基于燃烧和爆炸效应的温压药剂相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和实验两方面研究了温压药剂的作用原理、设计方法、爆炸场性能及其在野外和有限空间内的毁伤效应。
     在现有文献资料和研究成果的基础上,提出了温压药剂的配方设计原则、性能参数预报方法和固体化技术。研制的固体温压药剂以高能炸药、金属粉和固体活化剂为主体组成,综合性能良好。
     对瞬态高温测试方法进行分析和比较,结合温压药剂特点,提出原子发射光谱双谱线法和红外热成像仪两种方法进行温压药剂温度场的研究,并根据实验结果对药剂的反应过程进行分析。结果表明:温压药剂在爆炸后1ms内出现2个温度峰值(2300K和2050K),分别对应其爆炸反应的第一、第二阶段;第三阶段为药剂的后续燃烧反应,具有较高的爆炸火球温度,不同高温段持续时间是TNT的2~5倍,高温云团体积可达TNT的2~10倍。由于后续燃烧对冲击波的增强作用,使药剂具有较高的爆炸威力。能量分析表明:参试药剂的能量利用率约为42%,具备进一步提高的潜力。
     对含化学活性材料温压药剂M-TBE的实验表明:其冲击波曲线有两个规律的正压作用区;二次冲击波在火球区外形成,火球区内是后续燃烧反应对爆炸波增强而引起的压缩波积累压力平台;二次冲击波峰值压力不小于第一个冲击波的40%,二次冲量占总冲量的12.5%~43.7%,其对爆炸/冲击波威力的贡献不可忽略;化学活性材料对温压药剂的后续燃烧反应有增强作用,有利于二次冲击波的形成和传播。
     由空旷静爆实验得到温压药剂爆炸冲击波超压、正压作用时间和冲量的特征方程,分析认为:超压—冲量准则(ΔP-I准则)和失去战斗力比率伤亡准则(CI准则)是两种适于温压药剂冲击波毁伤评判的准则,根据实验结果得到30kg温压装药造成人员50%伤亡的毁伤半径约为6.38m。
     以火球热辐射动态模型为基础,根据红外热成像测试数据,建立了具有时间属性的温压药剂热辐射效应动态计算方法,计算得到30kg温压装药的热辐射效应,其辐射热剂量可达TNT的3.6~5.2倍。
     有限空间内的爆炸效应实验结果表明:爆炸反应的完全和约束效应使得温压药剂在室内的毁伤作用明显增强,室内总正冲量可达室外的5~10倍;墙面测点由于冲击波的正规反射而使压力和冲量大幅增加,反射波超压是入射波的3.5倍,反射波冲量是入射波的1.9倍;在具有泄压作用的半密闭空间内,室内负压的毁伤作用不可忽略。
In this dissertation, the action principle and design method of thermobaric explosive(TBE), as well as the blast field performance and the damage effect in free air and restricted space were studied both theoretically and experimentally.
     The design principle, the prediction methods of performance parameter and the solidification technique of TBE were proposed based on previous research results in literature. A solid thermobairc explosive was investigated whose main components were high explosive, metal powder and solid active agent. The solid thermobairc explosive had superior properties.
     Several transient high temperature measurement techniques were analyzed. A new method with double lines of atomic emission spectroscopy and infrared thermography was used to study the explosion temperature of TBE. According to the experimental results, the reaction process of TBE was analyzed. There were two temperature peaks of 2300K and 2050K in lms after the explosive acted, which were attributed to the first and second phase of the explosive reaction of TBE, respectively. The third phase of the explosive reaction was TBE's afterburning with higher explosion fireball temperature. The duration of differenet high temperature and the volume of the high temperature cloud were 2~5 and 2~10 times as much as those of TNT with the same weight. The blast power of TBE was higher due to the enhancement of afterburning to shock wave. The percentage of total energy released in explosive reaction of TBE was about 42% as analysis, which indicated that it had potential to be improved.
     A modified thermobaric explosive(M-TBE) containing chemically active material was studied by experiment. There were two regular positive pressure zones on the overpressure curves. The second one was formed outside fireball and the pressure flat roof accumulated by compressed waves was inside fireball. The peak value of the second shock wave was no less than 40% of the first one's and the second impulse was 12.5%~43.7% of overall impulse. Thus the effect of second shock wave to blast/shock wave power could not be neglected. The chemically active material could enhance the afterburing reaction of TBE and provide assistance to the formation and propagation of the second shock wave.
     The characteristic equation of shock wave overpressure, positive effect time and impulse of TBE was obtained by explosion experiment in free air. Two damage criterion of △P-I and CI were suitable for TBE as analysis. The damage diameter of human 50% casualty caused by 30kg TBE was 6.38m based on the experimental results.
     The dynamic calculation method with time property of TBE's thermal radiation was proposed based on the dynamic model of fireball radiation and the experimental results of infrared thermography. The thermal radiation dosage of thermobaric bomb with 30kg TBE was calculated, which was 3.6~5.2 times of TNT with same quatity.
     The blast effect of TBE in restricted space was studied. The damage effect was enhanced obviously due to the restricted space and the complete explosion reaction of TBE. The overall positive impulse in restricted space was 5~10 times of that in free air. The overpressure and impulse measured by sensors on the wall were increased by the normal reflection of shock wave. The overpressure and impulse of reflected wave was 3.5 and 1.9 times of that of incident wave, respectively. The damage action of underpressure in half obturation space with venting effect could not be neglected in the experimental condition of this paper.
引文
[1]Anna E W G.Aspects of thermobadc weaponry.ADF Health,2003,4(1):3-6
    [2]张敬峰,刘忠元.反恐新“利器”—温压弹.国防技术基础,2002(4):45-46
    [3]黎滨.温压武器面面观.轻兵器,2005(7):9-11
    [4]朱佩芳.油气弹及其杀伤效应.中华创伤杂志,2004,20(10):630-632
    [5]郭美芳.战场新宠—温压弹.现代兵器,2003(5):14-16
    [6]郭美芳,阎向前.从燃料空气弹到温压弹.现代军事,2002(3):21-23
    [7]张彦存,姚传利.一种新技术武器—单兵云爆弹.轻兵器,1996(5):16-17
    [8]Knystautas R,Lee J H.Mechanisms of initiation of detonation in explosive vapor clouds.AD-A051854,1978,11
    [9]Brower K R.Explosive reactions of liquid mixtures of chloring tri-fluride with hydrocarbons and halocarbons.Journal of Fluorine Chemistry.1986(31):333-349
    [10]Sayles D C.Method of generating single-event unconfined fuel-air detonation.USP-4463680,1984
    [11]Lee J H,et al.Chemical initiation of detonation of fuel-air explosive clouds.USP-5168123,1992
    [12]Knystautas R,Lee J H,Moen I O.Direct initiation of spherical detonation by a hot turbulent jet.17~(th)Symposium on Combustion.The Combustion Institute.Pittsburgh,1979
    [13]Mackay D J,Murray S B,et al.Flame jet equation of large fuel-air clouds.Proceedings of the 22~(nd)International Symposium on Combustion.The Combustion Institute,1998:1339-1353
    [14]奥西金B H.访华讲稿[内部资料].俄罗斯:莫斯科鲍曼大学
    [15]惠君明.自起爆FAE探索研究[内部资料].南京:南京理工大学,1993
    [16]蒲加顺.FAE研究进展——次起爆原理及其相关技术[学位论文].北京:北京理工大学,1997
    [17]曲绵献.液固复合燃料一次引爆FAE技术研究[学位论文].南京:南京理工大学,1998
    [18]黄锐.一次引爆型FAE(SEFAE)作用过程的理论研究[学位论文].南京:南京理工大学,2000
    [19]许学忠,郝保田,武山,等.化学起爆的动力学过程研究.兵工学报,2004,25(4):151-154
    [20]许学忠,裴明敬,李明,等.碳氢燃料与卤素氟化物的爆炸反应特性.火炸药学报,1999,22(3):36-38
    [21]崔晓荣,周听清,俞永华,等.强氧化剂对FAE诱导作用的实验研究.含能材料,2006,14(1):12-15
    [22]蒲加顺,白春华,梁慧敏,等.多元混合燃料分散爆轰研究.火炸药学报,1998,21(1):1-5
    [23]张奇,白春华,梁慧敏.固液组分与混合燃料细观尺度的相关性.火炸药学报,2000,23(1):53-55
    [24]张奇,白春华,刘庆明,等.一次引爆燃料空气炸药及其爆炸效应研究.实验力学,2000,15(4):448-453
    [25]赵玉坤,白春华,孙晓明,等.2kg一次起爆FAE装置爆轰过程研究.火炸药学报,1998,21(3):36-39
    [26]张奇,白春华,刘庆明,等.一次引爆型燃料空气炸药装置结构的实验研究.兵工学报,2001,22(4):560-562
    [27]惠君明,陈天云.炸药爆炸理论.南京:江苏科学技术出版社,1995
    [28]孙业斌,惠君明,曹欣茂.军用混合炸药.北京:兵器工业出版社,1995
    [29]张守中.爆炸基本原理.北京:国防工业出版社,1988
    [30]Cook M A,FillerA s,Keyes R T,et al.Aluminized explosives.The Journal of Physical chemistry,1957,61(2):189-196
    [31]陈朗,张寿齐.不同铝粉尺寸含铝炸药加速金属能力的研究.爆炸与冲击,1999,19(3):250-255
    [32]陈朗,冯长根,赵玉华,等.含铝炸药爆轰数值模拟研究.北京理工大学学报,2001,21(4):415-419
    [33]丁刚毅,徐更光.含铝炸药二维冲击起爆的爆轰数值模拟.兵工学报,1994,(4):25-29
    [34]李银成.含铝炸药HBX-1对破片的加速与冲击波超压.中国工程无论研究院常规武器应用基础研究文选,1995:91-93
    [35]龙新平,何碧.含铝炸药反应机理数值模拟研究.2002火炸药技术及钝感弹药学术研讨会论文集,2002:312-317
    [36]Straus W A.Investigation of the detonation of aluminum powde-oxygen mixtures.AIAA,1968,6:1753
    [37]Tulis A J,Selman J R.Detonation tube studies of aluminum particles dispersed in Air.9~(th)Symposium(International)on Combustion,1987:655-663
    [38]刘晓利.可燃粉尘—空气混合物燃烧与爆轰特性的实验研究与数值模拟[学位论文].南京:南京理工大学,1993
    [39]王宇.温压弹首次亮相阿富汗战场.国防,2002(5):53
    [40]Dearden P.New blast weapons.J R Amy Med Corps,2001,147:80-86
    [41]Enhanced blast weapons.An emerging threat issues in defence science & technology.Canada National Defence Issue Ⅱ-October,2001
    [42]施乐恒.油气炸药武器的现状与发展.国外坦克,2004(6):22-24
    [43]臧晓京.美国进一步研发可攻击地下设施的武器.飞航导弹,2003(9):17-20
    [44]张海燕.美军在伊拉克战争中使用的固体推进剂和战斗部.火炸药学报,2004,27(1):49-52
    [45]王国胜,李伟.威力巨大的特种炸弹.百科知识,2002(4):59-60
    [46]温杰.威力可比小型核武器的重磅炸弹—美国空军加紧研制高能空中引爆炸弹.现代兵器,2003(5):17-19
    [47]温杰.美国空军的炸弹之母—巨型空中引爆炸弹.飞航导弹,2004(6):61-63
    [48]何唐甫,刘恒,陈刚.神奇的热压弹.当代军事文摘,2007(4):62-63
    [49]秦明,武文军,李国强.美军特种航空炸弹及其作战运用.兵工自动化,2007,26(1):L05
    [50]卫洁如,邢娅.重型炸弹贯穿器成功完成静态杀伤试验.飞航导弹,2007(5):61
    [51]周建文,刘洪涛,刘永洪.从“MOP”看美国钻地攻击战略.国防科技,2007(6):93-96
    [52]惠君明,郭学永.燃料空气炸药及其武器的现状与发展.2020年前火炸药技术发展战略研究论文汇编,2003:218-223
    [53]王志军,尹建平主编.弹药学.北京:北京理工大学出版社,2005
    [54]ArthurF S,John D C.Blast and fragmentation enhancing explosive.USP-5996501,1999
    [55]MayL C,Gary W M.Advanced thermobaric explosive compositions.USP-6955732,2005
    [56]裴明敬,毛根旺,郑开伟,等.含硼温压型燃料的爆炸性能.火炸药学报,2006,29(4):1-5
    [57]裴明敬,毛根旺,吴婉娥,等.含铝温压燃料爆炸抛撒过程中能量释放效率研究.中国科学技术大学学报,2007,27(3):276-283
    [58]裴明敬,毛根旺,胡华权,等.含铝温压燃料性能研究.含能材料,2007,15(5):441-453
    [59]裴明敬,许学忠,胡华权,等.抗高过载FAE燃料的性能.火炸药学报,2005,28(1):31-34
    [60]惠君明,郭学永.云爆弹与热压弹.2002火炸药技术及钝感弹药学术研讨会论文集.2002:333-336
    [61]Luo A M,Zhang Q.Numerical simulation of temperature effects on warhead explosion products.Chinese Journal of High Pressure Physics,2006,20(1):45-50
    [62]何志光,陈网桦,彭金华.二次FAE的火球温度及热辐射效应研究.安全与环境学报,2004,4(Sup.):183-185
    [63]许学忠,裴明敬,王宇辉,等.一次起爆FAE的燃料扩散特征.火炸药学报,2000,23(1):47-49
    [64]严峰.燃料空气炸药威力评价及温度场测量[学位论文].南京:南京理工大学,2005
    [65]王连炬.温压炸药综合毁伤效应分析与评价[学位论文].南京:南京理工大学,2007
    [67]Lingberg G;Mach H.Combustion and Flame,1976,27:163
    [68]Tarasov M D,Kuanetzov F O.Detonation and shock wave front temperature measurement with two color pyrometer based on fiber optics.SPIE,1995:890-892
    [69]Xianchu H,Chengbung H.The measurement of detonation temperature of condensed explosives with two colour optical fiber pyrometer.Proc of Eighth Symposium (International)on Detonation.1995:322-329
    [70]袁宝慧,朱明武等.炸药爆轰波光谱发射率及其爆温测量.火炸药学报,1 999,22(1):49-52
    [71]于常青,闫军.炸药爆轰温度的光纤光谱测量方法.兵工学报,2001,22(1):70-73
    [72]李佳,庞其昌.瞬时多光谱爆温测量系统.光子学报,2000,29(10):937-941
    [73]闫军,徐更光.CARS光谱技术在炸药测温领域中的应用.火炸药学报,2000,23(3):59-61
    [74]Wang S F,Yang Y Q,Sun Z Y,et al.Fast spectroscopy of energy release in nanometric explosives.Chemical Physics Letters,2003,368(1-2):189-194
    [75]刘大斌,杨栋.导爆管起爆器瞬态电火花温度的光谱法测定.光谱学与光谱分析,2002,22(4):670-672
    [76]周新利,李燕.炸药爆轰瞬态温度的光谱法测定.光谱学与光谱分析,2003,23(5):982-983
    [77]周学铁,李燕.红外光谱遥测固体推进剂燃速温度及有机化合物对其影响.光谱学与光谱分析,2003,23(3):609-610
    [78]周新利,李燕.FTIR光谱遥测红外药剂的燃烧温度.光谱学与光谱分析,2002,22(5):764-766
    [79]熊祖钊,白春华,刘长林.燃料空气炸药爆炸压力场测试系统误差分析.爆破,2001,18(4):21-23
    [80]赵永涛,白春华,张奇.温压弹爆炸超压场实验研究.爆破,2004,21(4):15-17
    [81]林双红,李建平,白春华.温压炸药弹内爆轰特性试验研究.安全与环境学报,2006,6(2):99-101
    [82]谢立军,叶剑飞,周凯元,等.固态燃料小型FAE装置空中爆炸场效应分析.实验力学,2005,20(4):579-583
    [83]罗艾民,张奇,白春华,等.燃料空气炸药冲击波超压反演研究.弹箭与制导学报,2005,25(1):34-36
    [84]常双君,刘天生,朱晋生.燃料空气炸药的爆炸特性研究.中北大学学报(自然科学版),2006,27(6):508-510
    [85]惠君明.燃料空气炸药威力评判的讨论.兵工学报,火化工分册,1995,10(2):50-54
    [86]惠君明,刘荣海,彭金华,等.燃料空气炸药威力的评价方法.含能材料,1996,4(3):123-128
    [87]杨东来,惠君明,雷贯华,等.燃料空气炸药武器对人员毁伤的研究.含能材料,2002,10(3):117-120
    [88]王海福,王芳,冯顺山.基于靶板毁伤效应的燃料空气炸药威力评价方法探讨.含能材料,1999,7(1):31-33
    [89]王海福,王芳,冯顺山.FAE威力评价方法与目标防护分析.中国安全科学学报,1998,(5):31-33.
    [90]熊祖钊,白春华.燃料空气炸药武器威力评价指标研究.火炸药学报,2002,25(2):19-22
    [91]杨志焕,张清华,刘大维,等.某型导弹战斗部的生物效应.创伤外科杂志,1999,1(1):23-25
    [92]杨志焕,黄建钊,严家川,等.破片对冲击伤伤情的影响.创伤外科杂志,2003,5(5):340-343
    [93]王德润,周听清,沈兆武.ANN在一次引爆FAE爆炸威力评价中的应用.中国科学技术大学学报,2005,35(1):94-100
    [94]董素荣,周海英.基于神经网络的FAE武器威力设计专家系统.弹箭与制导学报,2004,24(2):30-31
    [95]贾晓东,郭彦懿.FAE武器在约束空间内爆炸效应的数值模拟研究.弹箭与制导学报,2006,26(4):154-156
    [96]毕明树,尹旺华,丁信伟.密闭容器非理想爆源爆炸过程的数值模拟.化学工业与工程技术,2003,24(3):1-4
    [97]杨秀敏.封闭空间内爆炸效应.中国人民防空,2006(8):64
    [98]赵国志,张运法,沈培辉,等编译.常规战斗部系统工程设计.南京:南京理工大学,2000
    [99]May L C,Dung T B,et al.Castable thermobaric explosive formulations.US 6969434B1,2005
    [100]MIL-DTL-32074(USAF).Explosive,plastic-bonded,cast AFX-757.2000
    [101]Bobratz B M.LLNL Explosives Handbook.UCRL-52997,1981
    [102]徐更光,王廷曾.混合炸药爆轰参数工程计算方法.战斗部通讯,1978,2
    [103]黄建亨,黄辉,李尚斌.含铝炸药爆速计算中特征爆速的选取.含能材料,2004,12(增刊):444-447
    [104]Wu X.Journal of Energetic Materials,1985,3(4):263-278
    [105]赵国志,张运法.战术导弹战斗部毁伤作用机理.南京:南京理工大学,2002
    [106]张熙和,云主惠.爆炸化学.北京:国防工业出版社,1989:104
    [107]Bocksteiner G,Wolfson M G,Whelan D J.The critical diameter,detonation velocity and shock sensitivity of Australian PBXW-115.DSTO-TR-0076,1995
    [108]张杏芬编译.国外火炸药原材料性能手册.北京:兵器工业出版社,1991
    [109]罗艾民,张奇,白春华,等.爆炸热作用所致的铝粉颗粒温度响应.火炸药学报,2005,28(1):35-38
    [110]苗勤书,徐更光,王廷增.铝粉粒度和形状对含铝炸药性能的影响.火炸药学报,2002,25(2):4-8
    [111]胡栋,孙姝妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究.爆炸与冲击,1995,15(2):122-128
    [112]贵大勇,冯顺山,刘吉平.高威力FAE液态燃料的优化选择.火炸药学报,2002,25(3):14-16
    [113]陆明.工业炸药配方设计.北京:北京理工大学出版社,2002
    [114]刘桂涛,曲虹霞.超细RDX爆轰感到与撞击感度、摩擦感度的研究.南京理工大学学报,2002,26(4):410-413
    [115]刘桂涛,吕春绪,曲虹霞.超细RDX爆速和作功能力的研究与测试.爆破器材,2003,32(3):1-3
    [116]陈瑛,刘家骢,解立峰,等.液固复合云爆药剂爆炸特性的试验研究.含能材料,2004,12(3):134-137
    [117]Qin Y H,Zhou T Q,Shen Z W,et al.Study on the explosion characteristics of single igniting solid sensitized fuel air explosive.Journal of Experimental Mechanics,2002,14(3):284-288
    [118]阚金玲,刘家骢.一次引爆云爆剂的爆炸特性—后燃反应对爆炸威力的影响.爆炸与冲击,2006,26(5):404-409
    [119]胡庆贤,吕子剑.TATB、石蜡、石墨钝感作用的讨论.含能材料,2004,12(1):26-29
    [120]王玉祥.固体温压炸药成型性能和安全性能的研究[学位论文].南京:南京理工大学,2007
    [121]郑孟菊,俞统昌,张银亮.炸药性能及测试技术.北京:兵器工业出版社,1990
    [122]李鸿志,王俊德,罗蕴华,等.一种用于火焰原子吸收/发射光谱分析的火焰温度测量的新方法.分析化学,1988,16(3):2037
    [123]李鸿志,王俊德,许厚谦,等.光谱法测量枪口闪光气流的瞬态温度.光谱学与光谱分析,1990,10(5):27
    [124]刘大斌.塑料导爆管的起爆、传爆及输出性能研究[学位论文].南京:南京理工大学,2002
    [125]罗蕴华,王俊德,陈作如.泄爆管瞬态火焰温度光谱法测量.爆炸与冲击,1991,11(4):359
    [126]杨栋.现代光谱技术对固体推进剂燃烧火焰和排气羽焰特征的研究[博士后出站研究报告].南京:南京理工大学,1999
    [127]刘大斌,杨栋,高耀林,等.改进型钠谱线翻转法测量塑料导爆管输出产物的温度.爆破器材,2002,31(5):6-9
    [128]王莹,许厚谦,王俊德.原子发射光谱双谱线测温系统设计.弹道学术交流会论文集.宁波:第5届弹道学术交流会,1997:276
    [129]许厚谦,耿继辉,王俊德,等.7.62mm枪膛内火药气体燃烧温度的光谱法测量.弹道学报,1999,11(1):85-88
    [130]周新利,刘祖亮,吕春绪,等.两种岩石乳化炸药爆温的光谱法测试结果.火工品,2005(2):46-49
    [131]郭学永,李秀丽,张黎明,等.非理想炸药爆炸产物温度的光谱法测试.南京理工大学学报,2007,31(5):647-649
    [132]杨栋,王俊德,赵宝昌,等.原子发射光谱双谱线法测量固体火箭发动机内燃气温度.光谱学与光谱分析,2002,22(2):307-310
    [133]周筠清.传热学.北京:冶金工业出版社,1989:186-189
    [134]彭利军.光学测温技术中的物理原理.物理测试,2006,24(5):46-48
    [135]戴景民.多光谱辐射测理论与应用.北京:高等教育出版社,2002
    [136]孙晓刚,李成伟,戴景民,等.多光谱辐射测温理论综述.计量学报,2002,23(4):248-250
    [137]孙晓刚,王雪峰,戴景民,等.基于多光谱法的目标真温及光谱发射率自动识别算法研究.西安交通大学学报,2001,35(12):1275-1278
    [138]孙晓刚,戴景民,王雪峰,等.一种测量固体火箭发动机羽焰温度的数据处理方法研究.红外与毫米波学报,2003,22(2):141-144
    [139]白永林,任克惠,欧阳娴,等.炸药爆轰温度的瞬时多光谱测量.光子学报,2003,32(7):868-871
    [140]王贵朝,余泉有,谭显祥,等.六通道瞬态光学高温计.光电工程,1996,23(sup.):46-49
    [141]蒙建平,杨经国,谭华,等.热辐射的多道采集及最小二乘法温度解析.光谱学与光谱分析,2002,22(5):721
    [142]占春连,李燕梅,刘建平,等.热辐射体真实温度的测试研究.应用光学,2002,23(6):39-41
    [143]孙晓刚,戴景民,从大成,等.多光谱辐射测温的理论研究:发射率模型的自动判别.红外与毫米波学报,1998,17(3):221-225
    [144]李奇楠,徐晓轩,武中臣,等.多光谱辐射测温的正交多项式回归方法.光谱学与光谱分析,2006,26(12):2173-2176
    [145]孙晓刚,原桂彬,林科锋,等.基于神经网络的多光谱测温数据处理方法.清华大学学报(自然科学版),2005,45(7):36-38
    [146]孙晓刚,原桂彬,戴景民.基于遗传神经网络的多光谱辐射测温法.光谱学与光谱分析,2007,27(2):213-216
    [147]孙晓刚,戴景民,丛大成,等.基于多光谱法的固体火箭发动机羽焰温度测量.清华大学学报(自然科学版),2003,43(7):916-918
    [148]于常青,阎军,刘杰,等.光纤光谱探针法测量炸药爆轰温度.北京理工大学学报,2000,20(6):664-667
    [149]阎军,徐更光,于常青,等.光纤光谱技术在炸药爆温测量中的应用.北京理工大学学报,2000,20(4):492-495
    [150]袁宝慧,田清政,邹文豪,等.炸药爆温的光纤测温法测量.光子学报,1998,27(6):563-567
    [151]袁宝慧,元天佑,邹文豪,等.炸药爆轰波光谱发射率及爆温的虚拟辅助光源反射法测量.火炸药学报,1999,22(2):59-62
    [152]郑兆平,曾汉生,丁翠娇,等.红外热成像测温技术及其应用.红外技术,2003,25(1):96-98
    [153]邓建平,王国林,黄沛然.用于高温测量的红外热成像技术.流体力学实验与测量,2001,15(1):43-47
    [154]王喜世,伍小平,秦俊,等.用红外热成像方法测量火焰温度的实验研究.激光与红外,2001,31(3):169-172
    [155]解立峰,何正文,严峰,等.FAE模拟装置温度场参数实验研究.弹道学报,2007,19(1):48-50
    [156]张敬贤,李玉丹,金伟其.微光与红外成像技术.北京:北京理工大学出版社,1995.44
    [157]张平.燃烧诊断学.北京:兵器工业出版社,1986
    [158]Woyde M,Bergrnann V,Strieker W.Temperature measurement in high pressure flame with Raman techniques.Temperature(American Institute of Physics),1991:673-678
    [159]李麦亮,赵永学,耿辉.相干反斯托克斯喇曼光谱测量技术.国防科技大学学报,2001,23(2):38-42
    [160]李喜春,赵鸣,赵凤起.CARS技术及其在火炸药燃烧诊断中的应用.含能材料,2001,9(3):133-135
    [161]Williams D R,Mckeown D,Porter F M,et al.CARS and LIF measurements in a rocket engine plume.Combustion and Flame,1993,94(1-2):77-90
    [162]许学忠,卫海鹰,肖昌炎,等.一次起爆燃料云雾爆轰的热辐射.火工品,1999(4):14-17
    [163]惠君明.FAE燃料抛撒与云雾状态的控制.火炸药学报,1999,22(1):10-13
    [164]马涛,於孝春,沈士明.火球热辐射影响范围的修正计算.石油与天然气化工,2006,35(1):76-78
    [165]惠君明,张陶,郭学永.FAE装置参数对燃料抛撒与爆炸威力影响的实验研究.高压物理学报,2004,18(2):103-108
    [166]熊祖钊,白春华,刘长林.FAE武器爆炸状态场压力场测试方法研究.火炸药学报,2002,25(11:41-44
    [167]郭炜,俞统昌,王建灵.空气冲击波压力的地面测量技术.第三届全国爆炸力学实验技术学术会议论文集,2004
    [168]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用(下册).北京:国防工业出版社,1979
    [169]丁秀珍.原子发射光谱双谱线法测爆温[学位论文].南京:南京理工大学,2004
    [170]隋树元,王树山编著.终点效应学.北京:国防工业出版社,2000
    [171]惠君明,张正才.提高FAE威力的研究—云雾起爆与爆轰的讨论.南京理工大学学报,1995,19(6):493-496
    [172]GJB 5212-2004.云爆弹定型实验规程.中华人民共和国国家军用标准.2004
    [173]Baker W E,Cox P A.Explosive hazards and evaluation.Amsterdam.Elsevier,1983
    [174]宇德明,冯长根.炸药爆炸事故冲击波、热辐射和房屋倒塌的伤害效应.兵工学报,1998,19(1):33-37
    [175]Donald R R,John T Y,Fletcher E R,et al.New air blast criteria for man.AD-P005339,1986:894-908
    [176]杨东来.FAE爆炸场特征和毁伤效应研究[硕士论文].南京:南京理工大学,2002
    [177]王三明,蒋军成.沸腾液体扩展蒸气爆炸机理及相关计算理论模型研究.工业安全与环保,2001,21(7):30-33
    [178]Martinsen W E,Marx J D.An improved model for the prediction of radiant heat flux from fireball.Proceedings of CCPS International Conference and Workshop on Modeling Consequences of Accidental Releases of Hazardous Materials.San Francisco,California,Sep.28th-Oct.1st,1999:605-621
    [179]Johnson D M,Pritchard M J,Wickens M J.Large scale catastrophic release of flammable liquids,EV4T.0014.UK(H):Commission of the European Communities.1990
    [180]张董莉,刘茂,王炜,等.火球热辐射后果计算动态模型的应用.安全与环境学报,2007,7(4):132-135
    [181]CCPS/AIChE.Guidelines for consequence analysis of chemical releases.New York:Center for Chemical Process Safety,American Institute of Chemical Engineers,1999
    [182]TNO.Methods for the calculation of physical effects.Hague,Netherlands:Yellow Book Committee for the Prevention of Disasters,1997
    [183]Liu M,Yu S L,Li X L,et al.Analysis of consequences of flash fire.Journal of Safety and Environment,2001,1(4):28-31
    [184]Liu M,Dong Z,Yu S L,et al.Risk analysis of freeway propane tanker explosion.Journal of Safety and Environment,2002,2(5):6-8
    [185]Prugh R W.Quantitative evaluation of fireball hazards.Process Safety Progress,1994,13(2):83-91
    [186]Esparza E D,Aker W E,Oldharn G A.Blast pressure inside and outside suppressive structures.USA:South-west Research Institute,1975:8214
    [187]Kccnan W A,Tancreto J E.Blast environment from fully and partially vented explosion in cubicles.USA:Civil Engineering Laboratory Naval Construction Battalion Center,1975:1212
    [188]Dorofeev S B,Sidorov V P,Kurchatov M S,et al.Effect of scale on the onset of detonation.Shock Wave,2000(10):137-149
    [189]王宝兴等.超长(大)建筑物的抑爆泄压试验研究.工程热物理学报,2000,21(2):252-256
    [190]沈伟,杜杨,周建忠,等.地下原型坑道中油气爆炸的实验研究.流体力学实验与测量,2003,17(3):23-26
    [191]Lunderman C,Ohrt A P.Small scale experiment of in tunnel airblast from external and internal detonations.Proceedings of the 8~(th)International Symposium on Interaction of the Effects of Munnitions with Structures.Mclean Virginia,1997:209-221
    [192]庞伟宾,何翔,李茂生,等.空气冲击波在坑道内走时规律的实验研究.爆炸与冲击,2003,23(6):573-576
    [193]沈俊,李永池,庞伟宾.化爆冲击波在90°拐角通道内的到时规律.中国工程科学,2006,8(3):53-57
    [194]庞伟宾,李永池,何翔.化爆冲击波在T型通道内到时规律的实验研究.爆炸与冲击,2007,27(1):63-67
    [195]李秀地,郑颖人,郑云木.坑道内冲击波冲量传播规律的试验研究.爆破器材,2007,36(3):4-7
    [196]Elsayed N M.Toxicology ofblast overpressure.Toxicology,1997,121(1):1-15
    [197]浣石,黄风雷,汪保和.冲击波致伤作用实验研究进展.医用生物力学,2006,21(2):163-168
    [198]Wightman J M,Gladish S L.Explosions and blast injuries.Ann Emerg Med,2001,37(6):664-678
    [199]Chaloner E.Blast injury in enclosed spaces.BMJ.2005,331(7509):119-120
    [200]Leibovici D,Gofrit O N,Stein M,et al.Blast injuries:bus versus open-air bombings -a comparative study of injuries in survivors of open-air versus confined space explosions.J Trauma,1996,41(6):1030-1035
    [201]赵敏,王正国.冲击伤.解放军医学情报,1990,4(5):266-269
    [202]李朝军,刘兆华,朱佩芳,等.不同强度冲击波负压暴露后豚鼠听力损失特点.听力学及言语疾病杂志,2006,14(3):207-210
    [203]张均奎,王正国,冷华光,等.冲击波负压与肺损伤.爆炸与冲击,1994,14(1):84-87
    [204]张均奎,王正国.冲击波压致伤作用和致伤机理的研究.第三军医大学学报,1993,15(1):83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700