耦合Bose-Einstein凝聚体系与强激光场中原子分子体系的非线性现象
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光与原子分子的相互作用导致了许多新颖现象,已成为近年来原子分子物理的一个研究热点。基于激光冷却与囚禁中性原子的实现和强激光技术的应用,本文研究了耦合Bose-Einstein凝聚体系和强激光场中的原子分子体系的相关非线性现象。
     对耦合Bose-Einstein凝聚体系,从耦合的非线性Schr?dinger方程——Gross-Pitaevskii方程出发,我们着重分析了两耦合Bose-Einstein凝聚体系中由平均场的非线性以及体系内在的相干性导致的宏观量子现象,同时精确分析了有关多耦合Bose-Einstein凝聚体系中超流——绝缘相变以及物质波孤子链的传播、塌缩和恢复等现象。主要工作有:
     (1)两耦合Bose-Einstein凝聚体系间宏观量子隧穿的准自旋模型。我们将两耦合Bose-Einstein凝聚体系间宏观量子隧穿映射为非轴向自旋体系在外加磁场中的隧穿,并推导了相应的Bloch方程。发现凝聚体系的平均场作用、组份之间的耦合与非对称性(或耦合激光的失谐)分别对应着体系的各向异性、横向磁场与轴向磁场。在低势垒情形下,用虚时间路径积分法计算了隧穿指数,得到了隧穿指数对系统参数的依赖性,同时估计了从量子机制向热机制过渡的交叉温度。
     (2)激光耦合两组份Bose-Einstein凝聚体系的条件自发自旋极化与分岔滞后。我们发现激光脉冲耦合下的两组份Bose-Einstein凝聚体系的分岔和自发自旋极化不仅依赖于系统参数,而且依赖于两组份间的相对相位。这些现象不同于那些只依赖于系统参数的分岔和自发自旋极化现象,是条件分岔和条件自发自旋极化。通过分岔,系统从Rabi机制进入自发自旋极化机制。另外,当参数缓慢地扫过静态分岔点时,我们发现系统中存在分岔滞后现象。
     (3)耗散及非耗散情形下的两耦合Bose-Einstein凝聚体系间的非线性布居数振荡。通过对含时非对称的双阱势中两耦合Bose-Einstein凝聚体系的研究,我们发现了混沌的及频率锁定的布居数振荡。决定性微扰下,系统在分界解附近的解是Melnikov混沌的。数值模拟表明:在非耗散机制下,随着非对称性的增加,规则振荡逐渐变为混沌振荡,长期的局域化消失;在耗散机制下,稳态混沌消失,系统经过渐态混沌进入规则的稳定的频率锁定的振荡,适当强度的阻尼可以保持长期的局域化。
     对强激光场中的原子分子体系,我们从其非线性的经典Hamilton方程出发,用经典轨道Monte-Carlo法模拟了氢原子及氢分子离子在强激光场中的高次谐波产生过程。通过引入天体力学中的规则化方法消除了二体及三体库仑问题的奇点,
Laser-atom interaction induces a lot of novel phenomena and has become one of the hotspots in the field of atomic and molecular physics. Based upon the realization of laser cooling and trapping and the application of technology of intense laser in atomic and molecular physics, we have analyzed the nonlinear phenomena in coupled Bose-Einstein condensates and atomic & molecular systems in intense laser fields.
     For the coupled Bose-Einstein condensates, with the coupled nonlinear Schr?dinger equations (Gross-Pitaevskii equations), we focus our investigation on the macroscopic quantum phenomena induced by the mean-field nonlinearity and the inherent coherence in Bose-Einstein condensates, we have also analyzed some related phenomena in coupled multiple Bose-Einstein condensates. The following works are enclosed in this dissertation.
     (I) Quasi-spin Model for Macroscopic Quantum Tunnelling between Two Coupled Bose-Einstein Condensates: The system of two coupled Bose-Einstein condensates is mapped onto an uniaxial spin with an applied magnetic field. The mean-field interaction, the coupling and the asymmetry or the detuning correspond to the anisotropy, the transverse field and the longitudinal field, respectively. The generalized Bloch's equation is derived. In the limit of low barrier, the tunneling exponent is calculated with an imaginary-time path-integral method. The dependence of the tunneling exponent on the system parameters is obtained. The crossover temperature TC from thermal regime to quantum regime is estimated. Below TC , the quantum phenomenon dominates the tunnelling, otherwise, the thermal activation dominates.
     (II) Conditional Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates: We find that the bifurcation and the spontaneous spin polarization depend not only on the system parameters, but also on the relative phase between two components. These phenomena are different from those only are determined by the parameters, we name them as conditional bifurcation and conditional spontaneous spin polarization. Through bifurcations, the system enters into the spontaneous spin polarization regime from the Rabi regime. We also find that bifurcation delay appears when the parameter is swept through the static bifurcation point.
     (III) Nonlinear Population Oscillation between two Coupled Bose-Einstein Condensates: We have investigated the chaotic and frequency-locked population oscillations between two coupled Bose-Einstein condensates with time-dependent asymmetric potential. Under the deterministic perturbation, there exist stable oscillations close to the separatrix solution, which are Melnikov chaotic. Numerical results reveal that, in the nondissipative regime, regular
引文
[1] S. N. Bose, Z. Phys. 26, 178 (1924).
    [2] A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. Bericht 1, 3 (1925).
    [3] A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. Bericht 3, 18 (1925).
    [4] A. Griffin, in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics Enrico Fermi, Course CXL, edited by M. Inguscio, S. Stringari, and C. E. Wieman (IOS Press, Amsterdam, 1999), pp 1.
    [5] A. Griffin, D. W. Snoke, and S. Stringari, Bose-Einstein Condensation, (Cambridge University Press, Cambridge, 1995).
    [6] B. C. Crooker, B. Hebral, E. N. Smith, Y. Takano, and J. D. Reppy, Superfluidity in a Dilute Bose Gas, Phys. Rev. Lett. 51, 666 (1983).
    [7] J. D. Reppy, 4He as a dilute Bose gas, Physica B 126, 335 (1984).
    [8] H. Cho and G. A. Williams, Vortex Core Size in Submonolayer Superfluid 4He Films, Phys. Rev. Lett. 75, 1562 (1995).
    [9] J. L. Lin and J. P. Wolfe, Bose-Einstein condensation of paraexcitons in stressed Cu2O, Phys. Rev. Lett. 71, 1222 (1993).
    [10] E. Fortin, E. Benson, and A. Mysyrowicz, in Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S. Stringari (Cambridge University Press, Cambridge, 1995) pp. 519.
    [11] J. P. Wolfe, J. L. Lin, and D. W. Snoke, 1995, in Bose-Einstein Condensation, edited by A. Griffin, D. W. Snoke, and S. Stringari (Cambridge University Press, Cambridge), pp. 281.
    [12] L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard and D. S. Chemla, Towards Bose–Einstein condensation of excitons in potential traps, Nature 417, 47 (2002).
    [13] M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. André, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, J. Sl. Staehli, and B. Deveaud, High-temperature ultrafast polariton parametric amplification in semiconductor microcavities, Nature 414, 731 (2001).
    [14] E. A. Cornell and C. E. Wieman , Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74, 875 (2002).
    [15] W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys. 74, 1131 (2002).
    [16] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation ofBose-Einstein condensation in a dilute atomic vapor, Science 269, 198 (1995).
    [17] K. B. Davis, M. -O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys. Rev. Lett. 75, 3969 (1995).
    [18] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dulite Gases, (Cambridge University Press, Cambridge, 2002).
    [19] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).
    [20] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73, 307 (2001).
    [21] J. R. Anglin and W. Ketterle, Bose–Einstein condensation of atomic gases, Nature 416, 211 (2002).
    [22] A. Griffin, Excitations in a Bose-Condensed Liquid, (Cambridge University Press, 1993).
    [23] S. Burger, et. al., Dark Solitons in Bose-Einstein Condensates, Phys. Rev. Lett. 83, 5198 (1999).
    [24] J. Denschlag, J. E. Simsarian, D. L. Feder, Charles W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D. Phillips, Generating Solitons by Phase Engineering of a Bose-Einstein Condensate, Science 287, 97 (2000).
    [25] Kevin E. Strecker, Guthrie B. Partridge, Andrew G. Truscott, Randall G. Hulet, Formation and propagation of matter-wave soliton trains, Nature 417, 150 ( 2002).
    [26] A. F. G. Wyatt, Evidence for a Bose–Einstein condensate in liquid 4He from quantum evaporation, Nature 391, 56 (1998).
    [27] C. Raman, M. K?hl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 83, 2502 (1999); R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur, and W. Ketterle, Observation of Superfluid Flow in a Bose-Einstein Condensed Gas, Phys. Rev. Lett. 85, 2228 (2000).
    [28] S. Burger, F. S. Cataliotti, C. Fort, F. Minardi, M. Inguscio , M. L. Chiofalo and M. P. Tosi, Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical potential. Phys. Rev. Lett. 86, 4447 (2001).
    [29] F. S. Cataliotti, et al., Josephson junction arrays with Bose-Einstein condensates. Science 293, 843 (2001).
    [30] D. Guéry-Odelin and S. Stringari, Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas, Phys. Rev. Lett. 83, 4452 (1999).
    [31] O. M. Maragò, et al., Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas. Phys. Rev. Lett. 84, 2056 (2000).
    [32] J. E. Williams and M. J. Holland, Preparing topological states of a Bose-Einstein condensate. Nature 401, 568 (1999).
    [33] M. R. Matthews, et al., Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999).
    [34] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of Vortex Lattices in Bose-Einstein Condensates, Science 292, 476 (2001).
    [35] E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J. Foot,Vortex nucleation in Bose-Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett. 88, 010405 (2002).
    [36] H. T. C. Stoof, Breaking up a superfluid, Nature 415, 25 (2002).
    [37] M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch and I.Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).
    [38] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev. Lett. 81, 3108 (1998).
    [39] D. J. Heinzen, in Bose-Einstein Condensation in Atomic Gases (eds Inguscio, M., Stringari, S. & Wieman, C. E.) 351-390 (IOS Press, Amsterdam, 1999).
    [40] K. Burnett, P. S. Julienne, P. D. Lett, E. Tiesinga, and C. J. Williams, Quantum encounters of the cold kind, Nature 416, 225 (2002).
    [41] P. Zoller, Making it with molecules, Nature 417, 493 (2002).
    [42] E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom-molecule coherence in a Bose-Einstein condensate, Nature 417, 529 (2002).
    [43] C. J. Williams and P. S. Julienne, Ultracold matter: Molecule at rest, Science 287, 986 (2000).
    [44] R. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen, Molecules in a Bose-Einstein Condensate, Science 287, 1016 (2000).
    [45] P. D. Drummond, K. V. Kheruntsyan, and H. He, Coherent Molecular Solitons in Bose-EinsteinCondensates, Phys. Rev. Lett. 81, 3055 (1998).
    [46] D. J. Heinzen, R. Wynar, P. D. Drummond, and K. V. Kheruntsyan, Superchemistry: Dynamics of Coupled Atomic and Molecular Bose-Einstein Condensates, Phys. Rev. Lett. 84, 5029 (2000).
    [47] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science 275, 637 (1997).
    [48] B. P. Anderson and M. A. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science 282, 1686 (1998).
    [49] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Squeezed States in a Bose-Einstein Condensate, Science 291, 2386 (2001).
    [50] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson Junction Arrays with Bose-Einstein Condensates, Science 293, 843 (2001).
    [51] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari, Dynamical Response of a Bose-Einstein Condensate to a Discontinuous Change in Internal State, Phys. Rev. Lett. 81, 243 (1998).
    [52] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1539 (1998).
    [53] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1543 (1998).
    [54] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature 396, 345 (1998).
    [55] B. D. Josephson, Phys. Lett. 1, 251 (1962).
    [56] P. W. Anderson, in The Lessons of Quantum Theory, Edited by E. Dal, O. Ultbeck, (Elsevier, Amsterdam, 1986), pp23.
    [57] R. Feynman, The Feynman lectures on physics, (Addison-Wesley Publish Company, 1965).
    [58] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye, and W. Ketterle, Propagation of Sound in a Bose-Einstein Condensate, Phys. Rev. Lett. 79, 553 (1997).
    [59] O. Avenel and E. Varoquaux, Observation of Singly Quantized Dissipation Events Obeying the Josephson Frequency Relation in the Critical Flow of Superfluid 4He through an Aperture, Phys. Rev. Lett. 55, 2704 (1985).
    [60] S. V. Pereverzev, A. Loshak, S. Backhaus, J. C. Davis, R. E. Packard, Quantum oscillations between two weakly coupled reservoirs of superfluid 3He, Nature 388, 449 (1997).
    [61] S. Backhaus, S. V. Pereverzev, A. Loshak, J. C. Davis, and R. E. Packard, Direct Measurement of the Current-Phase Relation of a Superfluid 3He-B Weak Link, Science 278, 1435 (1997).
    [62] V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 34, 1240 (1958); Sov. Phys. JEPT 7, 858 (1958).
    [63] E. P. Gross, Nuovo Cimento 20, 451 (1961); J. Math. Phys. 46, 137 (1963).
    [64] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 79, 49590 (1997).
    [65] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, pi oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59, 620 (1999).
    [66] I. Marino, S. Raghavan, S. Fantoni, S. R. Shenoy, and A. Smerzi, Bose-condensate tunneling dynamics: Momentum-shortened pendulum with damping, Phys. Rev. A 60, 487 (1999).
    [67] S. Raghavan, A. Smerzi, and V. M. Kenkre, Transitions in coherent oscillations between two trapped Bose-Einstein condensates, Phys. Rev. A 60, R1787 (1999).
    [68] L.-M. Kuang and Z.-W. Ouyang, Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates, Phys. Rev. A 61, 023604 (2000).
    [69] A. J. Leggett, Macroscopic Realism: What is it, and what do we know about it from experiment?, in Quantum Measurement beyond Paradox, Edited by R. A. Healey and G. Hellman, (University of Minnesota Press, Minneapolis, 1998).
    [70] A. J. Leggett, Testing the limits of quantum mechanics: Motivation, state of play, prospects, J. Phys.: Condens. Matter 14, R415 (2002).
    [71] L. S. Schulman, Time’s Arrows and Quantum Measurement, (Cambridge University Press, Cambridge, 1997).
    [72] R. P. Feynman and F. L. Vernon, Ann. Phys. NY 234, 118 (1963).
    [73] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw and A. Zellinger, Wave-particle duality of C60 molecules, Nature 401, 680 (1999).
    [74] O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, Diffraction of Complex Molecules by Structures Made of Light, Phys. Rev. Lett. 87, 160401 (2001).
    [75] E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunnelling of the Magnetic Moment, (Cambridge: Cambridge University Press, 1998).
    [76] A. Garg, Dissipation and interference effects in macroscopic magnetization tunneling and coherence, Phys. Rev. B 51, 15161 (1995).
    [77] J. G. E. Harris, J. E. Grimaldi, D. D. Awschalom, A. Chiolero and D. Loss, Excess spin and the dynamics of antiferromagnetic ferritin, Phys. Rev. B 60, 3453 (1999).
    [78] D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo, and D. Loss, Macroscopic Quantum Tunneling in Magnetic Proteins, Phys. Rev. Lett. 71, 4279 (1993).
    [79] B. Barbara and L. Gunther, Magnets, molecules and quantum mechanics, Phys. World 12, 35 (1999).
    [80] P. Bonville and C. Gilles, Search for incoherent tunnel fluctuations of the magnetisation in nanoparticles of artificial ferritin, Physica B 304, 237 (2001).
    [81] D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo, and D. Loss, Awschalom et al. reply, Phys. Rev. Lett. 70, 2199 (1993).
    [82] B. Julsgaard, A. Kozhekin and E.S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature 413, 400 (2001).
    [83] D. Esteve, J.M. Martinis, C. Urbina, E. Turlot, M.H. Devoret, H. Grabert and S. Linkwitz, Observation of the temporal decoupling effect on the macroscopic quantum tunneling of a Josephson junction, Phys. Scr. Vol. T (Sweden) T29, 121 (1989).
    [84] C.H. Van Der Wal, A.C.J. Ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd and J.E. Mooij, Quantum superposition of macroscopic persistent-current states, Science 290, 773 (2000).
    [85] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Quantum superposition of distinct macroscopic states, Nature 406, 43 (2000).
    [86] Y. Shi, Entanglement between Bose-Einstein condensates, Int. J. Mod. Phys. B 15, 3007 (2001).
    [87] Z. B. Chen and Y. D. Zhang, Possible realization of Josephson qubits in two coupled Bose-Einstein condensates, Phys. Rev. A 65, 022318 (2002).
    [88] A. P. Hines, R. H. McKenzie, and G. J. Milburn, Entanglement of two-mode Bose-Einstein condensates, Phys. Rev. A 67, 013609 (2003).
    [89] A. S?renson, L.-M. Duan, J.I. Cirac, and P. Zoller, Many-particle entanglement withBose-Einstein condensates, Nature 409, 63 (2001).
    [90] A. Micheli, D. Jaksch, J.I. Cirac, and P. Zoller, Many particle entanglement in two-component Bose-Einstein Condensates, ArXiv: cond-mat/0205369 (2002).
    [91] Y. S. Li, B. Zeng, X. S. Liu, and G. L. Long, Entanglement in a two-identical-particle system, Phys. Rev. A 64, 054302 (2001).
    [92] H. Pu and P. Meystre, Creating Macroscopic Atomic Einstein-Podolsky-Rosen States from Bose-Einstein Condensates, Phys. Rev. Lett. 85, 3987 (2000).
    [93] L.-M. Duan, A. S?rensen, J.I. Cirac, and P. Zoller, Squeezing and Entanglement of Atomic Beams, Phys. Rev. Lett. 85, 3991 (2000).
    [94] A. Barenco, et. al., SIAM J. Comput. 26, 1541 (1997).
    [95] D. S. Abrams and S. Lloyd, Nonlinear Quantum Mechanics Implies Polynomial- Time Solution for NP-Complete and # P Problems, Phys. Rev. Lett. 81, 3992 (1998).
    [96] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392, 151 (1998).
    [97] Ph. Courteille, R. S. Freeland, and D. J. Heinzen, Observation of a Feshbach Resonance in Cold Atom Scattering, Phys. Rev. Lett. 81, 69 (1998).
    [98] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions, Phys. Rev. Lett. 85, 1795 (2000).
    [99] S. Chu, Cold atoms and quantum control, Nature 416, 206 (2002).
    [100] K. Helmerson and W. D. Phillips, Atom lasers, Physics World, (August 1999).
    [101] G. B. Lubkin, New Atom Lasers Eject or Run CW, Physics Today, 17 (April 1999).
    [102] M.-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, Output Coupler for Bose-Einstein Condensed Atoms, Phys. Rev. Lett. 78, 582 (1997).
    [103] I. Bloch, T. W. H?nsch, and T. Esslinger, Atom Laser with a cw Output Coupler, Phys. Rev. Lett. 82, 3008 (1999).
    [104] E. W. Hagley, L. Deng, M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, and W. D. Phillips, A Well-Collimated Quasi-Continuous Atom Laser, Science 283, 1706 (1999).
    [105] M. A. Kasevich, Coherence with Atoms, Science 298, 1363 (2002).
    [106] T L Gustavson, A Landragin and M A Kasevich, Rotation sensing with a dual atom-interferometer Sagnac gyroscope, Class. Quantum Grav. 17, 2385 (2000).
    [107] A. Peters, K. Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms, Nature 400, 849 (1999).
    [108] J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A 65, 033608 (2002).
    [109] J. E. Williams, The Preparation of Topological Modes in a Strongly-Coupled Two-Component Bose-Einstein Condensate, Ph. D Thesis of JILA, USA, (1999).
    [110] S. Giovanazzi, Macroscopic quantum coherence phenomena in Bose Einstein condensates, Ph. D Thesis of SISSA (ISAS) (Condensed Matter Physics), Italy, (1998).
    [111] C. Lee, W. Hai, X. Luo, L. Shi, and K. Gao, Quasi-spin Model for Macroscopic Quantum Tunnelling between Two Coupled Bose-Einstein Condensates, arXiv: cond-mat/0206134 (2002).
    [112] C. Lee, W. Hai, L. Shi, and K. Gao, Conditional Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates, arXiv: cond-mat/0211578 (2002).
    [113] C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates, Phys. Rev. A 64, 053604 (2001).
    [1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).
    [2] E. A. Cornell and C. E. Wieman , Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74, 875 (2002).
    [3] W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys. 74, 1131 (2002).
    [4] A. Griffin, D. W. Snoke, and S. Stringari, Bose-Einstein Condensation, (Cambridge University Press, Cambridge, 1995).
    [5] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dulite Gases, (Cambridge University Press, Cambridge, 2002).
    [6] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73, 307 (2001).
    [7] J. E. Williams, The Preparation of Topological Modes in a Strongly-Coupled Two-Component Bose-Einstein Condensate, Ph. D Thesis of JILA, USA, (1999).
    [8] S. Giovanazzi, Macroscopic quantum coherence phenomena in Bose Einstein condensates, Ph. D Thesis of SISSA (ISAS) (Condensed Matter Physics), Italy, (1998).
    [9] M. Bender, P. -H. Heenen, and P. –G. Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003).
    [10] F. Cooper, S. –Y. Pi, and P. N. Stancioff, Quantum dynamics in a time-dependent variational approximation, Phys. Rev. D 34, 3831 (1986).
    [11] Víctor M. Pérez-García, Humberto Michinel, J. I. Cirac, M. Lewenstein, and P. Zoller, Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations, Phys. Rev. A 56, 1424 (1997).
    [12] F. Cooper, J. Dawson, S. Habib, and R. D. Ryne, Chaos in time-dependent variational approximations to quantum dynamics, Phys. Rev. E 57, 1489 (1998).
    [13] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science 275, 637 (1997).
    [14] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4950 (1997).
    [15] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, pi oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59, 620 (1999).
    [16] J. E. Williams, Optimal conditions for observing Josephson oscillations in a double-well Bose-gas condensate, Phys. Rev. A 64, 013610 (2001).
    [17] B. P. Anderson and M. A. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science 282, 1686 (1998).
    [18] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson Junction Arrays with Bose-Einstein Condensates, Science 293, 843 (2001).
    [19] A. Trombettoni and A. Smerzi, Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates, Phys. Rev. Lett. 86, 2353 (2001).
    [20] M. R. Matthews, D. S. Hall, D. S. Jin, J. R. Ensher, C. E. Wieman, E. A. Cornell, F. Dalfovo, C. Minniti, and S. Stringari, Dynamical Response of a Bose-Einstein Condensate to a Discontinuous Change in Internal State, Phys. Rev. Lett. 81, 243 (1998).
    [21] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1539 (1998).
    [22] D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1543 (1998).
    [23] J. I. Cirac, M. Lewenstein, K. M?lmer, and P. Zoller, Quantum superposition states of Bose-Einstein condensates, Phys. Rev. A 57, 1208 (1998).
    [24] C. K. Law, H. Pu, N. P. Bigelow, and J. H. Eberly, Quantum phase diffusion of a two-component dilute Bose-Einstein condensate, Phys. Rev. A 58, 531 (1998).
    [25] C. M. Savage, J. Ruostekoski, and D. F. Walls, Pumping two dilute-gas Bose-Einstein condensates with Raman light scattering, Phys. Rev. A 57, 3805 (1998).
    [26] J. Williams, R. Walser, J. Cooper, E. A. Cornell, and M. Holland, Excitation of a dipole topological state in a strongly coupled two-component Bose-Einstein condensate, Phys. Rev. A 61, 033612 (2000).
    [27] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Optical Confinement of a Bose-Einstein Condensate, Phys. Rev. Lett. 80, 2027(1998).
    [28] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature 396, 345 (1998).
    [29] Tin-Lun Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev. Lett. 81, 742 (1998).
    [30] C. K. Law, H. Pu, and N. P. Bigelow, Quantum Spins Mixing in Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 81, 5257 (1998).
    [1] J. R. Anglin and W. Ketterle, Bose–Einstein condensation of atomic gases, Nature 416, 211 (2002).
    [2] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73, 307 (2001).
    [3] P. Anderson and M. A. Kasevich, Atomic tunnel arrays; F. Sols, Josephson effect between Bose condensates; in Bose-Einstein Condensation in Atomic Gases, edited by M. Inguscio, S. Stringari and C. E. Wieman (IOS Press, Amsterdam, 1999), Volume 140 International School of Physics Enrico Fermi.
    [4] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Squeezed States in a Bose-Einstein Condensate, Science 291, 2386 (2001).
    [5] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science 275, 637 (1997).
    [6] M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch and I.Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).
    [7] F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson Junction Arrays with Bose-Einstein Condensates, Science 293, 843 (2001).
    [8] B. P. Anderson and M. A. Kasevich, Macroscopic Quantum Interference from Atomic Tunnel Arrays, Science 282, 1686 (1998).
    [9] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1539 (1998); D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1543 (1998).
    [10] D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle, Quantum Tunneling across Spin Domains in a Bose-Einstein Condensate, Phys. Rev. Lett. 83, 661–665 (1999).
    [11] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature 396, 345 (1998).
    [12] J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Holland, Nonlinear Josephson-typeoscillations of a driven, two-component Bose-Einstein condensate, Phys. Rev. A 59, R31 (1999).
    [13] K. Kasamatsu, Y. Yasui, and M. Tsubota, Macroscopic quantum tunneling of two-component Bose-Einstein condensates, Phys. Rev. A 64, 053605 (2001).
    [14] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4950 (1997).
    [15] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, pi oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59, 620 (1999).
    [16] I. Marino, S. Raghavan, S. Fantoni, S. R. Shenoy, and A. Smerzi, Bose-condensate tunneling dynamics: Momentum-shortened pendulum with damping, Phys. Rev. A 60, 487 (1999).
    [17] A. Smerzi and S. Raghavan, Macroscopic quantum fluctuations in the Josephson dynamics of two weakly linked Bose-Einstein condensates, Phys. Rev. A 61, 063601 (2000).
    [18] L. -M. Kuang and Z. –W. Ouyang, Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates, Phys. Rev. A 61, 023604 (2000).
    [19] F. Kh. Abdullaev and R. A. Kraenkel, Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential, Phys. Rev. A 62, 023613 (2000).
    [20] F. Kh. Abdullaev and R. A. Kraenkel, Macroscopic quantum tunneling and resonances in coupled Bose-Einstein condensates with oscillating atomic scattering length, ArXiv: cond-mat/0005445, (2000).
    [21] C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates, Phys. Rev. A 64, 053604 (2001); W. Hai, C. Lee, G. Chong, and L. Shi, Chaotic probability density in two periodically driven and weakly coupled Bose-Einstein condensates, Phys. Rev. E 66, 026202 (2002).
    [22] L. Allen and J. H. Eberly, Optical resonance and two-state atoms, John Wiley \& Sons, New York (1975).
    [23] J.-Q. Liang, H. J. W. Müller-Kirsten, D. K. Park, and F. Zimmerschied, Periodic Instantons and Quantum-Classical Transitions in Spin Systems, Phys. Rev. Lett. 81, 216 (1998); J.-Q. Liang, Y.-B. Zhang, H. J. W. Müller-Kirsten, J. –G. Zhou, F. Zimmerschied, and F.-C. Pu, Enhancement of quantum tunneling for excited states in ferromagnetic particles, Phys. Rev. B 57, 529 (1998).
    [24] J. von Delft and C. L. Henley, Destructive quantum interference in spin tunneling problems, Phys. Rev. Lett. 69, 3236 (1992).
    [25] D. Loss, D. P. DiVincenzo, and G. Grinstein, Suppression of tunneling by interference in half-integer-spin particles, Phys. Rev. Lett. 69, 3232 (1992).
    [26] E. M. Chudnovsky and D. A. Garanin, First- and Second-Order Transitions between Quantum and Classical Regimes for the Escape Rate of a Spin System, Phys. Rev. Lett. 79, 4469 (1997); D. A. Garanin and E. M. Chudnovsky, Thermally activated resonant magnetization tunneling in molecular magnets: Mn12Ac and others, Phys. Rev. B 56, 11102 (1997); M. –C. Miguel and E. M. Chudnovsky, Quantum decay of metastable states in small magnetic particles, Phys. Rev. B 54, 388 (1996); E. M. Chudnovsky and L. Gunther, Quantum Tunneling of Magnetization in Small Ferromagnetic Particles, Phys. Rev. Lett. 60, 661 (1988).
    [27] O. B. Zaslavskii, Quantum decay of a metastable state in a spin system, Phys. Rev. B 42, 992 (1990).
    [28] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392, 151 (1998); Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen and B. J. Verhaar, Observation of a Feshbach Resonance in Cold Atom Scattering, Phys. Rev. Lett. 81, 69 (1998); S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions, Phys. Rev. Lett. 85, 1795 (2000).
    [29] Y. Shi, Entanglement between Bose-Einstein condensates, Int. J. Mod. Phys. B 15, 3007 (2001).
    [1] N. Fortson and B. Heckel, Spontaneous spin polarization and bistability in atomic vapors by optical pumping with unpolarized light, Phys. Rev. Lett. 59, 1281 (1987); W. M. Klipstein, S. K. Lamoreaux, and E. N. Fortson, Observation of Spontaneous Spin Polarization in an Optically Pumped Cesium Vapor, Phys. Rev. Lett. 76, 2266 (1996); A. Andalkar, R. B. Warrington, M. V. Romalis, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson, Experimental and theoretical study of spontaneous spin polarization and hysteresis in cesium vapor, Phys. Rev. A 65, 023407 (2002).
    [2] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Differential Gain and Bistability Using a Sodium-Filled Fabry-Perot Interferometer, Phys. Rev. Lett. 36, 1135 (1976); T. Yabuzaki, T. Okamoto, M. Kitano, and T. Ogawa, Optical bistability with symmetry breaking, Phys. Rev. A 29, 1964 (1984).
    [3] M. Rao, H. R. Krishnamurthy, and R. Pandit, Magnetic hysteresis in two model spin systems, Phys. Rev. B 42, 856 (1990).
    [4] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, W. Ketterle, Spin domains in ground-state Bose-Einstein condensates, Nature 396, 345 (1998); C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling, Phys. Rev. Lett. 78, 586 (1997).
    [5] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1539 (1998); D. S. Hall, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys. Rev. Lett. 81, 1543 (1998).
    [6] K. Burnett, P. S. Julienne, P. D. Lett, E. Tiesinga, and C. J. Williams, Quantum encounters of the cold kind, Nature 416, 225 (2002); J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and theory in cold and ultracold collisions, Rev. Mod. Phys. 71, 1 (1999).
    [7] J. R. Anglin and W. Ketterle, Bose–Einstein condensation of atomic gases, Nature 416, 211 (2002); F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71, 463 (1999).
    [8] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, W. Ketterle,Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392, 151 (1998); Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen and B. J. Verhaar, Observation of a Feshbach Resonance in Cold Atom Scattering, Phys. Rev. Lett. 81, 69 (1998); S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Stable 85Rb Bose-Einstein Condensates with Widely Tunable Interactions, Phys. Rev. Lett. 85, 1795 (2000); S. Chu, Cold atoms and quantum control, Nature 416, 202 (2002).
    [9] S. Kohler and F. Sols, Oscillatory Decay of a Two-Component Bose-Einstein Condensate, Phys. Rev. Lett. 89, 060403 (2002).
    [10] J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Holland, Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate, Phys. Rev. A 59, R31 (1999); J. E. Williams, The Preparation of Topological Modes in a Strongly-Coupled Two-Component Bose-Einstein Condensate, Ph. D Thesis of JILA, USA, (1999).
    [11] C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates, Phys. Rev. A 64, 053604 (2001); W. Hai, C. Lee, G. Chong, and L. Shi, Chaotic probability density in two periodically driven and weakly coupled Bose-Einstein condensates, Phys. Rev. E 66, 026202 (2002); C. Lee, W. Hai, X. Luo, L. Shi, and K. Gao, Quasi-spin Model for Macroscopic Quantum Tunnelling between Two Coupled Bose-Einstein Condensates, arXiv: cond-mat/0206134 (2002).
    [12] L. –M. Kuang and Z. –W. Ouyang, Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates, Phys. Rev. A 61, 023604 (2000); L. –M. Kuang, Z. –Y. Tong, Z. –W. Ouyang, and H. –S. Zeng, Decoherence in two Bose-Einstein condensates, Phys. Rev. A 61, 013608 (2000); B. Hu and L. –M. Kuang, Tunneling dynamics of Bose-Einstein condensates with Feshbach resonances, Phys. Rev. A 62, 023610 (2000).
    [13] R. J. Ballagh, K. Burnett, and T. F. Scott, Theory of an Output Coupler for Bose-Einstein Condensed Atoms, Phys. Rev. Lett. 78, 1607 (1997); M. ?. Oktel and L. S. Levitov, Optical Excitations in a Nonideal Bose Gas, Phys. Rev. Lett. 83, 6 (1999); Y. Wu and X. Yang, Output rate of atom lasers in a Raman-type output-coupling scheme, Phys. Rev. A 62, 013603 (2000).
    [14] K. –P. Marzlin, W. Zhang, and E. M. Wright, Vortex Coupler for Atomic Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4728 (1997); R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Creation of Dark Solitons and Vortices in Bose-Einstein Condensates, Phys. Rev. Lett. 80, 2972(1998).
    [15] M. O. Oktel and L. S. Levitov, Internal Waves and Synchronized Precession in a Cold Vapor, Phys. Rev. Lett. 88, 230403 (2002); J. N. Fuchs, D. M. Gangardt, and F. Lalo?, Internal State Conversion in Ultracold Gases, Phys. Rev. Lett. 88, 230404 (2002); J. E. Williams, T. Nikuni, and Charles W. Clark, Longitudinal Spin Waves in a Dilute Bose Gas, Phys. Rev. Lett. 88, 230405 (2002); J. M. McGuirk, H. J. Lewandowski, D. M. Harber, T. Nikuni, J. E. Williams, Spatial Resolution of Spin Waves in an Ultracold Gas, Phys. Rev. Lett. 89, 090402 (2002); T. Nikuni, J. E. Williams and C. W. Clark, Linear spin waves in a trapped Bose gas, Phys. Rev. A 66, 043411 (2002).
    [16] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Observation of Interference Between Two Bose Condensates, Science 275, 637 (1997); C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Squeezed States in a Bose-Einstein Condensate, Science 291, 2386 (2001); A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4950 (1997); S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, pi oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59, 620 (1999); S. Raghavan, A. Smerzi, and V. M. Kenkre, Transitions in coherent oscillations between two trapped Bose-Einstein condensates, Phys. Rev. A 60, R1787 (1999); I. Marino, S. Raghavan, S. Fantoni, S. R. Shenoy, and A. Smerzi, Bose-condensate tunneling dynamics: Momentum-shortened pendulum with damping, Phys. Rev. A 60, 487 (1999); A. Smerzi and S. Raghavan, Macroscopic quantum fluctuations in the Josephson dynamics of two weakly linked Bose-Einstein condensates, Phys. Rev. A 61, 063601 (2000); V. M. Kenkre and D. K. Campbell, Self-trapping on a dimer: Time-dependent solutions of a discrete nonlinear Schr?dinger equation, Phys. Rev. B 34, 4959 (1986); G. P. Tsironis, V. M. Kenkre, Initial Condition Effects in the Evolution of a Nonlinear Dimer, Phys. Lett. A127, 209 (1988).
    [17] P. Mandel and T. Erneux, Laser Lorenz Equations with a Time-Dependent Parameter, Phys. Rev. Lett. 53, 1818 (1984); N. Berglund and H. Kunz, Chaotic Hysteresis in an Adiabatically Oscillating Double Well, Phys. Rev. Lett. 78, 1691 (1997); N. Berglund, H. Kunz, Memory Effects and Scaling Laws in Slowly Driven Systems, J. Phys. A 32, 15 (1999).
    [18] E. M. Chudnovsky, Quantum Hysteresis in Molecular Magnets, Science 274, 938 (1996); P. C. E. Stamp, Tunneling Secrets Extracted, Nature 383, 125 (1996).
    [1] A. J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73, 307 (2001).
    [2] M. J. Steel and M. J. Collett, Quantum state of two trapped Bose-Einstein condensates with a Josephson coupling, Phys. Rev. A 57, 2920 (1998).
    [3] C. –Y. Lin, E. J. V. de Passos, and D. –S. Lee, Time-dependent variational analysis of Josephson oscillations in a two-component Bose-Einstein condensate, Phys. Rev. A 62, 055603 (2000).
    [4] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4950 (1997).
    [5] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59, 620 (1999).
    [6] I. Marino, S. Raghavan, S. Fantoni, S. R. Shenoy, and A. Smerzi, Bose-condensate tunneling dynamics: Momentum-shortened pendulum with damping, Phys. Rev. A 60, 487 (1999).
    [7] I. Zapata, F. Sols, and A. J. Leggett, Josephson effect between trapped Bose-Einstein condensates, Phys. Rev. A 57, R28 (1998).
    [8] A. Smerzi and S. Raghavan, Macroscopic quantum fluctuations in the Josephson dynamics of two weakly linked Bose-Einstein condensates, Phys. Rev. A 61, 063601 (2000).
    [9] J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Holland, Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate, Phys. Rev. A 59, R31 (1999).
    [10] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Squeezed States in a Bose-Einstein Condensate, Science 291, 2386 (2001).
    [11] F. Kh. Abdullaev and R. A. Kraenkel, Coherent atomic oscillations and resonances between coupled Bose-Einstein condensates with time-dependent trapping potential, Phys. Rev. A 62, 023613 (2000).
    [12] F. Kh. Abdullaev and R. A. Kraenkel, Macroscopic quantum tunneling and resonances in coupled Bose-Einstein condensates with oscillating atomic scattering length, arXiv: cond-mat/0005445 (2000).
    [13] W. Hai, X. Liu, J. Fang, X. Zhang, W. Huang, and G. Chong, Analytically bounded and numerically unbounded compound pendulum chaos, Phys. Lett. A 275, 54 (2000).
    [14] W. Hai, Y. Xiao, J. Fang, W. Huang, and X. Zhang, Current–voltage characteristic of the Josephson chaos, Phys. Lett. A 265, 128 (2000).
    [15] C. Li, Conditional stability of the general KdV soliton solution and KdV-Burgers traveling wave solution, Acta Phys. Sin. 47, 1409 (1998) (in Chinese).
    [16] J. Hoffnagle and R. G. Brewer, Frequency-locked motion of two particles in a Paul trap, Phys. Rev. Lett. 71, 1828 (1993); J. Hoffnagle and R. G. Brewer, Chaotic transients of two particles in a Paul trap: Interpretation as a boundary crisis, Phys. Rev. A 50, 4157 (1994).
    [17] J. –L. Shen, H. –W. Yin, J. –H. Dai, and H. –J. Zhang, Dynamical behavior, transient chaos, and riddled basins of two charged particles in a Paul trap, Phys. Rev. A 55, 2159 (1997).
    [1] M. Protopapas, C. H. Keitel, and P. L. Knight, Atomic physics with super-high intensity lasers, Rep. Prog. Phys. 60, 389 (1997).
    [2] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms, Phys. Rev. Lett. 42, 1127 (1979).
    [3] P. Kruit, J. Kimman, H. G. Muller, and M. J. van der Wiel, Electron spectra from multiphoton ionization of xenon at 1064, 532, and 355 nm, Phys. Rev. A 28, 248 (1983).
    [4] F Fabre, G Petite, P Agostini, and M Clement, Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06 um, J. Phys. B: At. Mol. Phys. 15, 1353 (1982).
    [5] D. A. Wasson and S. E. Koonin, Molecular-dynamics simulations of atomic ionization by strong laser fields, Phys. Rev. A 39, 5676 (1989).
    [6] U. –L. Pen and T. F. Jiang, Strong-field of the one-dimensional hydrogen atom in momentum space, Phys. Rev. A 46, 4297 (1992).
    [7] P. B. Corkum, Plasma Perspective on Strong-Field Multiphoton Ionization, Phys. Rev. Lett. 71, 1994 (1993).
    [8] S. Chelkowski, T. Zuo, O. Atabek, and A. D. Baudrank, Dissociation, ionization, and, Coulomb explosion of H2+ in an intense laser field by numerical integration of the time-dependent Schrodinger equation, Phys. Rev. A. 52, 2977 (1995).
    [9] S. Chelkowski, A. Conjusteau, T. Zuo, and A. D. Baudrank, Dissociative ionization of H2+ in an intense laser field : Charge-resonance-enhanced ionization, Coulomb explosion, and harmonic generation at 600 nm, Phys. Rev. A 54, 3235 (1996).
    [10] D. M. Villeneuve, M. Yu. Ivanov, and P. B. Corkum, Enhanced ionization of diatomic molecules in strong laser fields : a classical model, Phys. Rev. A 54, 736 (1996).
    [11] K. Sacha and J. Zakrzewski, H-atom ionization by elliptically polarized microwave fields : The overlap criterion, Phys. Rev. A 56, 719 (1997).
    [12] S. Chelkowski, C. Foisy, and A. D. Bandrank, Electron-nuclear dynamics of multiphton H2+ dissociative ionization in intense laser fields, Phys. Rev. A 57, 1176 (1998).
    [13] Y. Duan, W. –K. Liu, and J. –M. Yuan, Classical Dynamics of Ionization, Dissociation, and, Harmonic Generation of Hydrogen Molecular Ion in Intense Laser fields : a Collinear Model, Phys.Rev. A 61, 053403 (2000).
    [14] J. H. Eberly and Q. Su, High-order harmonic generation production in multiphton ionization, J. Opt. Soc. Am. B 6, 1289(1989).
    [15] L. V. Keldysh, Sov. Phys. –JETP 20, 1307 (1965).
    [16] P. Lambropoulos, Mechanisms for Multiple Ionization of Atoms by Strong Pulsed Lasers, Phys. Rev. Lett. 55, 2141 (1985).
    [17] M. V. Ammosov, N. B. Delone, and V. Krainov, Sov. Phys.–JETP 64, 1191 (1986).
    [18] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, Tunneling ionization of noble gases in a high-intensity laser field, Phys. Rev. Lett. 63, 2212 (1989).
    [19] E. Mevel, P. Breger, R. Trainham, G. Petite, P. Agostini, A. Migus, J. –P. Chambaret, and A. Antonetti, Atoms in strong optical fields: Evolution from multiphoton to tunnel ionization, Phys. Rev. Lett. 70, 406 (1993).
    [20] K. C. Kulander, K. J. Schafer, and J. L. Krause, Super-Intense Laser-Atom Physics vol 316 NATO ASI, Series B Physics, editted by B. Piraux, A. L’Huillier and K. Rzazewski (New York: Plenum, 1993).
    [21] K. J. Schafer, Baorui Yang, L. F. DiMauro, and K. C. Kulander, Above threshold ionization beyond the high harmonic cutoff, Phys. Rev. Lett. 70, 1599 (1993).
    [22] van den Van Linden, H. B. Heuvell, and H. G. Muller, Multiphoton Processes, editted by S. J. Smith and P. L. Knight (Cambridge: Cambridge University Press, 1988) pp 25.
    [23] T. F. Gallagher, Above-Threshold Ionization in Low-Frequency Limit, Phys. Rev. Lett. 61, 2304 (1988).
    [24] J. Heagy and J. -M. Yuan , Dynamics of an impusively driven Morse oscillator , Phys. Rev. A 41 , 571 (1990)
    [25] J. Heagy , Z. –M. Lu , J. -M. Yuan , and M. Vallieres , Dynamics of Driven Molecular Systems , in Quantum non-Integrability :Direction in Chaos Vol.4 , edited by D. H. Feng , J. -M. Yuan , (World Scientific , Singapore 1992), pp 323.
    [26] K. C. Kulander , F. H. Mies , and K. J. Schafer , Model for studies of laser-induced nonlinear processes in molecules , Phys. Rev. A 53 , 2562 (1996).
    [27] J. –M. Yuan and W. –K. Liu , Classical and quantum dynamics of chirped pulse dissociation of diatomic molecules , Phys. Rev. A 57 , 1992 (1998).
    [28] J. T. Lin and D. S. Chuu , Diatomic molecule under pulsed field : One-dimensional versusfull-dimensional studies , Phys. Rev. A 58 , 2337 (1998).
    [29] W. Qu , S. Hu , and Z. Xu , Classical simulation for one-dimensional H2 interacting with intense ultrashort laser pulses , Phys. Rev. A 57 , 4528 (1998).
    [30] J. –H. Kim and W. –K. Liu, Classical-quantum correspondence in multiphoton dissociation of diatomic molecules by chirped laser pulses, J. Chem. Phys. 111, 216 (1999).
    [31] W. -K. Liu, J. -M. Yuan, Classical dynamics of multiphoton excitation and dissociation of diatomic molecules by infrared laser pulses, Phys. Rev. A 60, 1363 (1999).
    [32] G. Bandarage , A. Maquet , and J. Cooper , Harmonic generation by a classical hydrogen atom in the presence of an intense radiation field , Phys. Rev. A 41 , 1744 (1990).
    [33] G. Bandarage and J. Cooper , Harmonic generation by a laser-driven classical hydrogen atom , Phys. Rev. A 46 , 380 (1992).
    [34] Y. Liang , S. Augst , S. L. Chin , Y. Beaudion , and M. Chakert , High harmonic generation in atomic and diatomic molecular gases using intense picosecond laser pulses ---- a comparison , J. Phys. B. 27 , 5119 (1994).
    [35] Y. Liang , S. Augst , S. L. Chin , Y.Beaudion , and M. Chakert , Investigation of photon emission spectra of hydrogen using intense subpicosecond Ti : sapphire /Nd : glass laser pulses , J. Phys. B. 28 , 3661 (1995).
    [36] V. Averbukh and N. Moiseyev , Classical versus quantum harmonic-generation spectrum of a driven anharmonic oscillator in the high-frequency regime , Phys. Rev. A 57 , 1345 (1998).
    [37] M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch and I.Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).
    [38] A. Sanpera , J. B. Watson , et. al. , Can harmonic generation cause non-sequential ionization ? , J. Phys. B. 31, L841 (1998).
    [39] R. Kopold and W. Becker , Model calculations of high-harmonic generation in molecular ions , Phys. Rev. A 58 , 4022 (1998).
    [40] C. Figueira, de M. Faria , Martia Dorr , and W. Sander , Importance of excited bound states in harmonics generation , Phys. Rev. A 58 , 2990 (1998).
    [41] M. Belini , C. Lynga , et. al., Temporal Coherence of Ultrashort High-Order Harmonic Pulses , Phys. Rev. Lett. 81 , 297 (1998).
    [42] H. R. Lange , A. Chiron , et. al. , High-Order Harmonic Generation and Quasiphase Matching inXenon Using Self-Guided Femtosecond Pulses , Phys. Rev. Lett. 81 , 1611 (1998).
    [43] K. Miyazaki and H. Takada, High-order harmonic generation in tunneling regime, Phys. Rev. A 52, 3009 (1995).
    [44] S. Long, W. Becker, and J. K. McIver, Model calculations of polarization-dependent two-color high-harmonc generation, Phys. Rev. A 52, 2262 (1995).
    [45] S. G. Preston, A. Sanpera, et. al., High-order harmonics of 248.6nm KrF laser from helium and neon ions, Phys. Rev. A 53, R31 (1996).
    [46] A. Sanpera, P. Jonsson, et. al., Harmonic generation beyond the saturation intensity in helium, Phys. Rev. A 51, 3148 (1995).
    [47] S. Geltman, Strong-field ionization of helium in the independent-electron model, Phys. Rev. A 52, 2468 (1995).
    [48] T. E. Glover, R. W. Schoenlein, et. al., Observation of Laser Assisted Photoelectric Effect and Femtosecond High-Order Harmonic Radiation, Phys. Rev. Lett. 74, 2468 (1996).
    [49] C. Kan, N. H. Burnett, et. al., Coherent XUV Generation from Gasses Ionized by Several Cycle Optical Pulses, Phys. Rev. Lett. 79, 2971 (1997).
    [50] C. -G. Wahstron, J. Larsson, et. al., High-order harmonic generation in rare gases with an intense short-pulse laser, Phys. Rev. A 48, 4709 (1993).
    [51] Z. Chang, A. Rundquist, et. al., Generation of Coherent Soft X Rays at 2.7nm Using High Harmonics, Phys. Rev. Lett. 79, 2967 (1997).
    [52] N. Moiseyev, M. Chrysos, et. al., Harmonic generation in molecular systems: Application to H 2+ in intense laser fields, J. Phys. B 28, 2007 (1995).
    [53] T. Zou, S. Chelkouski, and A.D.Bandrauk, Harmonic generation by the H 2+ molecular ion in intense laser field, Phys. Rev. A 48, 3837 (1993).
    [54] J. Parker and C. R. Stroud, Generalization of the Keldysh theory of above-threshold ionization for the case of femtosecond pulses, Phys. Rev. A 40, 5651 (1989).
    [55] M. V. Fedorov, M. Y. Ivanov and A. M. Movsesian, Strong-field photoionisation of an initially excited hydrogen atom: Formation of Rydberg wavepacket, its structure and trapping of population at Rydberg levels, J. Phys. B: At. Mol. Opt. Phys. 23, 2245S (1990).
    [56] P. L. Knight, M. A. Lauder, and B. J. Dalton, Laser-induced continuum structure, Phys. Rep. 190,1 (1990).
    [57] K. Burnett, P. L. Knight, B. R. M. Piraux, and V. C. Reed, Supression of ionization in strong laser fields, Phys. Rev. Lett. 66, 301 (1991).
    [58] B. Piraux, E. Huens, and P. Knight, Atomic stabilization in ultrastrong laser fields, Phys. Rev. A 44, 721 (1991).
    [59] J. H. Hoogenraad, R. B. Vrijen, and L. D. Noordam, Ionization suppression of Rydberg atoms by short laser pulses, Phys. Rev. A 50, 4133 (1994).
    [60] R. R. Jones and P. H. Bucksbaum, Ionization suppression of Stark states in intense laser fields, Phys. Rev. Lett. 67, 3215 (1991).
    [61] L. D. Noordam, H. Stapelfeldt, D. I. Duncan, and T. F. Gallagher, Redistribution of Rydberg states by intense picosecond pulses, Phys. Rev. Lett. 68, 1496 (1992).
    [62] J. J. Gersten and M. H. Mittleman, The shift of atomic states by laser fields, J. Phys. B: At. Mol. Phys. 9, 2561 (1976).
    [63] M. Gavrila and J. Z. Kaminski, Free-Free Transitions in Intense High-Frequency Laser Fields, Phys. Rev. Lett. 52, 613 (1984).
    [64] J. van de Ree, J. Z. Kaminski, and M. Gavrila, Modified Coulomb scattering in intense, high-frequency laser fields, Phys. Rev. A 37, 4536 (1988).
    [65] R M A Vivirito, P L Knight, Adiabatic excitation and stabilization in short-range potentials, J. Phys. B: At. Mol. Phys. 28, 4357 (1995).
    [66] M. Gavrila, Atoms in Intense Laser Fields ed M Gavrila, (New York: Academic, 1992), pp 435.
    [67] Q. Su, J. H. Eberly, and J. Javanainen, Dynamics of atomic ionization suppression and electron localization in an intense high-frequency radiation field, Phys. Rev. Lett. 64, 862 (1990).
    [68] V. C. Reed and K. Burnett, Role of resonances and quantum-mechanical interference in the generation of above-threshold-ionization spectra, Phys. Rev. A 43, 6217 (1991).
    [69] J. Grochmalicki, M. Lewenstein, and K. Rzaewski, Stabilization of atoms in superintense laser fields: Is it real? Phys. Rev. Lett. 66, 1038 (1991).
    [70] R. Grobe and C. K. Law, Stabilization in superintense fields: A classical interpretation, Phys. Rev. A 44, R4114 (1991).
    [71] M. Gajda, J. Grochmalicki, M. Lewenstein, and K. Rzazewski, Stabilization of atoms in ultrastrong laser fields: A classical approach, Phys. Rev. A 46, 1638 (1992).
    [72] Bestle, V. M. Akulin, and W. P. Schleich, Classical and quantum stabilization of atoms in intense laser fields, Phys. Rev. A 48, 746 (1993).
    [73] J. B. Watson, C. H. Keitel, P. L. Knight, and K. Burnett, Quantum signatures in the stabilization dynamics, Phys. Rev. A 52, 4023 (1995).
    [74] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40, 749 (1932).
    [75] C. H. Keitel, Ultra-energetic electron ejection in relativistic atom - laser field interaction, J. Phys. B: At. Mol. Opt. Phys. 29, L873 (1996).
    [76] J. L. Krause, K. J. Schafer, and K. C. Kulander, High-order harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett. 68, 3535 (1992).
    [77] J. J. Macklin, J. D. Kmetec, and C. L. Gordon, High-order harmonic generation using intense femtosecond pulses, Phys. Rev. Lett. 70, 766 (1993).
    [78] K. Kondo, N. Sarukura, K. Sajiki, and S. Watanabe, High-order harmonic generation by ultrashort KrF and Ti:sapphire lasers, Phys. Rev. A 47, R2480 (1993).
    [79] J Larsson, E Mevel, R Zerne, A L'Huillier, C -G Wahlstrom, S Svanberg, Two-colour time-resolved spectroscopy of helium using high-order harmonics, J. Phys. B: At. Mol. Opt. Phys. 28, L53 (1995).
    [80] M. P. Strand and W. P. Reinhardt , Semiclassical quantization of the lying electronic states of H2+ , J. Chem. Phys. 70, 3812 (1979).
    [81] R. Blumel and W. P. Reinhardt , Where is the Chaos in Two-Electron Atoms ? , in Quantum non-Integrability :Direction in Chaos Vol. 4 , edited by D. H. Feng , J. -M. Yuan , 323, (World Scientific , Singapore , 1992).
    [82] J. M. Mao and J. B. Delos , Hamiltonian bifurcation theory of closed orbits in the diamagnetic Kepler problem , Phys. Rev. A 45 , 1746 (1992).
    [83] T. Yamamoto and K. Kaneko , Helium Atom as a Classical Three-Body Problem , Phys. Rev. Lett. 70 , 1928 (1993).
    [84] K. Richter , et. al. , Classical mechanics of two-electron atoms , Phys. Rev. A 48 , 4182 (1993).
    [85] K. Rzazewski , et. al., Multielectron stabilization of atoms in a laser field : Classical perspective , Phys. Rev. A 49 , 1196 (1994).
    [86] Y. Duan , J. –M. Yuan , and C. Bao , Periodic orbits of the hydrogen molecular ion and theirquantization , Phys. Rev. A 52, 3497 (1995).
    [87] C. He , Y. Duan , et. al., Classical-Quantum Correspondence in a Helium-like System on Conic Sections , Few-Body Systems 27, 107 (1999).
    [88] K. Sohlberg , R. E. Tuzun , et. al., Full three-body problem primitive semiclassical treatment of H2+ , Phys. Rev. A 57 , 906 (1998).
    [89] Y. Duan , C. Browne , and J. –M. Yuan , Nonlinear dynamics of a hydrogen molecular ion and similar three-body Coulomb systems , Phys. Rev. A 59, 238 (1999).
    [90] Y. Duan , and J. –M. Yuan , Periodic Orbits of Hydrogen Molecular Ion , Eur. Phys. J. D 6, 319 (1999).
    [91] J. Leopold and I. Pecival, Ionization of highly excited atoms by electric fields III: Microwave ionization and excitation, J. Phys. B 12, 709 (1979).
    [92] Y. Gu, Quantum chaos, (Shanghai Science and Technology Press, Shanghai, China, 1996).
    [93] C. Lee, Y. Duan, W. –K. Liu, and J. –M. Yuan, Classical Dynamics of Harmonic Generation of the Hydrogen Molecular Ion Interacting with Ultrashort Intense Laser Pulses, Chin. Phys. Lett. 18, 236 (2001).
    [94] C. Lee, Y. Duan, W. –K. Liu, J. –M. Yuan,, L. Shi, X. Zhu, and K. Gao, Classical calculation of high-order harmonic generation of atomic and molecular gases in intense laser fields, Phys. Rev. A 64, 043410 (2001).
    [1] Y. Liang, S. Augst, S.L. Chin, Y. Beaudion, and M. Chakert, High harmonic generation in atomic and diatomic molecular gases using intense picosecond laser pulses-a comparison, J. Phys. B 27, 5119 (1994).
    [2] T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank, Observation of Laser Assisted Photoelectric Effect and Femtosecond High Order Harmonic Radiation, Phys. Rev. Lett. 76, 2468 (1996).
    [3] C. Kan, N. H. Burnett, C. E. Capjack, and R. Rankin, Coherent XUV Generation from Gases Ionized by Several Cycle Optical Pulses, Phys. Rev. Lett. 79, 2971 (1997).
    [4] M. Bellini, C. Lyng?, A. Tozzi, M. B. Gaarde, T. W. H?nsch, A. L'Huillier, and C.-G. Wahlstr?m, Temporal Coherence of Ultrashort High-Order Harmonic Pulses, Phys. Rev. Lett. 81, 297 (1998).
    [5] H. R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, High-Order Harmonic Generation and Quasiphase Matching in Xenon Using Self-Guided Femtosecond Pulses, Phys. Rev. Lett. 81, 1611 (1998).
    [6] P. B. Corkum, Plasma perspective on strong field multiphoton ionization, Phys. Rev. Lett. 71, 1994 (1993).
    [7] M.J. Nandor, M.A. Walker, and L. D. Van. Woerkom, Angular distributions of high-intensity ATI and the onset of the plateau, J. Phys. B 31, 461 (1998).
    [8] J. H. Eberly, Q. Su, and J. Javanainen, High-order harmonic production in multiphoton ionization, J. Opt. Soc. Am. B 6, 1289 (1989).
    [9] S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk, Dissociation, ionization, and Coulomb explosion of H+2 in an intense laser field by numerical integration of the time-dependent Schr?dinger equation, Phys. Rev. A 52, 2977 (1995); Dissociative ionization of H2 + in an intense laser field: Charge-resonance-enhanced ionization, Coulomb explosion, and harmonic generation at 600 nm, Phys. Rev. A 54, 3235 (1996).
    [10] G. Bandarage, A. Maquet, and J. Cooper, Harmonic generation by a classical hydrogen atom in the presence of an intense radiation field, Phys. Rev. A 41, 1744 (1990); G. Bandarage, A. Maquet, T. Ménis, R. Ta?eb, V. Véniard, and J. Cooper, Harmonic generation by laser-driven classical hydrogen atoms, Phys. Rev. A 46, 380 (1992).
    [11] J. Heagy and J. M. Yuan, Dynamics of an impulsively driven Morse oscillator, Phys. Rev. A 41, 571 (1990); . Heagy, Zi-Min Lu, J.M. Yuan, and M. Vallieres, in Quantum Non-integrability: Direction in Chaos, edited by D.H. Feng and J.M. Yuan (World Scientific, Singapore, 1992), Vol. 4.
    [12] M. Gajda, J. Grochmalicki, M. Lewenstein, and K. Rzazewski, Stabilization of atoms in ultrastrong laser fields: A classical approach, Phys. Rev. A 46, 1638 (1992).
    [13] J. Leopold and I. Pecival, Ionisation of highly excited atoms by electric fields. III. Microwave ionisation and excitation, J. Phys. B 12, 709 (1979).
    [14] W. Hai, Y. Xiao, J. Fang, W. Huang, and X. Zhang, Current–voltage characteristic of the Josephson chaos, Phys. Lett. A 265, 128 (2000).
    [15] Y. Gu, Quantum Chaos (Shanghai Scientific and Technological Education Publishing House, Shanghai, 1996).
    [16] W. Qu, S. Hu, and Z. Xu, Classical dynamics of H+2 interacting with an ultrashort intense laser pulse, Phys. Rev. A 57, 2219 (1998); Classical simulation for one-dimensional H2 interacting with intense ultrashort laser pulses, Phys. Rev. A 57, 4528 (1998).
    [17] H. Yu, T. Zuo, and A. D. Bandrauk, Molecules in intense laser fields: Enhanced ionization in a one-dimensional model of H2, Phys. Rev. A 54, 3290 (1996).
    [18] S.J. Aarseth and K. Zare, A regularization of the three-body problem, Celest. Mech. 10, 185 (1974).
    [19] H. A. Erikson and E. L. Hill, A Note on the One-Electron States of Diatomic Molecules, Phys. Rev. 75, 29 (1949).
    [20] M. P. Strand and W. P. Reinhardta, Semiclassical quantization of the low lying electronic states of H+2, J. Chem. Phys. 70, 3812 (1979).
    [21] J. E. Howard, Stochastic ionization of hydrogen atoms in a circularly polarized microwave field, Phys. Rev. A 46, 364 (1992).
    [22] G. Bandarage and R. Parson, Saddle-point electrons in proton-impact ionization of H: A classical trajectory study, Phys. Rev. A 41, 5878 (1990).
    [23] D. Richards, J.G. Leopold, P.M. Koch, E.J. Gralvez, K.A.H. van Leeuwen, L. Moorman, B.E. Sauer, and R.V. Jensen, Structure in low frequency microwave ionisation excited hydrogen atoms, J. Phys. B 22, 1307 (1989).
    [24] C. Lee, Y. Duan, W. –K. Liu, and J. –M. Yuan, Classical Dynamics of Harmonic Generation of the Hydrogen Molecular Ion Interacting with Ultrashort Intense Laser Pulses, Chin. Phys. Lett. 18, 236 (2001).
    [25] Y. Duan, W. –K. Liu, and J. –M. Yuan, Classical dynamics of ionization, dissociation, and harmonic generation of a hydrogen molecular ion in intense laser fields: A collinear model, Phys. Rev. A 61, 053403 (2000); Y. Duan - J.-M. Yuan, Periodic orbits of the hydrogen molecular ion, Eur. Phys. J. D 6, 319 (1999).
    [26] J. L. Krause, K. J. Schafer, and K. C. Kulander, Calculation of photoemission from atoms subject to intense laser fields, Phys. Rev. A 45, 4998–5010 (1992); High-order harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett. 68, 3535 (1992).
    [1] C. Lee, W. Hai, X. Luo, L. Shi, and K. Gao, Quasi-spin Model for Macroscopic Quantum Tunnelling between Two Coupled Bose-Einstein Condensates, arXiv: cond-mat/0206134 (2002).
    [2] C. Lee, W. Hai, L. Shi, and K. Gao, Conditional Spontaneous Spin Polarization and Bifurcation Delay in Coupled Two-Component Bose-Einstein Condensates, arXiv: cond-mat/0211578 (2002).
    [3] C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates, Phys. Rev. A 64, 053604 (2001).
    [4] W. Hai, C. Lee, G. Chong, and L. Shi, Chaotic probability density in two periodically driven and weakly coupled Bose-Einstein condensates, Phys. Rev. E 66, 026202 (2002).
    [5] C. Lee, Y. Duan, W. –K. Liu, and J. –M. Yuan, Classical Dynamics of Harmonic Generation of the Hydrogen Molecular Ion Interacting with Ultrashort Intense Laser Pulses, Chin. Phys. Lett. 18, 236 (2001).
    [6] C. Lee, Y. Duan, W. –K. Liu, J. –M. Yuan,, L. Shi, X. Zhu, and K. Gao, Classical calculation of high-order harmonic generation of atomic and molecular gases in intense laser fields, Phys. Rev. A 64, 043410 (2001).
    [7] T.-L. Ho and E. J. Mueller, Rotating Spin-1 Bose Clusters, Phys. Rev. Lett. 89, 050401 (2002).
    [8] E. J. Mueller and T.-L. Ho, Two-Component Bose-Einstein Condensates with a Large Number of Vortices, Phys. Rev. Lett. 88, 180403 (2002).
    [9] T.-L. Ho and S. K. Yip, Fragmented and Single Condensate Ground States of Spin-1 Bose Gas, Phys. Rev. Lett. 84, 4031 (2000).
    [10] T.-L. Ho and L. Yin, General Structure of Bose-Einstein Condensates with Arbitrary Spin, Phys. Rev. Lett. 84, 2302 (2000).
    [11] T.-L. Ho, Spinor Bose Condensates in Optical Traps, Phys. Rev. Lett. 81, 742 (1998).
    [12] T.-L. Ho and V. B. Shenoy, Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases, Phys. Rev. Lett. 77, 2595 (1996).
    [13] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev. Lett. 81, 3108 (1998).
    [14] M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch, and I. Bloch, Quantum phase transition froma superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39 (2002).
    [15] M. Greiner, O. Mandel, T. W. H?nsch, and I. Bloch, Collapse and revival of the matter wave field of a Bose–Einstein condensate, Nature 419, 51 (2002).
    [16] A. Sφrensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Many-particle entanglement with Bose-Einstein condensates, Nature 409, 63 (2001).
    [17] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, Long-distance quantum communication with atomic ensembles and linear optics, Nature 414, 413 (2001).
    [18] Y. Shi, Entanglement between Bose-Einstein condensates, Int. J. Mod. Phys. B 15, 3007 (2001).
    [19] D. S. Abrams and S. Lloyd, Nonlinear Quantum Mechanics Implies Polynomial- Time Solution for NP-Complete and # P Problems, Phys. Rev. Lett. 81, 3992 (1998).
    [20] R. H. Wynar, R. S. Freeland, D. J. Han, C. Ryu, and D. J. Heinzen, Molecules in a Bose-Einstein condensate. Science 287, 1016 (2000).
    [21] C. McKenzie, et al. Photoassociation of sodium in a Bose-Einstein condensate. Phys. Rev. Lett. 88, 120403 (2001).
    [22] E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Atom-Molecule Coherence in a Bose-Einstein Condensate, Nature 417, 529 (2002).
    [23] D. J. Heinzen, R. H. Wynar, P. D. Drummond, and K. V. Kheruntsyan, Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates. Phys. Rev. Lett. 84, 5029 (2000).
    [24] D. A. Butts, and D. S. Rokhsar, Predicting signatures of rotating Bose-Einstein condensates. Nature 397, 327 (1999).
    [25] C. F. Barenghi, Vortex waves in a cloud of Bose-Einstein-condensed, trapped alkali-metal atoms. Phys. Rev. A 54, 5445 (1996).
    [26] K. –P. Marzlin, W. Zhang, and E. M. Wright, Vortex Coupler for Atomic Bose-Einstein Condensates, Phys. Rev. Lett. 79, 4728 (1997).
    [27] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Creation of Dark Solitons and Vortices in Bose-Einstein Condensates, Phys. Rev. Lett. 80, 2972 (1998).
    [28] J. E. Williams and M. J. Holland, Preparing topological states of a Bose–Einstein condensate, Nature 401, 568 (1999).
    [29] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83, 2498 (1999).
    [30] C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence, ( Springer-Verlag, 2001).
    [31] K. Staliunas, S. Longhi, and G. J. de Valcárcel, Faraday Patterns in Bose-Einstein Condensates, Phys. Rev. Lett. 89, 210406 (2002).
    [32] G. J. de Valcárcel, Faraday patterns in Bose-Einstein condensates. Amplitude equation for rolls in the parametrically driven, damped Gross-Pitaevskii equation, arXiv: cond-mat/0204406 (2002).
    [33] L. S. Brown and T. W. B. Kibble, Interaction of Intense Laser Beams with Electrons, Phys. Rev. 133, A705 (1964).
    [34] J. H. Eberly and A. Sleeper, Trajectory and Mass Shift of a Classical Electron in a Radiation Pulse, Phys. Rev. 176, 1570 (1968).
    [35] Y. Liang , S. Augst , S. L. Chin , Y.Beaudion , and M. Chakert , Investigation of photon emission spectra of hydrogen using intense subpicosecond Ti : sapphire /Nd : glass laser pulses , J. Phys. B. 28 , 3661 (1995).
    [36] E. S. Sarachik and G. T. Schappert, Classical Theory of the Scattering of Intense Laser Radiation by Free Electrons, Phys. Rev. D 1, 2738 (1970).
    [37] C. H. Keitel, P. L. Knight and K. Burnett, Europhys. Lett. 24, 539 (1993).
    [38] O. Latinne, C. J. Joachain and M. D?rr, Europhys. Lett. 26, 333 (1994).
    [39] P. S. Krstic and M. H. Mittleman, Effect of intense lasers on bound-electron spin, Phys. Rev. A 45, 6514 (1992).
    [40] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev. 40, 749 (1932).
    [41] K. Husimi, Prog. Phys. Math. Soc. Japan 22, 264 (1940).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700