罗格列酮对ACS伴IGT患者PCI术后纤溶功能及再狭窄的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过对急性冠脉综合征(acute coronary syndrome,ACS)伴糖耐量减低(impaired glucose tolerance,IGT)患者经皮冠状动脉介入治疗(percutaneous coronary intervention,PCI)后在常规治疗的基础上加用罗格列酮,检测其术前及用药1个月后组织型纤溶酶原激活剂(tissue-type plasminogen activator ,t-PA)、纤溶酶原激活剂抑制因子-1(plasminogen activator inhibitor–1,PAI-1)及高敏C反应蛋白(high-sensitivity C-reactive protein,hs-CRP)水平,并于6个月后复查冠脉造影,以探讨罗格列酮对PCI术后纤溶功能及再狭窄的影响。
     方法:选择76例ACS伴IGT患者,随机分为常规治疗组(n=38)和罗格列酮组(n=38),PCI术后分别给予常规治疗或常规加罗格列酮治疗共1个月。IGT组(n=20)为冠状动脉造影(coronary arteriography,CAG)正常的IGT患者,对照组(n=20)为CAG及口服葡萄糖耐量试验(oral glucose tolerance test,OGTT)正常者。检测所有研究对象术前及常规治疗组、罗格列酮组术后1个月t-PA、PAI-1和hs-CRP水平。对成功接受PCI的患者随访6个月,观察再狭窄相关症状的发生情况。随访结束时或出现再狭窄相关症状时复查CAG。
     结果:
     1.与IGT组比较,常规治疗组和罗格列酮组术前血浆PAI-1、血清hs-CRP水平较高,血浆t-PA水平较低,差异具有统计学意义(P<0.05);与对照组比较,IGT组、常规治疗组和罗格列酮组术前血浆PAI-1、血清hs-CRP水平较高,血浆t-PA水平较低,差异具有统计学意义(P<0.05;P<0.05);罗格列酮组和常规治疗组PCI术前血浆t-PA、PAI-1及血清hs-CRP水平差异无统计学意义(P>0.05)。
     2.与术前比较,常规治疗组和罗格列酮组术后1个月血浆t-PA水平升高,血浆PAI-1及血清hs-CRP水平降低,差异具有统计学意义(P<0.05);与常规治疗组比较,罗格列酮组术后1个月血浆t-PA、PAI-1及血清hs-CRP水平变化程度较大,差异具有统计学意义(P<0.05)。
     3.与常规治疗组比较,罗格列酮组术后6月再狭窄发生率较低,差异具有统计学意义(P<0.05);与未发生再狭窄者比较,再狭窄者血浆t-PA水平较低,血浆PAI-1及血清hs-CRP水平较高,差异具有统计学意义(P<0.05)。
     4.血浆PAI-1水平与血清hs-CRP水平呈正相关(r=0.727,P<0.001),血浆t-PA水平与血清hs-CRP水平呈负相关(r=0.693,P<0.001)。
     结论:
     1. PAI-1、t-PA可能是IGT患者发生ACS的预测因子。
     2. PAI-1与t-PA可能是ACS伴IGT患者PCI术后再狭窄的预测因子。
     3.罗格列酮可能通过降低PAI-1,升高t-PA水平,促进纤溶的激活,从而减少再狭窄的发生。
Object: To investigate the effect of rosiglitazone on fibrinolytic system and in-stent restenosis in patients with acute coronary syndrome(ACS) combined with impaired glucose tolerance(IGT), by observing the variation of plasma levels of tissue-type plasminogen activator(t-PA), plasminogen activator inhibitor–1(PAI-1) and serum levels of high-sensitivity C-reactive protein(hs-CRP) of the patients who were treated with conventional therapy or conventional therapy with the addition of rosiglitazone before and 1 month after percutaneous coronary intervention(PCI) and the occurrence of in-stent restenosis.
     Method: 76 patients with ACS combined with IGT were randomly divided into Conventional group and Rosiglitazone group who treated with conventional therapy or conventional therapy with the addition of rosiglitazone for 1 month after PCI. 20 patients with IGT who were normality in coronary arteriography(CAG) were enrolled in IGT group, and 20 who were normality in oral glucose tolerance test(OGTT) and CAG were assigned in Control group. Plasma levels of t-PA, PAI-1 and serum levels of hs-CRP were determined before and 1 month after PCI. Restenosis related symptoms were observed in 6-month follow-up. CAGs were reexamined when the follow-up was over or symptoms appeared.
     Result:
     1. Compared with IGT group, plasma levels of PAI-1 and serum levels of hs-CRP in Conventional group and Rosiglitazone group were higher while plasma levels of t-PA were lower with statistically significant(P<0.05); Compared with Control group, plasma levels of PAI-1, and serum leves of hs-CRP in IGT group,Conventional group and Rosiglitazone group were higher while plasma levels of t-PA were lower significantly(P<0.05 and P<0.05,respectively); No significant difference was found between Conventional group and Rosiglitazone group(P>0.05).
     2. Plasma levels of t-PA were much higher 1 months later than before PCI in Conventional group and Rosiglitazone group while plasma levels of PAI-1 and serum levels of hs-CRP were much lower significantly(P<0.05); The increasing of t-PA levels and the decreasing of PAI-1 and hs-CRP levels were significantly higher in Rosiglitazone group than Conventional control group (P<0.05).
     3. The occurrence of restenosis was lower in Rosiglitazone group than Conventional group significantly(P<0.05); Plasma levels of t-PA were lower while plasma levels of PAI-1 and serum levels of hs-CRP were higher significantly in those who with restenosis than those without (P<0.05).
     4. Plasma levels of PAI-1were positively correlated with serum levels of hs-CRP (r=0.727,P<0.001)while plasma levels of t-PA were negatively correlated with it(r=0.693,P<0.001).
     Conclusion:
     1. Plasma levels of PAI-1 and t-PA may be valuable predictors of ACS in IGT patients.
     2. Plasma levels of PAI-1 and t-PA like to be predictors of restenosis after PCI probably.
     3. Rosiglitazone may reduce the occurrence of restenosis after PCI by raising the plasma level of t- PA and reducing the plasma level of PAI-1, indicating fibrinolytic system was activated.
引文
1. Cleeman JI. Executive summary of the third report of the national cholesterol education program(NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults(adult treatment panel III).[J]. Circulation, 2002;106:3143-421.
    2.中国心脏调查组,胡大一,潘长玉.中国住院冠心病患者糖代谢异常研究——中国心脏调查[J].中华内分泌代谢杂志, 2006;22(1):7-10.
    3. Aronson D, Bloomgarden Z, Rayfield EJ. Potential mechanisms promoting restenosis in diabetic patients[J]. JAM Collcardiol,1996;27(3):528-35.
    4. Nakamura N, Ueno Y, Tsuchiyama Y. Isolated post-challenge hyperglycemia in patients with normal fasting glucose concentration exaggerates neointimal hyperplasia after coronary stent implantation.[J]. Circ J, 2003;67:61--7.
    5. Smith A, Patterson C, Yarnell J. Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke[J]. Circulation, 2005;112:308023087.
    6. Bastard JP, Pieronill Hainque B. Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance[J]. Diabetes Metab Res Rev, 2002;16(3):192-201.
    7. Katasaros KM, Speidl WS, Kastl SP. Plasminogen activator inhibitor-1 predicts coronary in-stent restenosis of drug-eluting stents.[J]. J Thromb Haemost, 2008;6(3):508-13.
    8. Albertini JP, McMorn SO, Chen H. Effect of rosiglitazone on factor related to endothelial dysfunction in patients with type 2 diabetes mellitus[J]. Atherosclerosis, 2007;195(1):233-40.
    9. Agirbasli M. Pivotal role of plasminogen activator inhibitor-1 in vascular disease[J]. Chemport, 2005;59(1):102-6.
    10. Marx N, Bourcier T, Sukhova GK. PPAR-γactivation in human endothelial cells increases plasminogen activator inhibitor type-1 expression:PPAR-γas a potential mediator in vascular diseases.[J]. Arteriosclerosis, thrombosis, and vascular biology,1999;19:546.
    11. Schneiderman J, Sawdey MS, Keeton MR. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries[J]. Proc Natl Acad Sci USA, 1992;89:6998-7002.
    12. Sasaki A, Kurisu A, Ohno M. Overweight/obesity,smoking,and heavy alcohol consumption are important determinants of plasma PAI - 1 levels in healthy men [J]. Am J Med Sci, 2001 322(1):19 - 23.
    13. Hayden MR, Tyagi SC, Tyagi. Intimal redox stress:accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus[J]. Atheroscleropathy Cardiovasc Diabetol 2002;3:11-5.
    14. Juhan - Vague I, Alessi MC, Vague P. Increased plasma plasminogen activator inhibitor 1 levels- A possible link between insulin resistance and atherothrombosis [J]. Diabetologia, 1991;34(7):457-62.
    15. Von Eyben FE, Mouritsen E, Holm J. Plasminogen activator inhibitor 1 ac2 tivity and other coronary risk factors[J]. Clin Appl Thromb Hemost, 2005;11(1): 55-61.
    16. ECAT, angina, pectoris, study, group. ECAT angina pectoris study:baseline associations of haemostatic factors with extent of coronary atherosclerosis and other coronary risk factors in 3000 patients with angina pectoris undergoing coronary angiography[J]. Eur Heart J, 1993;14:8-17.
    17. Shindo J. Increased plasminogen activator inhibitor-1 and apolipo protein (a) in coronary atherectomy specimens in acute coronary syndromes[J]. Coron Artery Dis, 2001;12(7):573-9.
    18. Sinkovic A, Pogacar V. Risk stratification in patients with unstable angina and /or Non-ST-elevation myocardial infarction by troponin T and plasminogen activator inhibitor-1(PAI-1)[J]. Thromb Haemost, 2004;91(5):1026-30.
    19. Oltrona L, Ardissino D, Merlini PA. C-reactive protein elevation and early outcome in patients with unstable angina pertoris. [J]. The American journal of cardiology.1997;80(8):1002-6.
    20. Ridker PM. High-sensitivity C-ractive protein:potential adjunct for global riskassessmen in the primary prevention of cardiovascular disease[J]. Circulation, 2001;103(13):1813-8.
    21. Torzewski J, Torzewski M, Bowyer DE. C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries[J]. Arterioscler,Thrombosis,Vascular biology, 1998;18(9):1386-92.
    22. Patrignani P, Tacconelli S. Isoprostanes and other markers of peroxidation in aterosclerosis[J]. Biomarkers, 2005;10(supply):24-9.
    23. Sano T, Tanaka A, Namba M. C-reactive protein and lesion morphology in patients with acute myocardial infaction[J]. Circulation, 2003;108(3):282-5.
    24. Ridker PM, Cushman M, Stampfer MJ. Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease[J]. Circulation, 1998;97(5):425-8.
    25. Hoffmeister HM, Ehlers R, Buttcher E. Comparision of C-reactive protein and terminal complement complex in patients with unstable angina pectoris versus stable angina pectoris[J]. The American journal of cardiology, 2002;89(8):909.
    26. Saleh N, Tornvall P. Serum C-reactive protein response to percutaneous coronary intervention in patients with unstable or stable angina pectoris is associated with the risk of clinical restenosis[J]. Atherosclerosis, 2007;195(2):374-8.
    27. Hong YJ, Jeong MH, Lim SY, et al. Elevated preprocedural high-sensitivity C-reactive protein levels are associated with neointimal hyperplasia and restenosis development after successful coronary artery stenting[J]. Circ J, 2005;69(12):1477-83.
    28. Kim JK, Fillmore JJ, Chen Y. Tissue specific overexpression of lipoprotein lipase cause tissue specific insulin resistance[J]. Proc Natl Acad sci USA 2001;98( (13)):7522-7.
    29. Calera MR, Martinez C, Liu H. Insulin increases the association of AKt-2 with GLUT4-containing vesicles[J]. J Biol Chem 1998;273(13):7201-4.
    30. Agostino G, Tonoli M, Deorsola B. PAI-1 release from human adipose tissue is stimulated by TNF-alpha[J]. Thromb Haemost, 1997;77(suppl):749.
    31. Giugliano D, Mafella R, Coppola L. Vascular effects of acute hyperglycemia inhumans are reversed by Larginine: evidence for reduced availability of nitric oxide during hyperglycemia[J]. Circulation 1997;95(7):1783-90.
    32. Lu Q, Tong N, Liu Y, et al. Community-based population data indicates the significant alterations of insulin resistance, chronic inflammation and urine ACR in IFG combined IGT group among prediabetic population[J]. Diabetes research and clinical practice, 2009;84(3):319-24.
    33. Yang SP, Gong CX, Cao BY, Yan C. Relationship between serum high-sensitivity C-reactive protein and obesity and impaired glycose metabolism in children and adolescents[J]. Zhonghua er ke za zhi, 2006;44(12):933-6.
    34. Marx N, Bourcier T, Sukhova GK. PPARγactivation in human endothelial cells increase plasminogen activator inhibitor type 1 expression[J]. Arterioscler Thromb Vasc B iol,, 1999;19(3):546-51.
    35. Derosa G, Gaddi AV, Piccinni MN. Antithrombotic effects of rosiglitazone metformin versus glimepiride-metformin combination therapy in patients with type 2 diabetes mellitus and metabolic syndrome [J]. Pharmacotherapy, 2005;25(5):637 - 45.
    36. Jawa AA, Fonseca VA. Role of insulin secretagogues and insulin sensitizing agents in the prevention of cardiovascular disease in patients who have diabetes.[J]. Cardiol Clin, 2005;23(1):119-38.
    37. Hoo RL, Chow WS, Yau MH, et al. Adiponectin mediates the suppressive effect of rosiglitazone on plasminogen activator inhibitor-1 production[J]. Arteriosclerosis, thrombosis, and vascular biology, 2007;27(12):2777-82.
    38. Sugawara A, Takeuchi K, Uruno A. Differential effects among thiazolidinediones on the transcrip tion of thromboxane receptor and angiotensinⅡtype 1 receptor genes[J]. Hypertens Res, 2001;24(3):229-33.
    39. Jawa AA, Fonseca VA. Role of insulin secretagogues and insulin sensitizing agents in the prevention of cardiovascular disease in patients who have diabetes [J]. Cardiol Clin, 2005;23(1):119 - 38.
    40. Schiffrin EL. Endothelin: role in experimental hypertension[J]. J Cardiovasc Pharmacol 2000;35(S):33-5.
    41. Molavi B, Chen J, Mehta JL. Cardioprotective effects of rosiglitazone areassociated with selective overexpres sion of type 2 angiotens in receptors and inhibition of p42/44 MAPK[J]. Am J Physiol Heart Circ Physiol, 2006;291(2):H687-93.
    42. Zhu HL, Yu RM, Huang XZ, Huang W. Effects of rosiglitazone on inflammatory reaction and insulin resistance in obese patients with newly diagnosed type 2 diabetes[J]. Journal of Southern Medical University, 2008;28(6):1050-1.
    43. Kalaitzidis RG, Sarafidis PA, Bakris GL. Effects of thiazolidinediones beyond glycaemic control[J]. Current pharmaceutical design, 2009;15(5):529-36.
    44. Prasad K. C-reactive protein (CRP)-lowering agents[J]. Cardiovascular drug reviews, 2006;24(1):33-50.
    45. WANG TD, CHEN WJ, LIN JW. Effects of rosiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome[J]. Am J Cardiol, 2004;93(3):362-5.
    46. Pasceri V, Patti G, Speciale G. Meta-analysis of clinical trials on use of drug-eluting stents for treatment of acute myocardial infaction[J]. Am Heart J, 2007;153(5):749-54.
    47. Stone GW, Ellis SG, Cannon L. Comparison of a polymer-based paclitaxel-eluting stent with a bare metal stent in patients with complex coronary artery disease: a randomized controlled trial[J]. JAMA, 2005;294(10):1215 - 23.
    48. Lowe HC, Oesterle SN, Khachigian LM. Coronary instent restenosis: current status and future strategies[J]. J Am Coll Cardiol, 2002;39(183-193).
    49. Ishiwata S, Tukuda T, Nakanishi T. Postangioplastic restenosis: platelet activation and the coagulation-fibrinolysis system as possible factors in the pathogenesis of restenosis[J]. A m Heart J, 1997;133(4):187-90.
    50. Kawasaki T, Dewerchin M, Lijinen HR. Vascular release of plasminogen activator inhibitor-1 impairs fibrinolysis during acute arterial thrombosis in mice[J]. Blood 2000;96(1):153-5.
    51. Kanamasa K, Ogawa I, Hayashi T. Prevention of coronary arterial renarrowing by continuous 32day infusion of tissue plasminogen activator after successful percutaneous transluminal coronary angioplasty: a randomed, double-blind,placebo-controlled study[J]. Angiology, 2000;51(5):367-73.
    52.高炜,霍勇,朱国英.再狭窄的细胞和分子生物学(三)[J].中国介入心脏病学杂志, 1997;5(4):180-3.
    53. Hilfiker PR, Waugh JM, Li-Hawkins JJ. Enhancement of neointima formation with tissue-type plasminogen activator[J]. J Vasc Surg, 2001;33(4):821-8.
    54. Rerolle JP, Hertig A, Nguyen G. Plasminogen activator inhibitor-1 is a potential target in renal fibrogenesis[J]. Kidney Int, 2000;58(5):1841-6.
    55. Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease[J]. Circ Res, 1995;77(5):863-8.
    56. Xiaoli M, Wenying H, Mingpeng S. Effects and mechanism of tissue - type plasminogen activator and plasminogen activator inhibitor on vascular smooth muscle cell proliferation[J]. Int J Cardiol, 1998;66(Suppl 1):57-64.
    57. Ma XL, Huang WY, She MP. Effects and mechanism of tissue-type plasminogen activator and plasminogen activator inhibitor on vascular smooth muscle cell proliferation[J]. Int J Cardiol, 1998;66(Suppl 1):57-64.
    58. Rosmarakis P, Rademaker MT. Thiazolidinedione may reduce the in-stent restenosis and revascularization[J]. Am Heart J, 2007;154(144-150).
    59. Riche DM, Valderrama R, Henyan NN. Thiazolidinediones and risk of repeat target vessel revascularization following percutaneous coronary intervention: a meta-analysis[J]. Diabetes care, 2007;30(2):384-8.
    60. Lincoff AM, Califf RM, Moliterno DJ, et al. Complementary clinical benefits of coronary-artery stenting and blockade of platelet glycoprotein IIb/IIIa receptors. Evaluation of Platelet IIb/IIIa Inhibition in Stenting Investigators[J]. The New England journal of medicine, 1999;341(5):319-27.
    61. Topol EJ, Moliterno DJ, Herrmann HC, et al. Comparison of two platelet glycoprotein IIb/IIIa inhibitors, tirofiban and abciximab, for the prevention of ischemic events with percutaneous coronary revascularization[J]. The New England journal of medicine, 2001;344(25):1888-94.
    62. Moliterno DJ, Yakubov SJ, DiBattiste PM, et al. Outcomes at 6 months for the direct comparison of tirofiban and abciximab during percutaneous coronaryrevascularisation with stent placement: the TARGET follow-up study[J]. Lancet, 2002;360(9330):355-60.
    63. Marso SP, Lincoff AM, Ellis SG, et al. Optimizing the percutaneous interventional outcomes for patients with diabetes mellitus: results of the EPISTENT (Evaluation of platelet IIb/IIIa inhibitor for stenting trial) diabetic substudy[J]. Circulation, 1999;100(25):2477-84.
    64. Law RE, Goetze S, Xi XP. Expression and Function of PPARγin Rat and Human Vascular Smooth Muscle Cells[J]. Circulation, 2000;101(11):1311-8.
    65. Dubey RK, ZHang HY, Reddy SR. Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats[J]. Am J Physiol, 1993;265(4Pt2)(R726-732).
    66. Wakino S, Kintscher U, Kimm S. Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1 to S transition in vascular smooth muscle cells[J]. J Biol Chem, 2000;275(29):22435-41.
    67. Goetze S, Kintscher U, KIM S. Peroxisome proliferator-activated receptor-gamma ligands inhibit nuclear but not cytosolic extracellular signal-regulated kinase /mitogenactivated protein kinase-regulated steps in vascular smooth muscle cell migration[J]. J Cardiovasc Pharmacol, 2001;38(6):909-21.
    68. WANG CH, CILIBERTI N, LI SH. Rosiglitazone Facilitates Angiogenic Progenitor Cell Differentiation Toward Endothelial Lineage: A New Paradigm in Glitazone Pleiotropy[J]. Circulation, 2004;109(11):1392-400.
    [1]陈晓文,戚文航.球囊血管成型术后局部PAI-1基因表达[J].上海第二医科大学学报,2001,21(3):220-222.
    [2]陈晓文,戚文航.球囊血管成型术后局部PAI-1基因表达西拉普利的作用[J].中华心血管病杂志,2003,31(3):220-222.
    [3] Sawa H,Lundgren C,Sobel BE,et al. Increased intramural expression of pla-sminogen activator inhibitor type 1 after balloon injury: a potential progenitor of restenosis[J]. J Am Coll Cardiol,1994,24 (7):1742-1748.
    [4] DeYouny MB,Tom C,Dichek DA,et al. Plasminogen activator inhibitor type1 increases neointima formation in balloon-injured rat carotid arteries[J]. Circul-ation,2001,104(16):1972-1973.
    [5] Sawa H,Sobel BE,Fujii S,et al. Potentiation by hypercholest-erolemia of th-e induction of aortic intramural synthesis of plasminogen activator inhibitor typ-e 1 by endothelial injury[J]. Circ Res,1993,73:671-680.
    [6]王晔玲,赵利华,王延风.卡托普利对动脉损伤后内膜增生时纤溶系统的影响[J].中国介入心脏病学杂志,2002,4:214-216.
    [7] Zidovetzki P,Wang JL,Kim JA,et al. Endothelin-1 enhances plasminogen activator inhibitor-1 production by human brain endothelial cells via protein kinas-e C dependent pathway[J]. Arterioscler Thromb Vasc Biol,1999,19(7):1768-1775.
    [8] Sakata K,Miura F,Sugino H,et al. Impaired fibrinolysis early after percutan-eous transluminal coronary angioplasty is associated with restenosis[J]. Am He-art J,1996,131(1):1-6.
    [9] Ishiwata S,Tukuda T,Nakanishi S,et al. Postangioplasty restenosis: platelet a-ctivation and the coagulation-fibrinolysis system as possible factors in the path-ogenesis of restenosis[J]. Am Heart J,1997,133(4): 387-392.
    [10] Kato K,Satoh H,Endo Y,et al. Thiazolidinediones down-regulate plasminog-en activator inhibitor type 1 expression in human vascular endothelial cells: Apossible role for PPAR-γin endothelial function [J]. Biochem Biophys Res C-ommun,1999,258(2):431-435.
    [11] Strauss BH,Lau HK,Bowman KA,et al. Plasma urokinase antigen and plas-minogen activator inhibitor-1 levels predict angiographic coronary restenosis[J].Circulation,1999,100(15):1616-1622.
    [12] Inoue T,Yaguchi I,Mizoguchi K,et al. Accelerated plasminogen activetor i-nhibitor may prevent late restenosis after coronary stenting in acute myocardialinfarction[J]. Clin Cardiol,2003,26(3):153-157.
    [13] BarbierO,Torra IP,Duguay Y,et al. Pleiotropic action of peroxisome prolif-erator-activated receptors in lipid metabolism and atherosclerosis[J]. ArteriosclerThromb Vasc Biol,2002,22 (5):717-726.
    [14] Jozkowicz A,Dulak J,Nanobashvili J,et al. Role of peroxisome proliferator-activated receptor-γligands in vessel[J]. Eur Surg,2002,34(2):121-126.
    [15] Sidhu JS,Kaski JC. Peroxisome proliferator activated receptorγ: a potentialtherapeutic target in the management of ischaemic heart disease [J]. Heart,2001,86(3):255-258.
    [16] Marx N,Bourcier T,Sukhova GK,et al. PPARγactivation in human endot-helial cells increase plasminogen activator inhibitor type 1 expression[J]. Arteri-oscler Thromb Vasc Biol,1999,19(3):546-551.
    [17] Ihara H,Urano T,Takada A,et al.Induction of plasminogen activator inhibit-or 1 gene expression in adipocytes by thiazolidinediones[J].FASEB J,2001,15(7):1233-1235.
    [18] Zidovetzki R,Wang JL,Kim JA,et al. Endothelin-1 enhances plasminogen activator inhibitor-1 production by human brain endothelial cells via protein kin-ase C dependent pathway[J]. Arterioscler Thromb Vasc Biol,1999,19(7):1768-1775.
    [19] Birgel M,Gottschling-Zeller H, Rohrig K,et al. Role of cytokines in the r-egulation of plasmiogen activator inhibitor-1 expression and secretion in newlydifferentiated subcutaneous human adipocytes [J]. Arterioscler Thromb VascBiol,2000,20(6):1682-1687.
    [20] Skurk T,Lee YM,Hauner H,et al. Angiotensin II and its metabolites stimu-late PAI-1 protein release from human adipocytes in primary culture[J]. Hypert-ension,2001,37(5):1336-1340.
    [21] Sugawara A,Takeuchi K,Uruno A,et al. Differential effects among thiazoli-dine on the transcription of thromboxane receptor and angiotensinⅡtype 1 receptor genes[J]. Hypertens Res,2001,24(3): 229-233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700