高拱坝结构稳定转异和体形优化分析理论和方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拱坝结构稳定是坝体、岩体及其交界面三者的整体稳定,内容包括拱座稳定、上滑稳定和坝体结构稳定等,是拱坝设计与研究的重要课题之一。由于我国高拱坝建设的兴起,以及拱坝体形优化设计使坝体的厚度更薄,拱坝部分区域已接近薄壳结构,可能导致坝体结构失稳的发生。以往坝工界对坝体应力研究较多,对拱座稳定和上滑失稳研究也较多,而对坝体结构稳定则少有研究。围绕目前高拱坝建设中的热点和重点问题,结合973计划课题:多因素相互作用下地质工程系统的整体稳定性研究(编号 2002CB412707),重点研究高拱坝的稳定转异以及体形优化,现将主要内容归纳如下:
     本文提出基于拱梁分载法的拱坝稳定分析方法,即在拱梁分载法的基础上,分别分析拱圈和悬臂梁的稳定,建立相应的稳定计算公式,统一坝体结构稳定和应力计算方法。利用该法研究表明:坝体结构失稳的控制拱圈一般在拱顶,悬臂梁的稳定性高于水平拱圈。
     在对国内外众多高薄拱坝的几何参数进行统计分析基础上,建立空间稳定分析的典型拱坝数值分析模型,分析讨论了几何特征、受力状况和边界条件等因素对拱坝坝体稳定的影响规律。采用柔度系数反映拱坝柔度,通过对拱坝坝体稳定的有限元数值计算,研究拱坝坝体稳定与强度的关系,定义发生强度和失稳破坏的界限柔度为“界限柔度系数”,作为厚薄拱坝新的划分标准。柔度系数大于“界限柔度系数”,拱坝破坏可能带有失稳性质,属薄拱坝范围;柔度系数小于“界限柔度系数”,拱坝将发生强度破坏,属厚拱坝范围。较之以厚高比定义厚薄拱坝,以是发生强度破坏还是发生失稳破坏来定义厚薄拱坝有着明确的力学概念。对于300m级别的高拱坝,当柔度系数大于“界限柔度系数”时,可能先发生坝体结构失稳,把其应力控制标准做一定的修正,考虑坝体结构失稳对应力控制指标降低的作用。
     本文将突变理论应用在坝体结构失稳研究上,以尖拐型突变模型为例,根据典型拱坝坝体稳定有限元计算结果进行拟合,判别拱坝坝体的稳定性。结果表明:突变理论的稳定性判别与有限元稳定计算结果是吻合的。
     本文采用结构优化理论,对拱坝主要体形参数柔度系数和厚高比进行了优化分析,提出在坝体稳定约束条件下的最小厚高比和最大柔度系数,为拱坝设计和研究提供参考。体形优化结果表明:最大柔度系数很少的减小或最小厚高比很小的增加,即坝体刚度较小的提高,将使拱坝的稳定安全度获得大大的提高。
Structural stability of arch dams is global stability among dam body, rock and their interface. It includes abutment stability, up-slide stability and structural stability of dam body etc, which is one of the important subjects in arch dam design and research. Because of the development of construction of high arch dams in China and thinner dam body with the use of optimum design, local regions of arch dams approach thin shell structure, which will lead to structural buckling. Anciently, study on dam body stress, abutment stability and up-glide stability is rather abundant by the dam engineers, but quite few on structural stability of dam body. Based on these hot and key spots in construction of high dams at present, Combining one of the 973 plan projects: Study of Global Stability of Geology Engineering System under Interaction of Several Factors(NO.2002CB412707), the dissertation mainly studies the stability anomaly and corresponding shape optimization. The main contents are as follows:The dissertation advances stability analysis method of arch dams based on arch-cantilever method, that is, the stability of arch ring and cantilever are analyzed respectively based on arch-cantilever method and corresponding formula of stability calculation is established. So the calculation methods of dam stress and stability are unified. Using the method, studies reveal that the stability of arch dam against buckling is generally governed by the top arch ring and the cantilever is more steady than the horizontal arch.Based on the statistic analysis of the geometric parameters of numerous high thin arch dams, the simulation models of typical arch dams for spatial stability analysis are established. The effects of some factors such as: geometric characteristics, stress state, boundary conditions etc on dam stability are analyzed and discussed. The "slenderness coefficient" is used to define the slenderness of dam body. The relation of stability and strength of arch dams are studied through FEM numerical calculation of dam stability. The "critical slenderness coefficient" is advanced and supposed to be defined as the slenderness between strength failure and buckling failure. It is used as a new standard to divide thick or thin arch dams. When the slenderness coefficient is greater than the "critical slenderness coefficient", the arch dam will maybe become instable and it is a thin one; or strength failure will take place and the arch dam is a thick one. Compared with the definition of thick or thin arch dams by thickness-height ratio, the definition by strength failure or buckling failure is more explicit in mechanical conception. For the 300 meters level high arch dams, when the slenderness coefficient is greater than the "critical slenderness coefficient", maybe the structural buckling will happen earlier and it is necessary to modify the stress criterion
    and take the reducing effect on stress criterion of structural buckling into account.The dissertation applies catastrophe theory to dam structural buckling study, fits the results of stability of typical arch dam by FEM, using cusp catastrophe model, estimates the stability of arch dam. It reveals that stability estimated by catastrophe theory is agree with the FEM result.Using structural optimization theory, the primary shape parameters (slenderness coefficient and thickness-height ratio) are optimal analyzed, and the minimal thickness-height ratio and the maximal slenderness coefficient restrained by dam body stability are put forward, which can be a reference for arch dam design and research. The result of shape optimization indicates that little decrease of the maximal slenderness coefficient or little increase of the minimal thickness-height ratio, that is, little increase of stiffness of dam body, will enhance the stability safety degree greatly.
引文
[1] 贾金生,袁玉兰,李铁洁,2003年中国及世界大坝情况,中国水利,2004(13):25-33
    [2] 陈宗梁.世界超级高坝,北京:中国电力出版社,1998
    [3] 朱诗鳌.坝工技术史,北京:水利电力出版社,1995
    [4] Kollgaard. E. B, Chadwick. W. L. Development of dam engineering in the united states, Pergamon Press, 1988
    [5] Icold, The World Register of Dams. 4th edition Paris, 1988, 1-4
    [6] Veltrop, J. A. "Concrete Arch Dams', Sec. 3, Development of Dam Engineering in the United States, US Committee on Large Dams, 1988
    [7] Copen, M. D. Rouse and Wallace. G. B. "European Practice in Design and Construction of Concrete Dams", US Bureau or Reclamation, February, 1962
    [8] Hollingworth. F, Druyts. F. H, Rollcrete. W and M. Some Applications to Dams in South Africa. Water Power and Dam Construction, 1986, (1)
    [9] 柴军瑞,刘浩吾,高拱坝研究新进展,水利水电科技进展,2001,21(6):1-4
    [10] 潘家铮,陈式慧,关于高拱坝建设中若干问题的讨论,科技导报,1997(2):17-19
    [11] 中华人民共和国水利部.混凝土拱坝设计规范(SL282-2003),北京:中国水利水电出版社,2003
    [12] 朱伯芳,高季章,陈祖煜,厉易生.拱坝设计与研究,北京:中国水利水电出版社,2002
    [13] 李瓒,陈飞,郑建波.特高拱坝枢纽分析与重点问题研究,北京:中国电力出版社,2004年12月
    [14] 董福品,朱伯芳,沈之良,葛楠,国内外高拱坝应力分析概况,中国水利水电科学研究院学报,2003,1(4):292-299
    [15] 美国垦务局.拱坝设计,北京:水利电力出版社,1984
    [16] 林绍忠,杨仲侯,分析拱坝应力的分载位移法,水利学报,1987(1):17-25
    [17] 兰仁烈,拱坝应力分析——有垫座的拱冠梁法,水电站设计,1997,13(2):35-40
    [18] 王均星,王开治,周边缝拱坝拱梁分载法,武汉水利电力大学学报,1994,27(5):519-525
    [19] 刘国华,汪树玉,包志仁,拱坝非线性全调整分载法研究,浙江大学学报,1999,33(1):40-46
    [20] 王开治,王均星,王经,非线性拱梁分载法,湖北水力发电,1999(2):7-14
    [21] Design of Arch Dams. Denver Colordo: U. S. Department of the Interior, Bureau of Reclamation, 1977
    [22] Bureau of Reclamation. Stress studies for Boulder Dam. 1939
    [23] Sarkaria. G. S, Kollgaard. E. B, Sharma R P. New Stress Studies of old arch dams. Water Power & Dam Construction, 1975, (5): 173-177
    [24] Rydzewski J R. Theory of Arch Dams. Symposium Publications Division, 1964
    [25] Wang Junxing, et al. The elastoplastic arch-cantilever method of arch dams. Proceeding of the International Symposium on Arch Dams, Nanjing: Hohai University Press, 1992
    [26] Zienkiewicz O. C. and Taylor R. C., The Finite Element Method, 4th ed., London, Mc Graw-Hill, 1991
    [27] Loganathan K, Chang S C, Gallagher R H, et al. Finite Element Representation and Pressure Stiffness in Shell Stabilitv Analvsis. Inter J Numer Meth Engng, 1979, 4(4)
    [28] Nayroles B, Touzot G, Villon P. Generalizing the finite element method-diffuse approximation and diffuse elements. Comput Mech, 1992(10): 307-318
    [29] Feng L M, Pekau O A, Zhang C H. Cracking analysis of arch dam by 3D boundary element method. J of Struct Eng, 1996, 122(6): 691-699
    [30] Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. j. number, methods eng., 1993, (36): 1311-1337
    [31] Suresh P, R Natarajan. Analysis of laminated composite shell structures by finite element method. Computers & Structures, 1981, 14(3-4): 225-230
    [32] Zienkiewicz O C, Parekh C. Arch dams analyzed by a liner finite element shell solution program. Proc SymbArch Dams, Inst Cive Eng, London, 1968, 19-36
    [33] Bergan, P. G., etc, Nonlinear finite element analysis of concrete structure. Comput. Mete In Appl. Mech. and Engrg., 1979, 17(18), 443-467
    [34] J. Noorzaei & M. R. Zarrini, Modelling of Arch Dam using finite-infinite and interface element, Dam Safety, Berga (ed.) Balkema, Rotterdam, 1998
    [35] 李同春,温召旺,拱坝应力分析中的有限元内力法,水力发电学报,2002(4):18-24
    [36] 李同春,李淼,温召旺,沈洪俊,局部非协调网格在高拱坝应力分析中的应用,河海大学学报,2003,31(1):42-45
    [37] 混凝土拱坝设计规范专题文集,水利电力部上海勘测设计院,1987
    [38] H. G. Ganev, A new method of calculating arch dam as plates lying on an elastic foundation, theory of arch dams, 1964. 4
    [39] N. Hajdin, An integral equations method for arch dam analysis, theory of arch dams, 1964. 4
    [40] 黎展眉,中国拱坝设计容许应力与美国的比较,贵州水力发电,2002,16(1):85-87
    [41] 柏宝忠,钟源清,混凝土拱坝设计应力控制标准的研究,人民长江,2003,34(11):12-16
    [42] 傅作新,拱坝设计计算的几个问题,水电站设计,2002,18(2):7-11
    [43] 钱向东,基于有限元等效应力法的拱坝强度设计准则探讨,河海大学学报,2003,31(3):318-320
    [44] 饶宏玲,计家荣,基于拱梁分载法的拱坝抗压强度准则研究,水电站设计,2002,18(2):1-6
    [45] 钟源清,柏宝忠,《混凝土拱坝设计规范》的修订和编制,水利技术监督,2003(4):13-16
    [46] 朱伯芳,拱坝应力控制标准研究,水力发电,2000(12):39-44
    [47] 钱向东,任青文,赵引,拱坝的失稳形式及其分析方法,“力学2000”学术大会,714-715
    [48] 孙鸣宇,拱坝抗滑稳定新论,浙江水利水电高等专科学校学报,1997(2):15-17
    [49] 李瓒,拱坝设计中值得注意的几个问题,水电站设计,2002,18(1):12-16
    [50] Shi Genghua, Good man R E. Block theory and its application to rock engineering. Engle wood Cliffs: Prentice-Hall, Ine, 1985. 24-48
    [51] Chen Zhengzuo. The Seismic Influence on Uplift-Sliding of Arch Dam. Earthquake Behavior of Arch Dams. Beijing: Dergamon Press, 1988
    [52] Donald, I and Chen, Z. Y. (1997)Slope stability analysis by the upper bound approach: fundamentals and methods. Canadian Geotechnical Journal. 34:853-862
    [53] Ru Naihua. Arch Dam Upslide-Failure & Safety Criterion. Proceeding of International Workshop on Arch Dams. Coimbra, Portugal, 1987
    [54] Chen W F. Limit analysis and soil plasticity. Elsevier Scientific Publishing Co., New York, 1975
    [55] 汝乃华,拱坝的上滑失稳和安全准则,水利学报,1988(2):40-48
    [56] 汝乃华,拱坝抗滑稳定浅议,武汉水利电力大学学报,1993,26(2):134-138
    [57] 朱伯芳,厉易生,提高拱坝混凝土强度等级的探讨,水利水电技术,1999,30(3):15-19
    [58] 黄文熙,拱坝抗屈折稳定初探,水利学报,1995(9):1-3
    [59] 陈欣,周维垣,黄岩松,锦屏拱坝破坏仿真的三维有限元分析,岩石力学与工程学报,2002,21(增2):2403-2407
    [60] 任青文,王柏乐,关于拱坝柔度系数的讨论,河海大学学报,2003,31(1):1-4
    [61] 饶宏铃,拱坝体形参数统计分析,水电站设计,2004,20(3):1-5
    [62] 马以超,娄绍撑,坝体型优化设计中的若干问题探讨,大坝与安全,2001(5):13-17
    [63] 王正中,屠仁寿.现代计算机仿真技术及其应用,北京:国防工业出版社,1991
    [64] 杨立.计算机控制与仿真技术,北京:中国水利水电出版社,2003
    [65] 江见鲸,贺小岗.工程结构计算机仿真分析,北京:清华大学出版社,1996
    [66] 周维垣,杨若琼,剡公瑞,高拱坝的有限元分析方法和设计判据研究,水利学报,1997(8):1-6
    [67] 林鹏,高拱坝超载的计算机仿真,水利水电技术,2000,31(8):4-7
    [68] 高健,孙林松,叶跃清,汪勇,周公宅拱坝三维非线性有限元分析,河海大学学报,2004,32(4):399-401
    [69] 崔玉柱,张楚汉,徐艳杰,金峰,王光纶,用刚体弹簧元研究梅花拱坝的破坏机理,清华大学学报,2002,42(S1):88-92
    [70] 陈胜宏,汪卫明,徐明毅,邹丽春,小湾高拱坝坝踵开裂的有限单元法分析,水利学报,2003(1):66-71
    [71] 周伟,常晓林,唐忠敏,黎满林,溪落渡高拱坝渐进破坏过程仿真分析与稳定安全度研究,四川大学学报,2002,34(4):46-50
    [72] 傅作新,钱向东,有限单元法在拱坝设计中的应用,河海大学学报,1991(2):8-15
    [73] 宋战平,李宁,陈飞熊,高拱坝.坝基系统的三维静力非线性数值分析,西安建筑科技大学学报,2003,35(4):334-342
    [74] 陈健云,林皋,小湾拱坝考虑横缝的非线性分析,土木工程学报,1999,32(1):66-70
    [75] Linsbaurer H N, Ingraffea A R. Simulation of cracking in large arch dam(Part 1). J of Struct Eng, 1989, 115(7): 1599~1615
    [76] Linsbaurer H N, Ingraffea A R. Simulation of cracking in large arch dam(Part 2). J of Struct Eng, 1989, 115(7): 1616~1630
    [77] Yang Zhou, Sun Yangbiao. An expert system for shape optimum design of parabolic arch dam. Proceedings of the international conference on structural engineering and computation, Peking University Press, April, 1990
    [78] Zhu Bofang, Li Yisheng and Xie zhao. Optimum Design of Arch Dams, in Serafim, J L and Clough R W(editors): Arch Dams, Proc. Inter. Workshop onArch Dams, Coimbre, 5-9April, 1987, Published by Balkema, Rotterdam, 1990
    [79] Gajewski A, Zyczkowski M. Optimal Structural Design Under Stability Constraints. The Netherlands: Kluwer Academic Publishers, 1988
    [80] Zhu Bofang, Jia Jinsheng, Li Yisheng, Xu Shengyou, et. Intelligent Optimal CAD for Arch" Dams. International Water and Dam Construction, March, 1994
    [81] A A Gates, M LAccorsi. Automatic shape optimization of three-dimensional shell structures with large shape changes. Comput & Struct. 1997, 64(1-4): 31-36
    [82] S D Rajan, A D Belegundu and J Budiman. An integrated system for shape optimal design. Comput & Struct, 1988, 30: 337-346
    [83] Ding Yunliang, Shape optimization of structures: A literature survey. Comput. & Struct., 1986, 24(6): 985-1004
    [84] M H Imam. Three-dimensional shape optimization. Int J Numer Meth Engng. 1982, 18: 661-673
    [85] M E Botkin. Shape optimization of plate and shell structures. AIAA Journal. 1981, 20(2): 268-273
    [86] 黄文雄,王德信,许庆春,高拱坝的开裂与体形优化,水力发电,1997(11):26-30
    [87] 计家荣,丁予通,二滩拱坝设计与优化,水力发电,1998(7):25-29
    [88] 历易生,拱坝优化体形的坝体最小体积,水利水电技术,1995,(10):23-26
    [89] 李瓒,美国拱坝基本体形发展分析,西北水电,2000(4):42-48
    [90] 李瓒,郑建波,王小润等,从龙羊峡工程实践看拱坝的体形选择,水力发电,1998(1):13-18
    [91] 林林,拱坝的优化与比较,中国农村水利水电,1996(3):28-30
    [92] 汪树玉,刘国华,杜王盖,马以超,拱坝多目标优化的研究与应用,水利学报,2001(10):48-53
    [93] 魏文凯,高拱坝技术的新进展,云南水力发电,2000,16(4):22-26
    [94] 赖道平,吴中如,周红,分形学在大坝安全监测资料分析中的应用,水利学报,2004(1):100-104
    [95] 丁国强,高拱坝安全监控及安全评价——龙羊峡大坝安全性态评价专家系统,水力发电,1996(8):9-12
    [96] Su Huaizhi, Shen Zhenzhong, Wu Zhongru, Wen Zhiping, General Design of On-line Monitoring System of Safety Monitoring for Ertan Arch Dam, International Journal Hydroeletric Energy, 2001, 19(1): 77-80
    [97] 刘光廷,徐增辉,胡昱,侧约束对拱坝坝体应力和位移的影响,清华大学学报,2002,42(11):1537-1540
    [98] Feves, G. L. , Mojtahedi, S. and Reimer, R. B., ADAP-88: A computer program for nonlinear earthquake analysis of concrete arch dams. University of California at Berkeley: Report No. UCB/EERC-89/02, Earthquake Engineering Research Center, 1989
    [99] 朱伯芳,从拱坝实际裂缝情况来分析边缘缝和底缝的作用,水力发电学报,1997(2):59-66
    [100] 侯顺载,胡晓,涂劲,底缝对高拱坝地震反应影响的研究,云南水力发电,2000,16(1):50-54
    [101] Zhang Chuhan, Xu Yanjie, Wang Guanglun and Jin Feng. Nonlinear seismic response of arch dams with contraction joint opening and joint reinforcements. Earthquake Engineering and Structural Dynamcis, 2000(29)
    [102] 陈应齐,合理评价拱坝的安全级别,贵州水力发电,1997(3):12-15
    [103] 夏颂佑,拱坝极限承载能力和破坏机理,河海大学学报,1990,18(2):93-100
    [104] 杜成斌,任青文,底缝对高拱坝工作性态的影响,水利学报,2001(5):1-4
    [105] 杨令强,练继建,张社荣,陈祖坪,拱坝的破坏分析及超载问题探讨,水利学报,2003 (3):55-62
    [106] 傅作新,钱向东,郑雄,拱坝极限承载力的分析方法研究,河海大学学报,1991,19 (5):25-31
    [107] Raphael J M and Clough R W. Construction stresses in Dworshak Dam. Structural Engineering Lab, University of California, 1965
    [108] 计家荣,王仁坤,拱坝强度设计准则初步研究,水电站设计,1993(1):11-16
    [109] 丁予通,考虑垂直向调整对二滩拱坝应力的影响,水电站设计,1991(4):21-26
    [110] 朱伯芳,董福品,高拱坝应力控制标准研究,水力发电,2001(8):57-59
    [111] 朴灿日,王晓丽,从工程实践谈拱坝设计若干问题,东北水利水电,2001,(5):1-3
    [112] 张林,陈建康,陈新,胡成秋,沙牌拱坝结构开裂及破坏机理研究,水电站设计,2003,19(4):16-19
    [113] Santuijina, Thermal studies of concrete dams, Dam Engineering, V4. Nol, 1993
    [114] 杜成斌,设缝高拱坝的整体安全度和破坏机理研究,水力发电,2002(7):24-28
    [115] 徐艳杰,张楚汉,王光纶,金峰,小湾拱坝横缝配筋的非线性地震反应分析,水力发电 2001(5):26-29
    [116] Maria. Experimental study of concrete arch dams 40 years of LNEC experience, Lisboa, July 1986
    [117] Xerez A., Lamas J. F., Methods of analysis of arch dam behavior, VI Congress on Large Dams, R. 39, Q. 21, New York, 1958
    [118] Edited by L Berg. Dam Safety. Proceeding of the International Symposium on new trends and guidelines on dam safety. Barcelona, Spain. June 17-19, 1998. A. A. Balkema, Rotterdam, Brookfield
    [119] Coyne, A., "Arch Dams: Their Philosophy", Journal of the Power Division, ASCE, Paper No. 959, April 1956
    [120] Kupfer H , Gerstle K H. Behavior of concrete under biaxial stresses. J. Eng. Mech. Div. ASCE, 1973, EM4
    [121] R. W. Clough et. Earthquake Engineering for Concrete Dams: Design, Performance, and Research Needs. National Academy Press. Washington, D. C. 1990
    [122] 谢能刚,高健,王德信,小湾拱坝的地震反应分析,河海大学学报,1999,27(5):115-118
    [123] 周元德,陈观福,尹显俊,张楚汉,用工程类比分析法研究高拱坝坝踵开裂稳定性,水力发电学报,2002(1):19-26
    [124] 杜修力,涂劲,陈厚群,有缝拱坝—地基系统非线性地震波动反应分析方法,地震工程与工程振动,2000,20(1):11-20
    [125] Bureau of Reclamation. Design criteria of concrete arch and gravity dams. 1997
    [126] 夏颂佑,鲁慎吾,Kolnbrein拱坝坝踵开裂机理探讨,水电站设计,1999,15(1):26-33
    [127] 何平,赵子都.突变理论及其应用,大连:大连理工大学出版社,1989
    [128] V. I. Arnold. CATASTROPHE THEORY,北京:高等教育出版社,1990
    [129] [英]桑博德.突变理论入门,上海:上海科学技术文献出版社,1983
    [130] 陈亮,应用突变理论分析Euler压杆的稳定性,应用力学学报,2003,20(2):111-115
    [131] 戴莉莉,魏德敏,弹性拱静力屈曲的突变行为,力学与实践,2003,25(4):41-43
    [132] 尚新生,邵生俊,谢定义,突变理论在砂土液化分析中的应用,岩石力学与工程学报, 2004, 23 (1): 35-38
    [133] Henley S, Catastrophe theory model in geology, Mathe. Geology, 1976, (8): 649-655
    [134] 高鹏,艾南山,土质滑坡体的突变模型,工程地质学报,1994,2(4):67-76
    [135] 勾攀峰,汪成兵,韦四江,基于突变理论的深井巷道临界深度,岩石力学与工程学报,2004,23(24):4137-4141
    [136] Sallam, A. A., Power system transient stability assessment using catastrophe theory, IEE Proc., 136-C(2), 1989:108-114
    [137] 潘岳,张孝伍,狭窄煤柱岩爆的突变理论分析,岩石力学与工程学报,2004,23(11):1797-1803
    [138] Zeeman E C. Catastrophe theory. Scientific American, 234:65-83
    [139] 陈国灿,梁柱稳定性分析的突变理论方法,福建工程学院学报,2003,1(4):25-27
    [140] Pratt, S. J. , Catastrophe theory: its application in operating system design, Oper. Syst. Rev. (ACM), 21(2), 1987:23-32
    [141] 郭文兵,邓喀中,邹友峰,条带煤柱的突变破坏失稳理论研究,中国矿业大学学报, 2005,34(1):77-81
    [142] Acha-Daza, T. A. and Hall, F. L. Graphical comparison of predictions for speed given by catastrophe theory and some classic models, Transp ResRec, n1398:119-124
    [143] Wei De-min, Catastrophic Behavior for the Static Buckling of Elastic Arches, Journal of South ChinaUniversityofTechnology, 2003, 31 (Suppl.): 30-32
    [144] Miao Tiande, Ai Nanshan, Stability Analysis of Slope by Catastrophe Theory. Proc. 5th Inter. Conf. &Field Workshop on Landslides, Australia-New Zealand, 1989:1857-190
    [145] 顾冲时,吴中如,徐志英,用突变理论分析大坝及岩基稳定性的探讨,水利学报,1998(9):48-51
    [146] 汝乃华,姜忠胜.大坝事故与安全·拱坝,北京:中国水利水电出版社,1995
    [147] 国家重点基础研究发展规划项目,灾害环境下重大工程安全性的基础研究,研究简报,2004年第3期
    [148] Schnitter N J, The Evolution of the Arch Dam, Water Power & Dam Construction, 1976(10): 34-40, (11) : 19-21
    [149] ICOLD. Dams in Europe & USSR. Paris, 1990
    [150] Kiersch G A, Vajont Reservoir Disaster, Civil Engineering, 1964 (3) : 32-39
    [151] Jaeger C, The Vajont Rock Slide, Water Power, 1965(3) 110-111, (4) : 142-144
    [152] Muller L, The Rock Slide in the Vajont Valley, Rock Mechanics and Geology Journal, 1964, Ⅱ(3-4): 148-211
    [153] Londe P, The Malpasset Dam Failure, In: Leonard G A. Dam Failure. Proceedings of International Workshop on Dam Failure. Amsterdam: Elsevier, 1987. 295-325
    [154] Lessons from Dam Incidents. Paris: 1974
    [155] Puls L G, The Malpasset Dam. Water Power, 1963, 15 (6)
    [156] The Malpasset Verdict. Water Power, 1965 (1) : 32
    [157] Baustadter K, Widman R, The Behavior of the Kolnbrein Arch Dam, Proc. 15th ICOLD Lausanne: 1985 (Q57, R37) : 633-639
    [158] Practice and Theory of Arch Dams, In: Proceedings of the International Symposiumon Arch Dams, Nanjing: Hohai University Press, 1992
    [159] Xia Songyou. Discussions about some Problems of the Stress in the Arch Dams. In: Practice and Theory of Arch Dams, Nanjing: Hohai University Press, 1992
    [160] Londe P, Rock Foundations for Dams, Bulletin 88 of the International Commission on Large Dams, Paris, 1993
    [161] Federal Energy Regulatory Commission, USA Engineering guidelines for the evaluation of hydropower projects, Chapter 11-arch dams, Division of Dam Safety and Inspections Washington, DC 20426, October, 1999
    [162] USBR, Treatise on Dames-Chapter 10 Arch Dames, 1948
    [163] Sundquist K. J. Notes on the economy and safety of different types of concrete dams, ICOLD Congress 6, PARIS, 1955, Ⅱ: 227-246
    [164] 成鸿学,郭建华,包亦望.薄壳力学的数值计算,武昌:华中工学院出版社,1986
    [165] 唐家祥,王仕统,裴若娟.结构稳定理论,北京:中国铁道出版社,1989
    [166] S.P.铁摩辛柯,J.M.盖莱.弹性稳定理论.第二版,北京:科学出版社,1965
    [167] 何运林.结构稳定理论,北京:水利电力出版社,1995
    [168] 武际可,苏先樾.弹性系统的稳定性,北京:科学出版社,1994
    [169] 陈铁云,沈惠申.结构的屈曲,上海:上海科学技术文献出版社,1993
    [170] 陈绍蕃.钢结构稳定设计指南,北京:中国建筑工业出版社,1996
    [171] 陈绍蕃.钢结构设计原理,北京:科学出版社,1997
    [172] 周承倜.弹性稳定理论,成都:四川人民出版社,1981
    [173] 任伟新,曾庆元.钢压杆稳定极限承载力分析,北京:中国铁道出版社,1994
    [174] 陈骥,钢结构稳定理论与设计,北京:科学出版社,2001
    [175] 崔德刚.结构稳定性设计手册,北京:航空工业出版社,1996
    [176] 白雪飞,郭日修,近代弹性稳定性理论的几个重要分支,海军工程大学学报,2004,16(3):40-46
    [177] 钱基宏,薄壳失稳机理浅析,计算力学学报,2003,20(3):366-371
    [178] Stein M. The Influence of Prebuckling Deformation and Stresses on the Buckling of Perfect Cylinders. NASATR-190, 1964
    [179] Stein M. Some resent advance in the investigation of shell buckling, AIAA, 1968(6)
    [180] Sharifi P, Popov E P. Nonlinear buckling analysis of sandwich arches, Eng Meth Div, 1971
    [181] Batoz J L, Dhatt G. Incremental displacement algorithm for nonlinear problems, Int J Num Meth Eng, 1979
    [182] Riks E. An incremented approach to the solution of snapping and buckling problems Int J Solids Structure, 1979
    [183] Yamaki N. Elastic Stability of Circular Cylindrical Shell. 1984
    [184] Harris L, The stability of thin-walled unstiffered circular cylinders under axial compression including the effects of internal pressure J Aeronaut Sci, 1957
    [185] Esslinger M, Geier B. Buckling and postbuckling behavior of thin-walled circular cylinders, On Progress of Shell Structures. Session Ⅳ, 1969
    [186] 杨耀乾.薄壳理论,北京:中国铁道出版社,1980
    [187] 吴连元.板壳稳定性理论,武昌:华中理工大学出版社,1996
    [188] 周承倜.薄壳弹塑性稳定性理论,北京:国防工业出版社,1979
    [189] 建设工程部设计总局.金属扁壳稳定性非线性理论的若干问题,北京:建筑工程出版社,1959
    [190] 陈文,任文敏,模态综合法在壳体屈曲计算中的应用,力学与实践,1994,(4):19-20
    [191] 潘亦甦,陈大鹏,基于杂交应力有限元法的壳体结构几何非线性分析,西南交通大学 学报,1994,29(5):453-459
    [192] 祝恩淳,沈世钊,薄壳结构几何非线性全过程分析,哈尔滨建筑大学学报,1995,28(5):19-25
    [193] 郝刚,曾广武,郝强,碟形薄壳的塑性屈曲,应用力学学报,1996,13(2):145-150
    [194] 祝恩淳,沈世钊,混凝土薄壳结构非线性分析及试验研究,空间结构,1996,2(4):7-15
    [195] 王小岗,均布压力作用下圆锥扁壳后屈曲分析的加权残数法,青海大学学报,1998,16(6):8-12
    [196] 黄劲松,一种简便的复合材料旋转壳稳定性的计算方法,武汉水利电力大学学报,1999,32(1):87-90
    [197] 徐加初,王乘等,夹层扁球壳的非线性稳定性,固体力学学报,2000,21(4):366-370
    [198] 仝茂源,陈学潮,四类薄壳的临界荷载和失稳模态分析,建筑结构学报,2001,22(4):37-41
    [199] 陈宏湛,沈成康,组合圆柱壳静态屈曲的几个影响因素分析,力学季刊,2001,22(2):210-215
    [200] 杨民献,张淑芬,王彦生,圆柱壳的屈曲荷载最大化设计,河南科技大学学报,2003,24(1):71-74
    [201] 夏富洲,孙保立,加权残值法在变厚度板及圆柱壳块稳定分析中的应用,武汉水利电力大学学报,1994,27(5):591-595
    [202] 何君毅,林祥都.工程结构非线性问题的数值解法,北京:国防工业出版社,1994
    [203] 张壁城.水工建筑物的有限元分析,北京:水利电力出版社,1991
    [204] E. C. Zeeman, Catastrophe Theory: Selected Paper(1972-1977)
    [205] P. T. Saunders. An introduction to catastrophe Theory, Cambridge University Press, 1980
    [206] T. Poston, I. Stewart. Catastrophe Theory Applications, Pitman(1978)
    [207] 汪树玉,杨德铨,刘国华,张科锋.优化原理、方法与工程应用,杭州:浙江大学出版社,1991
    [208] 朱伯芳,黎展眉,张壁城.结构优化设计原理与应用,北京:水利电力出版社,1984
    [209] 钱令希.工程结构优化设计,北京:水利电力出版社,1983
    [210] 张炳华,侯昶.土建结构优化设计.第二版,上海:同济大学出版社,1998
    [211] [法]J.Cea.最优化理论与算法,北京:高等教育出版社,1982
    [212] Zhu Bofang, Shape Optimization of Arch Dams, International Water Power and Dam Construction, 1987 (3): 43-48
    [213] Zhu Bofang, Rao Bin, Jia Jinsheng and Li Yisheng, Shape Optimization of Arch Dames for Static and Dynamic Loads, Journal of Structural Engineering, ASCE, 1992, 118: No. 11
    [214] Zhu Bofang, Some Problems in the Optimum Design of Structures, In: Proc. 3rd Intern. Conf. On Computing in Civil Eng. Vancouver, Canada, 1988
    [215] Ricketts RE, Zienkiewicz OC, Optimization of Concrete Dams, in Proc. Intern. Symp. on Numerical Analvsis of Dams, 1975
    [216] 蔡新,郭兴文,张旭明.工程结构优化设计,北京:中国水利水电出版社,2003
    [217] 黎展眉.拱坝,北京:水利水电出版社,1982
    [218] 王宏硕.水工建筑物,北京:水利电力出版社,1990
    [219] 朱伯芳,中国拱坝建设的成就,水力发电,1999(10):38-41
    [220] 吴中如,沈长松,阮焕祥.水工建筑物安全监控理论及其应用,南京:河海大学出版社, 1990
    [221] 黄国军.拱坝整体稳定的物理模型和数学模型研究.河海大学硕士学位论文,2004
    [222] 杨涛.复杂地基上高拱坝安全度研究.河海大学硕士学位论文,2004
    [223] 赵海涛.基于ANSYS的拱坝可视化建模和有限元仿真分析.河海大学硕士学位论文,2004
    [224] 洪晓林,拱坝坝体非线性分析及极限承载能力的估算.华东水利学院研究生毕业论文,1982
    [225] 赵纯厚,朱振宏,周端庄,杨明华.世界江河与大坝,北京:中国水利水电出版社,2000
    [226] 王勖成,邵敏.有限单元法基本原理与数值方法,北京:清华大学出版社,1988
    [227] 斯米尔诺夫.结构的振动和稳定性,北京:科学出版社,1963
    [228] Zhu Bofang, Stress Level Coefficients and Safety Level Coefficient for Arch Dams, Dam Engineering, 2000, Ⅺ(3): 133-142
    [229] S. Timoshenko. Theory of Elastic Stability. New York: Mc Gra-Hill, 1936
    [230] 潘家铮.拱坝,上海:上海科技出版社,1959
    [231] 李瓒,陈兴华,郑建波,王光纶.混凝土拱坝设计,北京:中国电力出版社,2000
    [232] 朱伯芳.有限单元法原理与应用.第二版,北京:中国水利水电出版社,1998
    [233] Lombardi G. Kolnbrein Dam: an Unusual Solution for an Unusual Problem. Water Power and Dam Construction, 1991, 6, 31-34
    [234] S. Timoshenko and S. Woinowsky-Krieger. Theory of Plate and Shells. New York: Mc Graw-Hill, 1959
    [235] Treatise on Dams. Chapter 10 Arch Dams. Denver Colorado: U. S. Department of the Interior, Bureau of Reclamation, 1950
    [236] Jaeger, C. The Malpasset Report. Water Power, Vol. 15, No. 2, 1963
    [237] Serafim, J. L. et al. Statistics of Dam Failures: A Preliminary Report. Water Power and Dam Construction, Vol. 41, No. 4, April 1989
    [238] Chen W F, Liu E M. Structural Stability-Theory and Implement. New York: Elsevier, 1987
    [239] Chen Zuping, Chen Shihui. Rive, Rive-Grown and Burst Probability of Rolled Compressive Concrete Arch Dam. Proceeding of V-ICCCBE. Anaheim, CA., ASCE, U. S. A. Mjune, 1993
    [240] Babcock C. Shell Stability. JAM, 1983, 50: 935
    [241] Donnell L. A new theory for the buckling of thin cylinders under axial compression and bending. Trans Am Soc Mech Engs, 1934, 56: 795
    [242] Amiro I Y, Zarutskii V A. Experimental study of the stability of stiffened shells. International Applied Mechanics, 1996, 32(9): 659-668
    [243] Khan M R, Akanda M A S, Uddin M W. A new approach to instability testing of shells. International Journal of Pressure Vessels and Piping, 1998, 75: 75-80
    [244] Timoshenko, Strength of Materials Part Ⅱ. D. VAN NOSTRAND Co., New York, 1930

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700