孤对电子杂环类环境污染物的微生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂环化合物是指具有环状结构,并且除碳氢原子外,至少还含有一个杂原子的化合物。本文研究的对象主要是含有硫、氮、氧三类杂原子的孤对电子杂环化合物。这些杂环化合物是严重的污染源,化石燃料中的含硫、含氮化合物是在燃烧过程释放出大量的硫氧化物和氮氧化物,是酸雨的成因之一,对环境造成了严重的污染。随着人类社会的发展,能源的消耗与日俱增,这些化合物造成的污染也越来越严重。生物处理方法由于具有操作条件温和、费用低、对环境造成的二次污染少而受到越来越多的重视。二苯并噻吩(Dibenzothiophene,DBT)是化石燃料中含有的一种典型的有机硫化合物,使用传统的加氢脱硫(Hydrodesulfurization,HDS)难以去除,因此选择DBT作为微生物脱有机硫反应的模式化合物。石油中的含氮化合物主要是咔唑(Carbazole,CA)的各种烷基衍生物,所以生物脱氮的研究是以CA为模式化合物。二苯并呋喃(Dibenzofuran,DBF)是研究二恶英类(dioxin-like)氧杂环环境污染物生物降解的模式化合物。
     本工作使用实验室前期分离出来的一株降解DBT的菌株XP为研究对象。菌株XP为常温菌株,可以在30℃左右降解含硫化合物。对XP菌株进行了菌种鉴定,XP菌落生长初期形成短的分枝菌丝体,然后分化成球菌及棒杆菌的形态;菌落有光泽,从奶白色逐渐变为粉红色;XP菌株的分枝菌酸属于红球菌分枝菌酸;脂肪酸类型为无分支,含有饱和及不饱和脂肪酸,同时还含有结核菌脂酸,与数据库中的红平红球菌脂肪酸类型有86.5%的同源性;XP菌株的riboprint模式与模式菌株Rhodococcus erythropolis DSM 43066~T相似;XP菌株的16S rDNA序列在诊断区(1-500个碱基)与模式菌株Rhodococcus erythropolis DSM 43066~T的16S rDNA序列100%的同源。通过上述常规的形态学、化学分析法(包括脂肪酸、分枝菌酸分析)和分子生物学结果(Riboprint pattern和16S rDNA序列的比对),最终确定XP菌株属于红平红球菌,命名为Rhodococcus erythropolis XP。
     红平红球菌(Rhodococcus erythropolis)XP可以利用各种硫源,包括部分甲基噻吩、甲基苯并噻吩及全部测试的二苯并噻吩类化合物为唯一硫源生长。通过
Sulfur, nitrogen, and oxygen heterocycles (SNO-heterocycles) with lone electron pair are polycyclic aromatic compounds containing one or more S-, N-, and/or O-atoms in five or six membered rings. SNO-heterocycles and their degradation products have been detected to be toxic and mutagenic. Additionally, sulfur and nitrogen oxides released from fossil fuel combustion contribute to acid rain and air pollution. At the present time, petroleum refining is mainly based on the use of physicochemical processes such as distillation and chemical catalysis that operate under severe conditions, i.e. high temperatures and pressures. Such processes are energetically costly and highly contaminating. "Biorefining", in contrast, operates at ambient temperature and pressure and is endowed with a high selectivity, resulting in decreased energetic costs, low emissions and no generation of undesirable by-products, so it is thought to be an interesting complement for the development of new petroleum refining processes. S-heterocycles, dibenzothiophene (DBT) and N-heterocycles, carbazole (CA) are the main heterocyclic structures in petroleum. Therefore, DBT and CA are widely used as model compounds for the study of the biodegradation of polycyclic aromatic sulfur- and nitrogen-containing hydrocarbons, respectively. Additionally, O-heterocyclic compound, dibenzofuran (DBF) was a model compound to study the biodegradation of the 'dioxin-like' compounds and its chlorinated derivatives, which are of great environmental concern.
    This work focused on a mesophilic strain isolated in our laboratory previously. The strain XP was capable of degrading DBT at 30°C. Strain XP was previously identified as a Rhodococcus species and further identification was performed in Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ). Strain XP was an aerobic, gram-positive bacterium. The cells were shown to be short branched hyphae, which disintegrated to rod and coccus-like elements. Colonies were shiny dissolving, cream to pink. The mycolic acid pattern was
引文
1. Abbad-Andaloussi, S., C. Lagnel, and M. Warzywoda. 2003. Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Enzyme Technol. 32: 446-454.
    2. Armstrong, S. M., B. M. Sankey, and G. Voordouw. 1995. Conversion of dibenzothiophene to biphenyl by sulfate-reducing bacteria isolated from oil field production facilities. Biotechnol. Lett. 17:1133-1136.
    3. Becher, D., M. Specht, E. Hammer, W. Francke, and F. Schauer. 2000. Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl. Environ. Microbiol. 66: 4528-4531.
    4. Bezalel, L., Y. Hanar, P. P. Fu, J. P. Freeman, and C. E. Cerniglia. 1996. Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62: 2554-2559.
    5. Benedik, M. J., P. R. Gibbs, R. R. Riddle, and R. C. Willson. 1998. Microbial denitrogenation of fossil fuels. Trends Biotechnol. 16: 390-395.
    6. Bressler, D. C., J. A. Norman, and P. M. Fedorak. 1998. Ring cleavage of sulfur heterocycles: how does it happen? Biodegradation 8: 297-311.
    7. Bressler, D. C., and P. M. Fedorak. 2000a. Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can. J. Microbiol. 46: 397-409.
    8. Bressler, D. C., P. M, Fedorak, and M. A. Pickard. 2000b. Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol. Lett. 22: 1119-1125.
    9. Crawford, D. L., and R. K. Gupta. 1990. Oxidation of dibenzothiophene by Cunninghamella elegans. Curr. Microbiol. 21: 229-231.
    10. Cruden, D. L., J. H. Wolfram, R. D. Rogers, and D. T. Gibson. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase organic-aqueous medium. Appl. Environ. Microbiol. 58: 2723-2729.
    11. Chang, J. H., S. Rhee, Y. K. Chang, and H. N. Chang. 1998. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol. Prog. 14: 851-855.
    12. de Bont, J. A. M. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16:493-499.
    13. de Carvalho, C. C. C. R., A. A. R. L. Da Cruz, M. N. Pons, H. M. R. V. Pinheiro, J. M. S. Cabral, M. M. R. Da Fonseca, B. S. Ferreira, and F. Fernandes. 2004. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc. Res. Techniq. 64: 215-222.
    14. Denome, S. A., D. C. Stanley, E. S. Olson, and K. D. Young. 1993a. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. J. Bacteriol. 175: 6890-6901.
    15. Denome, S. A., E. S. Olson, and K. D. Young. 1993b. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59: 2837-2843.
    16. Denome, S. A., C. Oldfield, L. J. Nash, and K. D. Young. 1994. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176: 6707-6716.
    17. Deziel, E., Y. Comeau, and R. Villemur. 1999. Two-liquid-phase bioreactor for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10: 219-233.
    18. Firestone, D. 1978. The 2,3,7,8-tetrachlorodibenzo-para-dioxin problem: a review. Ecol. Bull. 27: 39-52.
    19. Fedorak, P. M., and D. W. S. Westlake. 1983. Microbial degradation of organic sulfur compounds in Prudhoe Bay crude oil. Can. J. Microbiol. 29: 291-296.
    20. Fedorak, P. M., and D. W. S. Westlake. 1984. Degradation of sulfur heterocycles in Prudhoe Bay crude oil by soil enrichments. Water, Air, Soil Pollut. 21: 225-230.
    21. Folsom, B. R., D. R. Schieche, and P. M. Digrazia. 1999. Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl. Environ. Microbiol. 65: 4967-4972.
    22. Frassinetti, S., L. Setti, A. Corti, P. Farrinelli, P. Montevecchi, and G. Vallini.1998. Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can. J. Microbiol. 44: 289-297.
    23. Fruste, J. P., W. Pansegrau, R. Frank, H. Blocker, P. Scholz, M. Bagdasarian, and E. Lanka. 1986. Molecular cloning of the plasmid RP4 primase region in a multi-host range tac? expression vector. Gene 48: 119-131.
    24. Furukawa, K. 2003. 'Super bugs' for bioremediation. Trends Biotechnol. 21: 187-190.
    25. Galan, B., E. Diaz, and J. L. Garcia. 2000. Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ. Microbiol. 2: 687-694.
    26. Gallagher, J. R., E. S. Olson, and D. C. Stanley. 1993. Microbial desulfurization of dibenzothiophene: A sulfur-specific pathway. FEMS Microbiol. Lett. 107:31-36.
    27. Gallardo, M. E., A. Ferrandez, V. de Lorenzo, J. L. Garcia, and E. Diaz. 1997. Designing recombinant Pseudomonas strains to enhance biodesulfurization. J. Bacteriol. 179: 7156-7160.
    28. Galvao, T. C., W. W. Mohn, and V. de Lorenzo. 2005. Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol. 23: 497-506.
    29. Gieg, L. M., A. Otter, and P. M. Fedorak. 1996. Carbazole degradation by Pseudomonas sp. LD2: metabolic characteristics and the identification of some metabolites. Environ. Sci. Technol. 30: 575-585.
    30. Gray, K. A., O. S. Pogrebinsky, G T. Mrachko, X. Lei, D. J. Monticello, and C. H. Squires. 1996. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14: 1705-1709.
    
    31. Gray, K. A., G. T. Mrachkoyz, and C. H. Squiresy. 2003. Biodesdulfurization of fossil fuels. Curr. Opin. Microbiol. 6: 229-235.
    
    32. Gregorio, S. D., C. Zocca, S. Sidler, A. Toffanin, D. Lizzari, and G. Vallini.2004. Identification of two new sets of genes for dibenzothiophene transformation in Burkholderia sp. DBT1. Biodegradation 15: 111-123.
    
    33. Grossman, M. J., M. K. Lee, R. C. Prince, K. K. Garrett, G N. George and U. Pickering. 1999. Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the sulfur removal and the effect of removal on remaining sulfur. Appl. Environ. Microbiol. 65: 181-188.
    34. Gundlach, E. R., P. D. Boehm, M. Marchand, R. M. Atlas, D. M. Ward, and D. A. Wolfe. 1983. The fate of Amoco Cadiz oil. Science 221: 122-129.
    
    35. Hansen, D. J. 1991. Dioxin toxicity: New studies prompt debate, regulatory action. Chem. Eng. News. 69: 7-14.
    36. Habe, H., K. Ide, M. Yotsumoto, H. Tsuji, H. Hirano, J. Widada, T. Yoshida, H. Nojiri, and T. Omori. 2001. Preliminary examinations for applying a carbazole-degrader, Pseudomonas sp. strain CA10, to dioxin-contaminated soil remediation. Appl. Microbiol. Biotechnol. 56: 788-795.
    37. Habe, H., Y. Ashikawa, Y. Saiki, T. Yoshida, H. Nojiri, and T. Omori. 2002. Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol. Lett. 211: 43-49.
    38. Hammer, E., D. Krowas, A. Schafer, M. Specht, W. Francke, and F. Schauer. 1998. Isolation and characterization of a dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl. Environ. Miocrobiol.64:2215-2219.
    39. Hisatsuka, K. and M. Sato. 1994. Microbial transformation of carbazole to anthranilic acid by Pseudomonas stutzeri. Biosci. Biotechnol. Biochem. 58: 213-214.
    40. Hsu, C. S., K. Qian, and W. K. Robbins. 1994. Nitrogen speciation of polar petroleum compounds by compounds class separation and on-line liquid chromatography-mass spectrometry (LC-MS). J. High Res. Chromatog. 17: 271-276.
    41. Ichinose, H., H. Wariishi, and H. Tanaka. 1999. Bioconversion of recalcitrant 4-methyldibenzothiophene to water-extractable products using lignin-degrading basidiomycete Coriolus versicolor. Biotechnol. Prog. 15: 706-714.
    42. Inoue, A., and K. Horikoshi. 1989. A Pseudomonas thrives in high concentrations of toluene. Nature 338: 264-266.
    43. Inoue, A., and K. Horikoshi. 1991. Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J. Ferment. Bioeng. 71: 194-196.
    44. Iranpour, R., M. Stenstrom, G. Tchobanoglous, D. Miller, J. Wright, and M. Vossoughi. 1999. Environmental engineering: energy value of replacing waste disposal with resource recovery. Science 285: 706-711.
    45. Ishii, Y., J. Konishi, H. Okada, K. Hirasawa, T. Onaka, and M. Suzuki. 2000. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem. Biophys. Res. Commun. 270:81-88.
    46. Ishii, Y., S. Kozaki, T. Furuya, K. Kino, and K. Kirimura. 2005. Thermophilic biodesulfurization of various heterocyclic sulfur compounds and crude straight-run light gas oil fraction by a newly isolated strain Mycobacterium phlei WU-0103. Curr. Microbiol. 50: 63-70.
    47. Isken, S., and J. A. M. de Bont. 1998. Bacteria tolerant to organic solvents. Extremophiles 2: 229-238.
    48. Jensen, A. M., K. W. Finster, and U. Karlson. 2003. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211. Environ. Toxicol. Chem. 22: 730-735.
    49. Jha, A. M., and M. K. Bharti. 2002. Mutagenic profiles carbazole in the male germ cells of Swiss albino mice. Mutation Res. 500: 97-101.
    50. Kaufman, E. N., A. P. Borole, R. Shong, S. L. Sides, and C. Juengst. 1999. Sulfur specificity in the bench-scale biological desulfurization of crude oil by Rhodococcus IGTS8. J. Chem. Technol. Biotechnol. 74: 1000-1004.
    51. Kertesz, M. A., and C. Wirtek. 2001. Desulfurization and desulfonation: application of sulfur-controlled gene expression in bacteria. Appl. Microbiol. Biotechnol. 57: 460-466.
    52. King, R. W. 1988. Petroleum: its composition, analysis and processing. Occup. Med. 3: 409-430.
    53. Kilbane II, J. J. 1989. Desulfurization of coal: the microbial solution. Trends Biotechnol. 7:97-101.
    54. Kilbane II, J. J., R. Ranganathan, L. Cleveland, K. J. Kayser, C. Ribiero, and M. M. Linhares. 2000. Selective removal of nitrogen from quinoline and petroleum by Pesudomonas ayucida IGTN9m. Appl. Environ. Microbiol. 66: 688-693.
    55. Kilbane II, J. J., A. Daram, J. Abbasian, and K. J. Kayser. 2002. Isolation and characterization of Sphingomonas sp. GTIN11 capable of carbazole metabolism in petroleum. Biochem. Biophys. Res. Commun. 297: 242-248.
    56. Kim, H. Y., T. S. Kim, and B. H. Kim. 1990. Degradation of organic sulfur compounds and the reduction of dibenzothiophene to bipbenyl and hydrogen sulfide. Biotechnol. Lett. 12: 761-764.
    57. Kirimura, K., H. Nakagawa, K. Tsuji, K. Matsuda, R. Kurane, and S. Usami.1999. Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomonas sp. CDH-7. Biosci. Biotechnol. Biochem. 63: 1563-1568.
    58. Kirimura, K., K. Harada, H. Iwasawa, T. Tanaka, Y. Iwasaki, T. Furuya, Y. Ishii, and K. Kino. 2004. Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl. Microbiol. Biotechnol. 65: 703-713.
    59. Kodama, K., S. Nakatini, K. Umehara, K. Shimizu, Y. Minoda, and K. Yamada. 1970. Microbial conversion of petro-sulfur compounds. Part III. Isolation and identification of products from dibenzothiophene. Agric. Biol. Chem.34: 1320-1324
    60. Kodama, K., K. Umehara, K. Shimizu, S. Nakatani, Y. Minoda, and K. Yamada. 1973. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric. Biol. Chem. 37: 45-50.
    61. Konishi, J., Y. Ishii, and T. Onaka. 1997. Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl. Environ. Microbiol. 63: 3164-3169.
    62. Kobayashi, M., T. Onaka, Y. Ishii, J. Konishi, M. Takaki, H. Okada, Y. Ohta, K. Koizumi, and M. Suzuki. 2000. Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol. Lett. 187: 123-126.
    63. Kropp, K. G., and P. M. Fedorak. 1998. A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can. J. Microbiol. 44: 605-622.
    64. Lee, M. K., J. D. Senius, and M. J. Grossman. 1995. Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl. Environ. Microbiol. 61: 4362-4366.
    65. Laborde, A., and D. T. Gibson. 1977. Metabolism of dibenzothiophene by Beijerinckia speies. Appl. Environ. Mircrobiol. 34: 783-790.
    66. Lange, E. A., and Q. Lin. Compositions comprising 2-(2-hydroxyphenyl)-benzene sulfinate and alkyl substituted derivatives thereof. US Patent 6,303,562.
    67. Leon, R., P. Fernandes, H. M. Pinheiro, and J. M. S. Cabral. 1998. Whole-cell biocatalysis in organic media. Enzyme Microb. Tech. 23: 483-500.
    68. Lizama, H. M., L. A. Wilkins, and T. C. Scott. 1995. Dibenzothiophene sulfur can serve as the sole electron acceptor during growth by sulfate-reducing bacteria. Biotechnol. Lett. 17: 113-116.
    69. Li, F. L., P. Xu, C. Q. Ma, L. L. Luo, and X. S. Wang. 2003. Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiol. Lett. 223: 301-307.
    70. Li, F. L., P. Xu, J. H. Feng, L. Meng, Y. Zheng, L. L. Luo, and C. Q. Ma.2005a. Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Appl. Environ. Microbiol. 71: 276-281.
    71. Li, L., P. Xu, and H. D. Blankerspoor. 2004. Degradation of carbazole in the presence of non-aqueous phase liquids by Pseudomonas sp. Biotechnol. Lett. 26: 581-584.
    72. Li, W., Y. Zhang, M. D. Wang, and Y. Shi. 2005b. Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol. Lett. 247: 45-50.
    73. Li, M. Z., C. H. Squires, D. J. Monticello, and J. D. Childs. 1996. Genetic analysis of dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J. Bacteriol. 178: 6409-6418.
    74. Linguist, L., and M. Pacheco. 1999. Enzyme-based diesel desulfurization offers energy, CO_2 advantages. Oil Gas J. 97: 45-48.
    75. Lobastova, T. G., G. V. Sukhodolskaya, V. M. Nikolayeva, B. P. Baskunov, K. F. Turchin, and M. V. Donova. 2004. Hydroxylation of carbazoles by Aspergillus flavus VKM F-1024. FEMS Microbiol. Lett. 235: 51-56.
    76. Magyara, S., J. Hancsoka, and D. Kallo. 2005. Hydrodesulfurization and hydroconversion of heavy FCC gasoline on PtPd/H-USY zeolite. Fuel Process. Technol. 86: 1151-1164.
    77. Ma, C. Q., M. Y. Tong, B. Yu, Y. Y. Zeng, X. C. Fang, J. H. Feng, Q. Zhang, F. L. Li, and P. Xu. 2004. Biodesulfurization of organic sulfur by a newly isolated Rhodococcus sp. strain SDUZAWQ. Acta Chim. Sinica 62: 1883-1888.
    78. Ma, X. L., L. Sun, and C. S. Song. 2002. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selectively adsorption for ultra-clean fuels and for fuel cell applications. Catal. Today 77: 107-116.
    79. Masai, E., A. Yamada, J. M. Healy, T. Hatta, K. Kimbara, M. Fukuda, and K. Yano. 1995. Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61: 2079-2085.
    80. Matsui, T., T. Onaka, Y. Tanaka, T. Tezuka, M. Suzuki, and R. Kurane. 2000. Alkylated benzothiophene desulfurization by Rhodococcus sp. strain T09. Biosci. Biotechnol. Biochem. 64: 596-599.
    81. Matsui, T., K. Hirasawa, J. Konishi, Y. Tanaka, K. Maruhashi, and R. Kurane. 2001. Microbial desulfurization of alkylated dibenzothiophene and alkylated benzothiophene by recombinant Rhodococcus sp. strain T09. Appl. Microbiol. Biotechnol. 56: 196-200.
    82. McFarland, B. L., D. J. Boron, W. Deever, J. A. Meyer, A. R. Johnson, and R. M. Atlas. 1998. Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit. Rev. Microbiol. 24: 99-147.
    83. McFarland, B. L. 1999. Biodesulfurization. Curr. Opin. Microbiol. 2: 257-264.
    84. Monticello, D. J. 1998. Riding the fossil fuel biodesulfurization wave. Chemtech. 28:38-45.
    85. Monticello, D. J. 2000. Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 11: 540-546.
    86. Mushrush, G. W., E. J. Beal, D. R. Hardy, and J. M. Hughes. 1999. Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale, and tar sand sources. Fuel Process. Technol. 61: 197-201.
    87. Nakagawa, H., K. Kirimura, T. Nitta, K. Kino, R. Kurane, and S. Usami.2002. Recycle use of Sphingomonas sp. CDH-7 cells for continuous degradation of carbazole in the presence of MgCl_2. Curr. Microbiol. 44: 251-256.
    88. Nam, J. W., Z. Fujimoto, H. Mizuno, H. Yamane, T. Yoshida, H. Habe, H. Nojiri, and T. Omori. 2002a. Crystallization and preliminary crystallographic analysis of the terminal oxygenase component of carbazole 1,9a-dioxygenase of Pseudomonas resinovorans strain CA10. Acta. Crystallogr. D. Biol. Crystallogr. 58: 1350-1352.
    89. Nam, J. W., H. Nojiri, H. Noguchi, H. Uchimura, T. Yoshida, H. Habe, H. Yamane, and T. Omori. 2002b. Purification and characterization of carbazole 1,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10. Appl. Environ. Microbiol. 68: 5882-5890.
    90. Nam, I., Y. Kim, S. Schmidt, and Y. Chang. 2006. Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1. Appl. Environ. Microbiol. 72: 112-116.
    91. Nojiri, H., J. Nam, M. Kosaka, K. Morii, T. Takemura, K. Furihata, H. Yamane, and T. Omori. 1999. Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J. Bacteriol. 181: 3105-3113.
    92. Nojiri, H., H. Habe, and T. Omori. 2001a. Bacterial degradation of aromatic compounds via angular dioxygenation. J. Gen. Appl. Microbiol. 47: 279-305.
    93. Nojiri, H., H. K. Sekiguchi-Maeda, M. Urata, S. I. Nakai, T. Yoshida, H. Habe, and T. Omori. 2001b. Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. J. Bacteriol. 183: 3663-3679.
    94. Nojiri, H., Y. Ashikawa, H. Noguchi, J. Nam, M. Urata, Z. Fujimoto, H. Uchimura, T. Terada, S. Nakamura, K. Shimizu. T. Yoshida, H. Habe, and T. Omori. 2005. Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase. J. Mol. Biol. 351: 355-370.
    95. Nojiri, H., and T. Omori. 2002. Molecular bases of aerobic bacterial degradation of dioxins: involvement of auglar dioxygenation. Biosci. Biotechnol. Biochem. 66: 2001-2016.
    96. Nomura, N., M. Takada, H. Okada, Y. Shhinohara, T. Nakajima-Kambe, T. Nakahara, and H. Uchiyama. 2005. Identification and functional analysis of genes required for desulfurization of alkyl dibenzothiophenes of Mycobacterium sp. G3. J. Biosci. Bioeng. 100: 398-402.
    97. Okada, H., N. Nomura, T. Nakahara, and K. Maruhashi. 2002. Analysis of dibenzothiophene metabolic pathway in Mycobacterium strain G3. J. Biosci. Bioeng. 93:491-497.
    98. Oldfield, C., O. Pogrebinsky, J. Simmonds, E. S. Olson, and C. F. Kulpa.1997. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143: 2961-2973.
    99. Onaka T., M. Kobayashi, Y. Ishii, K. Okumura, and M. Suzuki. 2000. Application of solid-phase extraction to the analysis of the isomers generated in biodesulfurization against methylated dibenzothiophenes. J. Chromatogr. A. 903: 193-202.
    100.Ohshiro, T., T. Hirata, and Y. Izumi. 1996. Desulfurization of dibenzothiophene derivates by whole cells of Rhodococcus erythropolis H-2. FEMS Microbiol. Lett. 142: 65-70.
    101.Ohshiro, T., and Y. Izumi. 1999. Microbial desulfurization of organic sulfur compounds in petroleum. Biosci. Biotechnol. Biochem. 63: 1-9.
    102 Ouchiyama, N., Y. Zhang, T. Omori, and T. Kodama. 1993. Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci. Biotechnol. Biochem. 57: 455-460.
    103.Piddington, C. S., B. R. Kovacevich, and J. Rambosek. 1995. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61: 468-475.
    104 Pinkart, H. C., and D. C. White. 1997. Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J. Bacteriol. 179: 4219-4226.
    105 Pickard, M. A., R. Roman, R. Tinoco, and R. Vazquez-Duhalt. 1999. Polycyclic aromatic hydrocarbon oxidation by white rot fungi, and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65: 3805-3809.
    106.Resnick, S. M., D. S. Torok, and D. T. Gibson. 1993. Oxidation of carbazole to 3-hydroxy carbazole by naphthalene 1,2-dioxygenase and biphenyl 2,3-dioxygenase. FEMS Microbiol. Lett. 113: 297-302.
    107.Resnick, S. M., and D. T. Gibson. 1996. Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiohene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. Appl. Environ. Microbiol. 62: 4073-4080.
    
    108. Reichmut, D. S., J. L. Hittle, H. W. Blanch, and J. D. Keasling. 2000.Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol. Bioeng. 67: 72-79.
    
    109.Ramos, J. L., E. Duque, M. T. Gallegos, P. Godoy, M. I. Ramos-Gonzalez, A.Rojas, W. Teran, and A. Segura. 2002. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56: 743-768.
    
    110.Reichmuth, D. S., J. L. Hittle, H. W. Blanch, and J. D. Keasling. 2000. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol. Bioeng. 67:72-79.
    
    111. Rhec, S. K., J. H. Chang, Y. K. Chang, and H. N. Chang. 1998. Desulfurization of dibenzothiophene and diesel oil by a newly isolated Gordona strain CYKS1. Appl. Environ. Microbiol. 64: 2327-2331.
    
    112 Riddle, R. R., P. R. Gibbs, R. C. Willson, and M. J. Benedik. 2003. Recombinant carbazole-degrading strains for enhanced petroleum processing. J.Ind. Microbiol. Biotechnol. 30: 6-12.
    
    113 Schlenk, D., R. J. Bevers, A. M. Vertino, and C. E. Cerniglia. 1994. P450 catalyzed S-oxidation of dibenzothiophene by Cunninghamella elegans.Xenobiotica 24: 1077-1083.
    
    114.Sato, H., and D. P. Clark. 1995. Degradation of dibenzothiophene sulphoxide and sulphone by Arthrobacter strain DBTS2. Microbios. 83: 145-159.
    
    115.Sato, S. I., N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori. 1997a. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase. J. Bacteriol. 179: 4841-4849.
    116.Sato, S. I., J. W. Nam, K. Kasuga, H. Nojiri, H. Yamane, and T. Omori. 1997b. Identification and characterization of genes encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J. Bacteriol. 179: 4850-4858.
    117.Sayler, G S. and S. Ripp. 2000. Field applications of genetically engineered microorganisms for bioremediation processes Curr. Opin. Biotechnol. 11: 286-289.
    118.Sambrook, J. and D. W. Russell. 2001. Molecular cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press.
    119.Saiki, Y., H. Habe, T. Yuuki, M. Iked a, T. Yoshida, H. Nojiri, and T. Omori.2003. Rhizoremedation of dioxin-like compounds by a recombinant Rhizobium tropici strain expressing carbazole 1,9a-dioxygenase constitutively. Biosci.Biotechnol. Biochem. 67: 1144-1148.
    120.Santos, S. C. C, D. S. Alviano, C. S. Alviano, M. Padula, A. C. Leitao, O. B. Martins, C. M. S. Ribeiro, M. Y. M. Sassaki, C. P. S. Matta, J. Bevilaqua, G V. Sebastian, and L. Seldin. Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl. Microbiol. Biotechnol. (E-pub ahead of print, doi: 10.1007/s00253-005-0154-z)
    121.Sepulveda-Torres, L. D. C., N. Rajendran, M. J. Dybas, and C. S. Criddle.1999. Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch. Microbiol.171: 424-429.
    122.Setti, L, M. Rossi, G. Lanzarini, and P. G. Pifferi. 1992. The effect of n-alkanes in the degradation of dibenzothiophene and of organic sulfur compounds in heavy oil by a Pseudomonas sp. Biotechnol. Lett. 14: 515-520.
    123. Schmid, A., B. Rothe, J. Altenbuchner, W. Ludwig, and K. H. Engesser. 1997. Characterization of three distinct extradiol dioxygenases involved in mineralization of dibenzofuran by Terrabacter sp. strain DPO360. J. Bacteriol. 179: 53-62.
    124 Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt.2001. Industrial biocatalysis today and tomorrow. Nature 409: 258-268.
    125.Shennan, J. L. 1996. Microbial attack on sulphur-containing hydrocarbons: implications for the biodesulphurisation of oils and coals. J. Chem. Tech. Biotechnol. 67: 109-123.
    126.Shepherd, J. M., and G Lloyd-Jones. 1998. Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription and molecular ecology. Biochem. Biophys. Res. Commun. 247: 129-135.
    127.Simon, M. J., T. D. Osslund, R. Saunders, B. D. Ensley, S. Suggs, A. Harcourt, W. C. Suen, D. L. Cruden, D. T. Gibsn, and G J. Zylstra. 1993. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127: 31-37.
    128.Speight, J. G. 1990. Fuel science and technology handbook. Marcel Dekker Inc. New York.
    129.Suske, W. A., W. J. H. van Berkel, and H. P. E. Kohler. 1999. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1. J. Biol. Chem. 274: 33355-33365.
    130.Tan, T. D. 1995. The logging technique for residual oil in water drive field. China Offshore Oil and Gas (Geology) 9: 421-427.
    131.Torsvik, V., and L. Φvreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5: 240-245.
    132.van Afferden, M., S. Schacht, J. Klein, and H. G. Truper. 1990. Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch. Microbiol. 153: 324-328.
    133.van Afferden, M., D. Tappe, M. Beyer, H. G. Truper, and J. Klein. 1993. Biochemical mechanisms for the desulfurization of coal-relevant organic sulfur compounds. Fuel 72: 1635-1643.
    134. van der Geize, R., G. I. Hessels, R. van Gerwen, P. van der Meijden, and L. Dijkhuizen. 2002. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol. Microbiol. 45: 1007-1018.
    135. van Hamme, J. D., A. Singh, and O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503-549.
    136. van Herwijnen, R., P. Wattiau, L. Bastiaens, L. Daal, L. Jonker, D. Springael, H. A. J. Govers, and J. R. Parsons. 2003. Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res. Microbiol. 154: 199-206.
    137. Watanabe, K., K. Noda, Y. Ohta, and K. Maruhashi. 2002. Desulfurzation of light gas oil by a novel recombinant strain from Pseudomonas aeruginosa. Biotechnol. Lett. 24: 897-903.
    138. Watanabe K., K. Noda, and K. Maruhashi. 2003. Selective cleavage of 10-methyl benzo[b]naphtho[2, 1-d]thiophene by recombinant Mycobacterium sp. strain. Biotechnol. Lett. 25: 797-803.
    139. Widada, J., H. Nojiri, T. Yoshida, H. Habe, and T. Omori. 2002. Enhanced degradation of carbazole and 2, 3-dichlorodibenzo-p-dioxin in soils by Pseudomonas resinovorans strain CA10. Chemosphere 49: 485-491.
    140. Wise, W. 1981. Coal, Water, Fuel Technology; Workshop US Dept. Energy. Pittsburgh, ETCtr-Report-No. BNL 51427, p 96.
    141. Wittieh, R. M. 1998. Degradation of dioxin-like compounds by microorganisms. Appl. Microbiol. Biotechnol. 49: 489-499.
    142. Yamazoe, A., O. Yagi, and H. Oyaizu. 2004. Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Appl. Microbiol. Biotechnol. 65: 211-218.
    143. Yu, B., P. Xu, Q. Shi, and C. Q. Ma. 2006. Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl. Environ. Microbiol. 72: 54-58.
    144. Zeuthen, P., K. G. Knudsen, and D. D. Whitehurst. 2001. Organic nitrogen compounds in gas oil blends, their hydrotreated products and the importance to hydrotreatrnent. Catal. Today 65: 307-314.
    145. Zhou, Z. Y., and K. Zhang. 2004. Development situation and prospect of oil fields in China. Petroleum Exploration and Development 31: 84-87.
    146. ZoBell C. E. 1953. Process for removing sulfur from petroleum hydrocarbons and apparatus. US Patent 2, 641, 564.
    147.李福利.2003.兼性嗜热古地分枝杆菌燃料油脱有机硫研究.博士学位论文,山东大学,济南.
    148.李力.2004.微生物石油脱有机氮研究.博士学位论文,山东大学,济南.
    149.齐江,张瑾,戴猷元.1999.石油产品溶剂脱氮研究进展.现代化工.19:9-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700