Proc Natl Acad Sci U S A[J]. 2006; 103(51): 19478-83
    [29]Palumbo A, Ambrosini MT, Benevolo G, et al.Bortezomib, melphalan, prednisone and thalidomide for relapsed multiple myeloma.Blood[J]. 2007; 109(7):2767-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700