饱和-非饱和土中氟运移规律动态实验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤和地下水污染问题已成为环境污染问题中的一个重要研究课题。而污染物种类繁多,其中对氟污染物的研究,是目前比较关注的环境问题之一。由于氟具有特殊的化学性质,它在土壤中的迁移方向和强度,取决于土壤性质和多种环境要素的共同作用,即氟在多孔介质中的运动是一个复杂的物理化学过程。目前研究污染物在饱和、非饱和土壤中迁移转化规律常用的方法是土柱实验,通过室内实验的设计可以帮助我们分析影响迁移转化的各种因素,揭示污染物在多孔介质中的运移机理,同时也可解决野外实验投资大、周期长、不确定因素较多难以控制等问题,从而缩短了实验研究周期。
     本文基于多孔介质中溶质运移理论,在实验设计上完整地从小土柱—大土槽、饱和—非饱和、单层土壤—成层土壤作了全套的大量室内实验研究,采用实验和计算相结合的分析研究方法,归纳总结了氟(氯)离子在不同条件下的运移规律,并对非饱和土壤中土水运动参数进行了拟合计算分析研究。主要研究内容如下:
     (1)通过不同尺度的饱和、非饱和土柱实验,获得氟(氯)在不同质地、不同分层土壤条件下的运移规律,并利用拟合穿透曲线法反求出运移参数。重点研究了不同的加溶质方式对氟离子在土壤中运移规律的影响。结果表明:氟离子在粘粒含量高的的土壤中的阻滞因子和水动力弥散系数均大于粘粒含量低的土壤中的阻滞因子和水动力弥散系数。在加溶质方式上,同时注入NaF和NaCl混合溶液比单独注入NaF溶液在浓度峰值到达时间上要来得慢些,浓度峰值也小,但在清水淋滤过程中合加NaF和NaCl混合溶液时淋出氟的浓度比单加NaF溶液时要大,这表明钠离子的加入对氟离子的迁移起了促进作用。通过氟氯对比试验进一步明确了氟离子较氯离子更加活泼。(2)对各种不同配比的土壤进行了非饱和土水运动参数的大量实验研究,得到了土水特征曲线、非饱和导水率的关系,并利用VG模型对其进行了拟合分析研究。并将所得参数应用到非饱和—饱和土柱实验计算中,为氟运移理论模型的初步应用奠定基础。(3)通过大土柱和准三维大土槽物理模型实验对氟氯离子在垂向和水平方向上动态迁移特性进行了比较研究,得到了不同特性的运移规律。将小土柱物理模型率定的参数应用到大土槽中,并根据实验结果对参数作了修正。在模型编程计算时,为了减小流速波动对氟、氯离子运移的影响,在模型计算中流速没有按常规方法取平均流速,而是研究了分段流速计算的方法,结果表明,后种计算模拟方法更接近实验值。(4)为了探讨氟离子浓度在水平和垂直方向上的淋滤净化过程,采用经验公式对各测点氟离子浓度衰减变化进行拟合研究,表明其符合指数衰减曲线规律。为建立氟离子浓度峰值衰减与沿程距离的相关关系曲线,对水平和垂直两个方向分别采用二次多项式拟合,从相关系数看,两结果是一致的。
Contaminant transportation and transformation in soil and groundwater is an important research topic in soil and environmental science. For many kinds of contaminants, the fluoride pollution had already been paid more and more attention on environment problems. On account of fluorine ion has special chemical characteristic, its chemical property was complex in course of migration in porous media. At present, the soil column test was used to study the rule of contaminant transportation and transformation in saturated-un- saturated soil. By way of the test study in laboratory, we can analysis in- fluencing factors and migration mechanism on solute transport in porous media. At the same time, it can solve some problem which decreased test investment, shorted test periods, controlled uncertain factor difficulty and son on. Therefore, it shorted test research periods. On the basis of solute transport theory in the porous media, the whole test were carried out in laboratory, including small soil column test and large soil tank test with homogeneous and heterogeneous in saturated-unsaturated soil. The rule of migration and transformation of the fluoride(chlorine) was studied by virtue of test and numerical simulation in this dissertation ,and curve fitting analysis were doned about soil water retention curve and unsaturated hydraulic conductivity in different soil. Some achievements were drawn as follows.The rule of transportation of fluoride(chlorine ) were obtained through different texture and heterogeneous soil by a large number of soil column tests in saturated-unsaturated soil. The effects of input solute on F"and Cl~- ion transport was especially discussed by series of experiments . Results showed that the value of coefficient of hydrodynamic dispersion (D) and retardation factor (R_d)in soil (sand and kaoline mix) was greater than that in sand .In the way of input solute , the appearing time of maximum value of concentration with input mix solute (NaF and NaCl) was slower than that with input solute(NaF),and concentration apexes was also smaller .But in the course of input water ,the concentration of F" ion in input mix solute was bigger than that in input solute(NaF).This showed that sodium chloride accelerated transportation of F~- ion in different soil.The soil water retention curve and the unsaturated hydraulic conductivity were obtained by various soil experiment. Parameter fitting were studied by using V-G model, applying these result to model calculation of soil column in saturated-unsaturated soil, and model parameter was corrected. This provide
    a basis for primary application of transport model and obtained parameter. The dynamic migration test of F' and Cl" was carried out by large earth column and large soil tank in laboratory. We obtained different migration rules of F" and Cl" ion .The parameter with small scale soil column test was used to calculate model parameter with large soil tank, and corrected parameter according to measured data. In the course of numerical simulation, in order to decrease influence for F" and Cl" transportation owing to variable velocity ,the average velocity was not used ,instead of changed velocity with time segment. The calculated values with variable velocity was close to the observed data.In order to study eluviation and decontamination process for F" concentration in horizontal and vertical direction, empirical formula was used to fit rule of F" concentration attenuation .The result showed that exponential function was in accorded with rule. In order to study correlativity curve between F" concentration attenuation and distance , quadratic polynomial was used to fit data in horizontal and vertical direction, the both fitting result accorded. Based on much test theory in laboratory and numerical simulation, combined with present status of pollution of region in Shanxi province, trend of contaminant transportation with time and distance was forecasted by mathematical model and parameter from tests according to hydrogeologic condition and pollution status in studied region, and measures preventing from pollution was pointed out. This provided a basis.in effect for studying ground water environment of Shanxi province.
引文
[1] Jury W A. and Garrison Sposito. A Transfer Function Model of Solute Transport Through Soil[J]. Water Recourse Research, 1986, (22):243-247
    [2] Nielsen D R., Van Genuchten M. T., Biggar J. W. Flow and Solute Transport Processes in the Unsaturated Zone[J]. Water Recourse Research, 1986,(22):895-1085
    [3] 王秉忱,杨天行,王宝金等.地下水污染地下水水质模拟方法[M].北京:北京师范学院出版社,1985:10-20
    [4] 束龙仓,朱元生.地下水资源评价中的不确定性因素分析[J].水文地质工程地质,2000,(6):6-8
    [5] Dagan. G, Nguyen. A comparison of travel time and concentration approaches to modeling transport by groundwater[J]. Journ. Contaminant Hydralogy, 1989, (4): 79-91
    [6] Dagan. G, Time-dependent macrodispersivity for solute transport in an isotropic heterogeneous aquifers[J]. Water Resource Research, 1988,24(9):1451-1500.
    [7] Gelhar, L. W., Stochastic Subsurface Hydrology, Englewood Cliffs, New Jersey, 1993, (8):1235-1243
    [8] Boggs, J. M., S. C. Young, L. M. Bend, etc. Field study of dispersion in a heterogeneous aquifer [J]. Water Resource Research, 1992,30(3):791-815
    [9] Mackay, D. M., D. L. Freberg, J. A. Cherry. A natural gradient experiment on solute transport in a sand aquifer[J]. Water Resource Research, 1986, 22(13):2017-2029
    [10] Zheng C. Extension of the method of characteristics for simulation of solute transport in three dimensions[J]. Ground Water, 1993,31(3):456-465
    [11] 任理,李保国.稳定流场中保和均质土壤盐分迁移的传递函数解[J].水科学进展,1999,10(2):107-112
    [12] 任理,刘兆光,李保国.非稳定流条件下非饱和均质土壤溶质运移的传递函数解[J].水利学报,2000,(2):7-15
    [13] 魏新平、王文焰、王全九等.溶质运移理论的研究现状和发展趋势[J].灌溉排水,1998,(4):58-63
    [14] Van Genuchten M Th, P J Wierenga. Mass transfer studies in sorbing porous media Ⅰ, Analytical solutions[J]. Soil Science Society of America journal, 1976,40(4): 473-480
    [15] Coats K H, B D Smith. Dead-end pore volume and dispersion in porous media [J]. Socity of petroleum engineering of ATME Journal ,1964,4(3):73-84
    [16] Van Genuchten M Th, R J Wagenet. Two-site/two-region models for pesticide transport and degradation: theoretical development and analytical solutions [J]. Soil Science Society of America journal, 1989,53(5):1303-1310
    [17] 史海滨,陈雅心.吸附作用与不动水体对土壤溶质运移影响的模拟研究[J].土壤学报,1996,33(3):258-266
    [18] 刘兆昌,张兰生,聂永丰等.地下水系统的污染与控制[M].北京,中国环境科学出版社,1991:15-41
    [19] 王超.土壤及地下水污染研究进展[J].水利水电科技进展,1996,16(6):1-4
    [20] 薛禹群,谢春红,吴吉春.海水入侵、咸淡水界面运移规律研究[M].南京:南京大学出版社,1991,25-43
    [21] 吴吉春,薛禹群等.太原盆地地下水污染数值模拟[J].南京大学学报(自然科学版),1997,(3):392-401
    [22] 朱珺峰,黄海,薛禹群等.越流含水层系统地下水有毒元素污染数值模拟[J].环境科学,1999,(1):55-58
    [23] 朱学愚,刘建立.山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J].地学前缘,2001,(3):325-329
    [24] 朱学愚,刘建立,朱俊杰等.山东淄博裂隙岩溶水中石油污染物分布和迁移特性[J].中国科学(D辑),2000,30(5):479-485
    [25] 吴吉春,薛禹群,黄海等.山西柳林泉裂隙发育地区溶质迁移三维数值模拟[J].南京大学学报(自然科学),2000,(11):392-397
    [26] 李寻,李金轩.平面单裂隙介质中核素的迁移模型[J].地下水,2001,(9):45-47
    [27] 李春江,杨天行.花岗岩体单裂隙中核素迁移数学模型Ⅰ.连续注入实验解析模型[J].核化学与放射化学,1998,(11):221-227
    [28] 李春江,苏锐,陈式等.花岗岩单裂隙中核素迁移的研究Ⅱ.扩散系数的测定[J].核化学与放射化学,2000,(8):190-192
    [29] 苏锐,李春江,王驹等.花岗岩体裂隙中核素迁移数学模型Ⅲ.扩散模型及其有限单元法解[J].核化学与放射化学,2000,22(2):80-86
    [30] 李春江,郭志明,林章基.花岗岩体裂隙中核素~(125)I~-、~(134)Cs~+的弥散渗透试验[J].水文地质工程地质,1999,26(6):45-47
    [31] 朱汝雄.裂隙岩体溶质运移模型实验及运移规律初步研究[D].南京:河海大学,2004:1-10
    [32] 王锦国,周志芳.裂隙岩体地下水溶质运移的尺度问题[J].水科学进展,2002,13(2):239-245
    [33] 成建梅,陈崇希,吉孟瑞等.山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究[J].地学前缘,2001,(3):179-183
    [34] Huyakorn P. S., Anderson P. F., etc. Saltwater intrusion in aquifers: department and testing of a three-dimensional finite element model[J]. Water Resources Research, 1987, (2):293-312
    [35] Xue Yuqun, Chunhong Xie, etc. A Three-dimensional Miscible Transport Model for Seawater Intrusion in China[J]. Water Resour Res.,1995, (31):903-912
    [36] Huyakorn P. S., Anderson P. F., etc. Saltwater intrusion in aquifers: department and testing of a three-dimensional finite element model[J]. Water Resources Research, 1987, (2):293-312
    [37] 王晓红,杨天行等.城市生活垃圾淋滤液运移模型问题[J].工程勘察,1998,(4):47-50
    [38] R. Mackay, M. S. Riley, G. M. Williams, Simulating groundwater contaminant migration at Villa Farm lagoons[J]. Quarterly Journal of Engineering Geogy and Hydrogeology, 2001, (34):215-224
    [39] 薛红琴.垃圾填埋场对地下水污染的研究[D].南京:河海大学,2003:1-15
    [40] T Yamaguchi, P Moldrup, S. Yokosy. Using Breakthrough Curves for Parameter Estimation in the Convection Dispersion Model of SoluteTransport [J]. S. S. S. A. J.,1989, (53):1634-1641
    [41] E Bresler, Anaor. Estimating Transport Parameters in Soil by a Maximum Ljkelihood Approach[J]. Soil Sci. Soc. Am. J.,1987, (51):870-875
    [42] Charbeneau, R. J. Groundwater contaminant transport with adsorption and ion exchange chemistry method of characteristics for the case without dispersion [J] Water Resour. Res.,1987,17(3):705-713
    [43] Laryean, Elrick, Robin. Hydrodynamic dispersion involving adsorption during unsurated transient water flow in soil[J]. Soil. Sci. Soc. Am ,1982, (46):667-672
    [44] Mansell, Selim. Simulation cation transport during unsaturated water flow in sandy soil [J]. Soil. Sci.,1990,150(4):730-744
    [45] Burnett, R. D. and E. O. Frind, Simulation of contaminant transport in three dimensions, 1. The Alternating Direction Galerkin Technique[J]. Water Resour. Res.,1987,23(4):683-694
    [46] Noorishad, J. and M. Mchran. An upstream finite element method for solution of transport equation in fractured porous media [J]. Water Resour. Res.,1982, 18(3):588-596
    [47] Selim H. M., J. M. Davidson, and P. S. C. Rao, Transport of reactive solute through multilayered soils [J]. Soilsci. Soc. Am. J.,1977, (41):3-10
    [48] Bibby, R., Mass transport of solutes in dual-porosity media [J]. Water Resour. Res., 1981, (17):1075-1081
    [49] Gaudet J P, H Jegat, G Vachaud. Solute transfer with exchange between mobile and stagnant water through unsaturated sand [J]. Soil Science Society of America journal, 1997,41(4):665-671
    [50] Angulo-Jaramille R J,J P Gaudet, J L Thony. Measurement of hydraulic properties and mobile water content of a field soil[J]. Soil Science Society of America journal, 1996, 60(3):710-715
    [51] Coats K H, B D Smith. Dead-end pore volume and dispersion in porous media[J]. Society of Petroleum Engineering of ATME Journal, 1964,4(3):73-84
    [52] De Smedt F, P J Wierenga. A generalized solution for solute flow in soils with mobile and immobile water[J]. Water Resources Research, 1979,15(5):1137-1141
    [53] Guven O, Molz F L, Melville J G. Analysis of Dispersion in a Stratified Aquifer[J]. Water Resour Res. 1984,20:1337-1345
    [54] Pickens J F and Grisak G E. Scale-dependent Dispersion in a Stratified Ganular Aquifer. [J]Water Resour Res.,1981, (17):1191-1211
    [55] Serrano S E. The Form of the Dispersion Equation Under Recharge and Variable Velocity, and Its Analytical Solution[J]. Water Resour Res.,1992, (28):1801-1808
    [56] Yates S R. Analytical Solution for One-dimensional Transport in Heterogeneous Porous Media[J]. Water Resour Res.,1990, (26):2331-2338
    [57] Yates S R. Analytical Solution for One-dimensional Transport in Porous Media with an Exponential Dispersion Function[J]. Water Resour Res.,1992, (28):2149-2154
    [58] Basha H A, El-Habel F S. Analytical Solution of the One-dimensional Time-dependent Transport Equation[J]. Water Resour Res.,1993, (29):3209-3214
    [59] Xue Yuqun, Chunhong Xie, etc. A three-dimensional Miscible Transport Model for Seawater Intrusion in China[J]. Water Resour. Res.,1995,(31):903-912
    [60] Dagan. G, Time-dependent macrodispersivity for solute transport in an isotropic heterogeneous aquifers[J]. Water Resour. Res.,1988,24(9):1451-1500
    [61] Q. Z. geng, G. G. Irard, and E. Ledoux. Modeling of Nitrogen Cycle and Nitrate Transferin Regional hydrogeologic Systems[J]. Groundwater, 1996,34(2):293-304
    [62] 杨金忠,叶自桐,贾维钊等.野外非饱和土壤中溶质运移的试验研究[J].水科学进展,1993(4):245-252.
    [63] 叶自桐.利用盐分迁移函数模型研究入渗条件下土层的水盐动态[J].水利学报,1990,27,(2):1-8
    [64] 吕家珑,张一平,苏仕平等.土壤磷运移研究[J]土壤学报,1999,36(1):75-82
    [65] 王亚男,王红旗,舒艳.含磷污水淋滤条件下土壤中磷迁移转化模拟试验[J].环境科学学报,2001,21(6):737-741
    [66] 冯绍元,张瑜芳,沈荣开.排水条件下饱和土壤中氮肥转化与运移问题[J].水利学报,1995,(6):16-30
    [67] 杨大文,杨诗秀,朱忠林.农药在土壤中迁移及其影响因素的初步研究[J].土壤学报,1992,29(4):383-391
    [68] 王福利.降雨淋洗条件下溶质在土壤中运移的初步研究[J].土壤学报,1992,29(4): 451-457.
    [69] 孙讷正.地下水污染——数学模型和数值方法[M].北京:地质出版社,1989:164-197
    [70] 成建梅,胡进武.饱和水流溶质运移问题数值解法综述[J].水文地质工程地质,2003,(2):99-106
    [71] 刘建立.大武水源地裂隙岩溶水中石油类污染物运移机制及数值研究[D].南京:南京大学,2000:10-30
    [72] Yeh G T, Chang J R, Short T E. An exact peak capturing and oscillation-free scheme to solving advection-dispersion transport equations[J]. Water Resources Research, 1992,28(11):2937-2951
    [73] Zheng C. Extension of the method of characteristics for simulation of solute transport in three dimensions[J]. Ground Water, 1993,31(3):456-465
    [74] Grisak G. E., J. F. pickens, etc. Solute transport through fractured media, 1, The effect of matrix diffusion[J]. Water Resour. Res., 1980, (4):719-730
    [75] Grisak G. E., J. F. pickens, etc. Solute transport through fractured media, 2, Column study of fractured till[J]. Water Resour. Res.,1980, (4):731-739
    [76] Noorishad J et al. An Upstream finite element method for solution of transient transport equation in fractured porous media[J]. Water Resour. Res.,1982, (3): 588-596
    [77] 王晓红.Laplce变换边界积分方程与Schapery数值反演法模拟溶质运移问题[J].水文地质工程地质,1997,(6):19-22
    [78] 段祥宝,朱亮.地下水污染运移模拟及最优估计[J].水动力学研究与进展,1996,(5):513-519
    [79] 高俊合,朱学愚,赵维炳等.非饱和带溶质运移问题的SUPG有限元解法[J].河海大学学报,1998,(1):54-58
    [80] WHI. MODFLOW Packages Reference Manual[M]. US:Waterloo Hydraulic, 1988:20-60
    [81] Chunmiao Zheng, P. Patrick Wang. MT3DMS Documentation and User' s Guide[M]. US: Army Corps Of Engineers, 1998:200-297
    [82] 丁继红,周德亮,马生忠.国外地下水模拟软件的发展现状与趋势[J].勘查科学技术,2002,(1):37-42
    [83] 阮晓红.化肥污染物在下包气带饱和与非饱和条件下迁移转化的研究[D].南京:河海大学,1995:25-36
    [84] 刘野.磁河污染物中迁移转化规律的研究[D].南京:南京理工大学,2001:42-61
    [85] 王超.污染物在土壤及地下水中迁移转化规律的研究[博士学位论文].南京:河海大学,1995:52-85
    [86] 石辉,郑纪勇,邵明安.土壤溶质运移CDE模型参数估计的一种新方法—截距法[J].土壤学报,2003,40(1):136-139
    [87] Wagner, B. J., S. M. Gorelick. A statistical Methodology for estimating transport parameters:Theory and applications to one-dimensional advective systems[J]. Water Resour. Res.,1986,22(8):1303-1315
    [88] Ye, W. -G..Review of parameter identification procedures in groundwater hydrology: the inverse problem [J]. Water Resour. Res., 1986,22(2):95-108
    [89] 张俊,徐绍辉.数值反演在确定土壤水力性质中的研究进展[J].土壤,2003,35(3):211-215
    [90] 邵爱军,刘广明,杨劲松.土壤水动力弥散系数的室内测定[J].土壤学报,2002,39(2):184-189
    [91] 杜国屏,重巧云.非饱和地下水溶质运移的测量仪器与测量方法[J].江苏农业学报,2003,19(2):127-128
    [92] 程金茹,郭择得,郭大波.非饱和土壤特性参数获取方法[J].水文地质工程地质,1996,(2):9-13
    [93] 徐绍辉,刘建立.土壤水力性质确定方法研究进展[J].水科学进展,2003,14(4):494-501
    [94] 胡安焱,周金龙,贺屹等.干旱区非饱和土壤导水率的初步研究[J].干旱地区农业研究,2002,20(6):65-67
    [95] 黄康乐.求解非饱和纵向弥散系数的一种简便方法[J].水利学报,1987,(2):51-54
    [96] 魏新平,王文焰,王全九.用对流扩散方程确定非饱和土壤水动力弥散系数[J].灌溉排水,2000,19(2):48-51
    [97] 魏新平.非饱和土壤水动力弥散系数确定方法述评[J].土壤通报,1999,30(4):168-170
    [98] 许晓路,申秀英.金华地区氟污染成因危害及对策[J].农业环境保护,1998,17(1):11-14
    [99] 王根绪,程国栋.西北干旱区水中氟的分布规律及环境特征[J].地理科学,2000,(4):153-159
    [100] 吴敦敖,袁法松.杭州市半山地区氟在水土系统中迁移转化的试验研究[J].环境污染与防治,1990,(2):5-9
    [101] 王中伟.辽宁灰水中氟化物迁移转化及其对附近地下水的影响[J].辽宁城乡环境科技,1998,(3):49-50
    [102] 谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,(2):40-53
    [103] 张晓辉.氟污染及防治[J].邯郸职业技术学院学报,2001,(1):67-69
    [104] Bower, C. A., Hatcher, J. T.. Adsorption of fluoride by soil and minerals[J]. Water Resour. Res.,1967,103(3):151-154
    [105] Omueti, J. A. and Jones, R. L., Fluoride adsorption by illinoil soils[J]. Soil Sci.,1977(28):564-572
    [106] 沈阿林,姚同山.花岗岩上发育的几种土壤表面氟、磷、硫的竞争吸附[J].华北农学报,1998,13(2):75-81
    [107] Barrow N J, Shaw T C. Effect of strength and nature of the cation on the desorption of fluoride from soil[J]. Journal of Science, 1982,(33):219-231
    [108] 沈阿林,崔转玲,姚同山.几种土壤对氟的吸附和解吸[J].植物营养与肥料学报,1997,3(1):9-15
    [109] Daniel. C. Peek, Volk, V. V.. Fluoride sorption and desorption in soils[J]. Soil Sci. Soc., 1985, (49) :583-586
    [110] 杨军耀,李扭串.土壤对碱性高氟水的氟吸附研究[J].中国地质灾害与防治学报,1997,8(3):46-50
    [111] 万红友,黎成厚,师会勤等.几种土壤的氟吸附特性研究[J].农业环境科学学报,2003,22(3):329-332
    [112] 黎成厚,万红友,师会勤等.土壤水溶性氟含量及其影响因素[J].山地农业生物学报,2003,22(2):99-104
    [113] 杨军耀.水—土系统氟迁移影响因素分析[J].工程勘察,1998,(3):42-44
    [114] 焦有,魏克循.河南省重氟区土壤和地下水氟状况及土壤负吸收特性的研究[J].水土保持研究,1994,1(5):88-89
    [115] 杨军耀.高氟水灌溉区水—土—植物系统氟迁移转化环境效应分析[J].地学前缘,1996,4(3):241-244
    [116] 焦有,宝得俊,尹川芬.氟的土壤地球化学[J].土壤通报,2000,31(6):251-255
    [117] 王艳萍.土壤中氟的研究动态[J].青海大学学报,1994,12(1):32-35
    [118] 杨军耀.土壤氟吸附动力学模型[J].土壤通报,1997,28(6):283-284
    [119] 朱济成.地下水氟污染及其迁移转化模拟试验的初步分析[J].环境化学,1988,7(3):62-66
    [120] 杨军耀.氟在非饱和带迁移的动态特性研究[J].太原理工大学学报,2000,31(2):107-109.
    [121] 李伟娟,姚来根,倪世伟等.土壤对氟离子吸附与解吸的动态土柱法研究.[J].长春地质学院学报,1995,(3):317-322
    [122] 王超.非饱和土壤中污染物迁移转化规律研究[J].河海大学学报,1998,26(1):59-65
    [123] 高新科,张富仓,刘俊杰.非饱和土壤溶质运移数值模拟的初步研究[J].西北农业大学报,1996,24(2):66-70
    [124] 杨金忠.一维饱和与非饱和水动力弥散的实验研究[J].水利学报,1986,(3):10-20
    [125] 温以华.不同质地和容重对Cl~-在土壤中运移规律的影响[J].水土保持研究,2002,(1):73-75
    [126] 冯绍元,齐志明,王亚平.排水条件下饱和土壤中镉运移实验及其数值模拟[J].水利学报,2004,(10):89-94
    [127] Carrera J. An overview of uncertainties in modeling groundwater solute transport [J]. Journal of Contaminant Hydrology, 1993,13(4):23-48.
    [128] Neuman S P. Generalized scaling of permeabilities: Validation and effect of support scale[J]. Geophysical research Letter, 1994,21(4):349-352
    [129] Rovey C W. II Assessing flow systems in carbonate aquifers using scale effects in hydraulic conductivity[J]. Environmental Geology, 1994,24(4):244-253
    [130] Schulze-Makuch D, Douglas A Carlson, Douglas S Cherkauer, et al. Scale dependency of hydraulic conductivity in heterogeneous medial.[J]. Ground Water, 1999,37(6): 904-919
    [131] 钱天伟,李书绅,武贵宾.地下水多组分反映溶质迁移模型的研究进展[J].水科学进展,2002,13(1):116-121
    [132] Reardon E J. K_d -Can they be used to describe reversible ion sorption reaction in contaminant migration [J]. Ground Water, 1981,19(3):279-286
    [133] Liu C. W., Narasimhan T N. Redox-controlled multispecies reactive chemical transport, 1, Model development[J]. Water Resour Res.,1989 (a), (25):869-882
    [134] Liu C. W, Narasimhan T N. Redox- controlled multispecies reactive chemical transport, Verification and application[J]. Water Resour Res.,1989 (b), (25):883-910
    [135] Yeh G T, Tripathi V S. A model for simulating transport of reactive multispecies components:model development and demonstration[J]. Water Resour Nes. 1991,27 (12):3075-3094
    [136] 彭胜,陈家军,王红旗.挥发性有机污染物在土壤中的运移机制与模型[J].土壤学报,2001,38(3):315-323
    [137] 王丽,王金生,杨志峰等.不流动水对包气带溶质运移的影响研究进展[J].水利学报,2001,(12):68-73
    [138] Degan G, Neuman S P. Subsurface Flow and Transport :A Stochastic Approach[M]. New York:Cambridge University Press, 1997, (1):1-9
    [139] Arturo A K, Paul V R, Martin J B. Effect of aperture variations on the dispersion of contaminants[J]. Water Resources Research, 1999,35(1):55-63
    [140] 薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,(5):1-3
    [141] 李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998:105-136
    [142] 朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990:5-28
    [143] 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1983:35-48
    [144] 严飞.堤坝非饱和渗流模型实验及计算分析[D].南京:河海大学,2004:6-20
    [145] 王金生,杨志峰.陈家军等.包气带土壤水分滞留特征研究[J].水利学报,2000,(2):1-6
    [146] 徐绍辉,张佳宝.求土壤水力特征的一种迭代方法[J].土壤学报,2000,37(3):271-274
    [147] 李春友,任理,李保国.利用优化方法求算Van Genuchten方程参数[J].水科学进展,2001,12(4):473-478
    [148] 张光辉.非饱和土壤物理特性数据处理软件APPIA的数理基础分析[J].水土保持通报,1999,(4):25-28
    [149] 毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990:150-165
    [150] 刘洁,毛昶熙.堤坝饱和非饱和渗流计算的有限单元法[J].水利水运科学研究,1997,(7):69-82
    [151] 方建安,夏权.电化学分析仪器[M].南京:东南大学出版社,1992:63-70
    [152] Zhang Danrong. Measurement Scale Effects on the Determination of Sorption and Degradation Parameters for Modelling Chemical Transport in the Soil [D]. Switzerland:University of Bern, 2003:35-52
    [153] 任理,毛萌.阿特拉津在饱和砂质壤土中非平衡运移的模拟[J].土壤学报,2003,40(6):829-837
    [154] 张富仓,康绍忠,潘英华.饱和-非饱和土壤中吸附性溶质水动力弥散实验研究[J].水利学报,2002(3):84-90
    [155] 刘凌,王瑚.大同市地下水污染趋势预测研究[J]水文地质工程地质,1997,(1):39-42
    [156] 徐华.太原市地下水污染模型研究[D].南京:南京大学,1995:6-15
    [157] 郑卫平,邢建波.大同市水资源的持续开发和利用[J].环境科学动态,2002,(1):25-27
    [158] 范建明.大同市区地下水超采引发的环境地质问题与相应对策研究[J]地下水,2003,25(1):19-20
    [159] 陈建峰,王政友.大同地区地下水弥散实验研究[J].地下水,2000,22(4):168-169
    [160] 息海疆.大同市水资源开发利用存在问题浅析[J]地下水,2003,25(2):119-121
    [161] 宋晓红.渗水贮灰场对灰场周围地下水影响初探[J].河北电力技术,1996,(6):20-25.
    [162] 陈德放,李其萍,王凤玲等.火力发电厂的排灰场对土壤及潜层地下水的影响研究[J].中国环境监测,1997,13(3):33-36
    [163] 范晓星.永济电厂灰水中氟化物对地下水的影响研究[J].山西电力技术1995,(5):1-4
    [164] 丁家平.火电厂贮灰场地下水环境预报数学模型[J].水利水运科学研究,1997,(4):320-329
    [165] 李兴德.连城电厂灰水排放对环境的影响分析[J].甘肃环境研究与监测,1998,11(1):37-40
    [166] 刘培云.粉煤灰淋溶液中的有害物质对地下水污染的试验研究[J].煤矿环境保护,2000,14(3):35-37
    [167] 徐福留,李木纲,曹军.阜阳电厂灰水氟化物浓度的确定及对地下水饮用水源污染预测[J].城市环境与城市生态,2000,13(3):50-53
    [168] 吴吉春,薛禹群,张志辉等.太原盆地地下水污染数值模拟[J].南京大学学报,1997,(33):392-401
    [169] 陶庆法,沈朝海,祁敏等.佳木斯市地下水资源及其污染防治研究[J].水文地质工程地质,1996,(3):6-13
    [170] 王洪涛,周抚生,宫辉力.数值模拟在评价含油污水对地下水污染中的应用[J].北京大学学报,2000,36(6):865-872
    [171] 李莉,黄海,朱法华.电厂灰水对地下水污染的数值模拟及污染预测[J].环境科学,1997,(5):59-62
    [172] 蔡绪贻,陈明佑等.利用地下水污染事件的观测资料估算弥散度[J].成都地质学院学报,1993,(2):101-105
    [173] 毕经伟,张佳宝,陈效民等.应用模型模拟农田土壤水渗漏及硝态氮淋失特征[J].农村生态环境,2004,20(2):28-32
    [174] 胥书霞,邵生俊,解敏.火电厂粉煤灰场的岩土环境工程问题[J].水利与建筑工程学报,2003,(2):24-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700