荒漠戈壁区金属矿床波谱特征和蚀变遥感异常信息提取研究及在矿产资源评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国矿产资源紧缺已经成为制约经济可持续发展的重大瓶颈之一,应用遥感技术来研究成矿地质背景,进行地质调查和矿产资源勘查与评价是一种有效的技术方法。目前,遥感技术已经发展到5S技术的集成(遥感RS,地理信息系统GIS,全球定位系统GPS,专家系统ES,数字摄影测量系统DPS)。
     本论文在研究东天山荒漠戈壁景观区的多种类型典型矿床成矿规律的基础上,利用遥感信息处理技术提取了ASTER和ETM~+多种类型矿床的蚀变遥感异常信息,并检验和查证了优选的靶区,取得了良好的找矿效果。因此,该技术方法具有重要的理论和实践意义。本文重点突出研究了多种类型典型矿床波谱特征及其在ASTER对应各波段上的吸收特征,在此基础上,分别在ASTER和ETM~+中提取了多种类型典型矿床的蚀变遥感异常信息。丰富了蚀变遥感异常信息提取的方法,拓宽了遥感在矿产资源勘查与评价中的应用领域。
     本人在导师的指导下,参加了“天山铜矿带找矿靶区优选”国家科技攻关项目, 2004年与2005年两次去新疆进行野外地质工作。采集和收集了黄山东、白石泉、罗东、坡十、坡一、天宇、天香、图拉尔根、葫芦、萝卜北、鸭子泉、串珠、马蹄和红十岗等铜镍矿;沙泉子、铅炉子和宝源等铅锌矿;土屋-延东斑岩铜矿;天目和老金硐等金矿;白山钼矿(矿化点)的样品,并拍摄了野外照片。利用PIMA实测了2000多条谱线,分析研究多种类型典型矿床的波谱特征。提取了3600km~2的ASTER和31000km~2的ETM~+数据中的蚀变遥感异常信息。镜下鉴定了光薄片25个。获得了如下结论:
     1.不同类型矿床的蚀变矿物组合不同。其中,黄山东镁铁-超镁铁岩型铜镍矿蚀变矿物组合为:绿泥石、伊利石、方解石、透闪石、蛇纹石、绿帘石、角闪石;沙泉子矽卡岩型铅锌矿蚀变矿物组合为:方解石、蛇纹石、绿泥石、伊利石、白云石、角闪石;天目蚀变岩型金矿蚀变矿物组合为:蒙脱石、蛇纹石、埃洛石、黑云母、透闪石、绿脱石。
     2.不同类型矿床有各自的波谱吸收特征。其中,黄山东镁铁-超镁铁岩型铜镍矿在ASTER数据中的特征吸收谷为8波段;沙泉子矽卡岩型铅锌矿在ASTER数据中的特征吸收谷组合为8与5波段;天目蚀变岩型金矿在ASTER数据中的特征吸收谷组合为6与9波段。
     3.同一矿区中不同岩性波谱特征有差异。例如,沙泉子矽卡岩型铅锌矿的矽卡岩在ASTER数据中的第8、9波段产生具有诊断意义的吸收;玢岩在ASTER第5、8波段产生具有诊断意义的吸收。
     4.利用ASTER数据作为示范区,使用主成分分析、光谱角技术、最大似然监督分类技术、比值法等方法提取了镁铁-超镁铁岩型铜镍矿床、矽卡岩型铅锌矿床和蚀变岩型金矿的蚀变遥感异常信息。并在ETM+数据中实现了镁铁-超镁铁岩型铜镍矿床、矽卡岩型铅锌矿床和蚀变岩型金矿的蚀变遥感异常信息的提取。然后将遥感找矿信息与多源地学信息综合集成,优选了找矿靶区。通过图上检验,已知矿床位置和蚀变遥感异常信息吻合良好。
     5.野外实地查证表明,本次工作提取的蚀变遥感异常信息和已知矿床、蚀变带的吻合率较高。在处理景区范围内,像黄山东、黄山、香山、黄山南、土墩、二红洼、白石泉镁铁-超镁铁岩型铜镍矿;沙泉子、宝源矽卡岩型铅锌矿;天目、小红山、金沟井、垄西、库姆塔格沙垄东、明舒井、翠岭采石山金矿(矿化点)与相应类型的蚀变遥感异常信息吻合良好。利用TM、ETM~+、ASTER等多光谱遥感数据提取的遥感找矿信息,非常有效地缩小了找矿靶区的范围。2004年笔者参加的以杨建民研究员为首的中国地质科学院矿产资源研究所与航空物探遥感中心组成的野外考察组发现了罗东铜镍矿;2005年新疆地矿局第六地质大队的莫新华工程师等通过查证蚀变遥感异常信息与CuNi地球化学综合异常信息确定的找矿靶区,发现了天香铜镍矿;2005年新疆地矿局第六地质大队的程松林总工程师面告通过查证蚀变遥感异常靶区,在尾亚岩体东部发现了一处铅锌矿化点和二处与铅锌矿化有关的蚀变带。
China’s mineral resources shortage has become a major bottleneck constraining economic sustainable development. It is an effective technical means to apply remote sensing technology to study geological background, to do geological survey, to prospect and evaluate mineral resources. Currently, remote sensing techniques have been developed to master 5S (RS for Remote Sensing, GIS for Geographical Information System, GPS for Global Positioning System, ES for Expert System, DPS for Digital Photogram metric System).
     In this paper, the various typical deposits forming regularities have been studied in East Tianshan mountains Gobi desert, on the basis of that, we use remote sensing information processing technology to extract remote sensing anomaly information of various type deposits, then to test and verify optimized targets, and have achieved good results for deposit exploration. Therefore, the techniques have important theoretical and practical significance. The paper study focused spectrum characters and absorption characters of ASTER homologous bands, on basis of that, we respectively extract remote sensing anomaly information of various type deposits from ASTER and ETM+, which enrich remote sensing anomaly information extraction methods, broaden applications of remote sensing in mineral resources prospecting and evaluation.
     I have participated in national research project named“Optimization of prospecting targets in Tianshan mountains copper ore belt”guided mentor, and twice conduct field geological work in Sinkiang in 2004 and 2005. I have collected samples which come from the mafic and ultramafic Cu-Ni deposits of eastern huangshan mountains, white rock font, luodong, tenth slope, first slope, tianyu, tianxiang, tulaergen, calabash, northern radish, duck font, a string of beads, horse hoof, hongshigang, the skarn Pb-Zn deposits of shaquanzi, lead camp stove, baiyuan, the altered type Au deposits of tianmu, laojindong, the molybdenum deposit of white mountains, and have photographed field photographs. I measured 2000 spectrums use PIMA, analysed and studied spectrum characters of various typical deposits, and extract remote sensing anomaly information of 3600 km2 ASTER and 31000 km2 ETM+, and identified 25 photic slicesin microscope. Following conclusions have been gained:
     1. Different types of mineral deposits have different altered minerals compounding, which of the skarn Pb-Zn deposit in shaquanzi areas are calcite, antigorite, chlorite, illlite, dolomite, hornblende, which of the mafic and ultramafic Cu-Ni deposit in huangshandong areas are chlorite, illite, calcite, tremolite, antigorite, epidote, hornblende, which of the altered type Au deposit in tianmu areas are montmorillonite, antigorite, halloysite, biotite, tremolite, nontronite.
     2. Different rocks of the mineral deposits have different spectrum absorption valleys, which are ASTER 8th, 5th bands in the skarn Pb-Zn deposit in shaquanzi areas, which are ASTER 8th band in the mafic and ultramafic Cu-Ni deposit in huangshandong areas, which are ASTER 6th, 9th bands in the altered type Au deposit in tianmu areas.
     3. Different rocks in the same deposit have different spectrum characters, take example for lithology of the skarn Pb-Zn deposit in shaquanzi areas, the skarn rock in ASTER 8th, 9th bands have diagnostic significance absorption, the porphyrites rock in Aster 5th, 8th bands have diagnostic significance absorption.
     4. Use ASTER data as a demonstration zone, to extract remote sensing anomaly information of the mafic and ultramafic Cu-Ni deposits, the skarn Pb-Zn deposits and the altered type Au deposits using principal component analysis, spectral angle mapper, maximum likelihood supervised and ratio method and so on. And to actualize extraction of remote sensing anomaly information of the mafic and ultramafic Cu-Ni deposits, the skarn Pb-Zn deposits and the altered type Au deposits in ETM+ data. Then to pile remote sensing mine information and other geological information, optimize targets for finding deposits. The known mineral deposits positions and remote sensing anomaly information very fit together on maps.
     5. The field geology identifies that anomaly information of remote sensing and the mineral deposits concrete position and altered minerals cingulum fit together. In ranges of abstraction of anomaly remote sensing information, the mafic and ultramafic Cu-Ni deposits of eastern huangshan mountain, huangshan mountain, xiangshan mountain, southern huangshan mountain, tudun, erhongwa, baishiquan; the skarn Pb-Zn deposits of shaquanzi, baoyuan and some Pb-Zn mineralized points; the altered type Au deposits of tianmu, xiaohongshan mountain, jinguijing, longxi, eastern kumutageshalong, mingshujing, cuilingcaishishan mountain and some Au mineralized points and the typical mineral anomaly remote sensing informations fit together very well. In 2004, we who are led by yangjianmin researcher found luodong Cu-Ni deposit. In 2005, some people with moxinhua engineer from Sinkiang geological mine bureau 6th geological troop found tianxiang Cu-Ni deposit according to the target given by anomaly remote sensing information and Cu-Ni geochemistry information. In 2005, chengsonglin chief engineer said that they found one Pb-Zn mineralized point and two alteration minerals cingulums about Pb-Zn mineralized in eastern weiya rock mass according to the target given by anomaly remote sensing information.
引文
1 章革,博士论文,高光谱短波红外技术在矿区矿物填图中的应用研究—以土屋铜矿、驱龙铜矿和普朗铜矿为例
     2 杨建民,张玉君,薛春纪等. 天山铜矿带找矿靶区优选. 中国地质科学院矿产资源研究所等. 北京,2005.11
    3 杨建民,张玉君,薛春纪等,天山铜矿带找矿靶区优选. 中国地质科学院矿产资源研究所等.北京,2005.11.
    4章革,博士论文,高光谱短波红外技术在矿区矿物填图中的应用研究—以土屋铜矿、驱龙铜矿和普朗铜矿为例
    [1] 张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用—地质依据和波谱前提[J].国土资源遥感,2002,4(54):30-36.
    [2] 谭衢霖,翟建平,徐光平.试论遥感地质找矿的进展[J].地质找矿论丛,1999,14(4):29-34.
    [3] 杨建民,张玉君,陈薇等.ETM+(TM)蚀变遥感异常技术方法在东天山戈壁地区的应用[J].矿床地质,2003,22(3):278-285.
    [4] 张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用—方法选择和技术流程[J].国土资源遥感,2003,2(56):44-50.
    [5] 杨凯.高光谱遥感在地质调查与矿产勘探上的应用[A].中国地质调查局.矿产资源调查与方法技术论文集[C].北京:中国地质调查局.2001:118-125.
    [6] Gary L.Prost. Remote Sensing for Geologists—a Guide to Image Interpretation,Second Edition[M].New York:Gordon and Breach Science Publishers.2001.
    [7] Proceedings of the Fourteenth International Conferenc.Applied Geologic Remote Sensing[C].Las Vegas,Nevada:Veridian ERIM International.2000.
    [8] Michel-Glaude Girard Colette M.Girard.Processing of Remote Sensing Data[M].Paris :A..A..Balkema,a member of Swets & Zeitlinger Publishers.2003.
    [9] Allen M.Larar, Qingxi Tong, Makoto Suzuki.Multispectral and Hyperspectral Remote Sensing Instruments and Applications[M].Washington:SPIE--The International Society for Optical Engineering.2002.
    [10] Crósta,A.P. ,and Moore,J.MCM..Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain[J].1989, proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology,Calgary(Ann Arbor,MI:Environmental Research Institute of Michigan),pp:1173-1187.
    [11] Loughlin,W.. Principal component analysis for alteration mapping[J]. 1991, Photogrammetric Engineering and Remote Sensing, 57,pp:1163-1169.
    [12] S. Chitroub. Neural network model for standard PCA and its variants applied to remote sensing[J]. 2005,International Journal of Remote Sensing, 26(10),pp:2197-2218.
    [13] A.P. Crósta, C.R.De Souza Filho. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis[J].2003, International Journal of Remote Sensing,24(21),pp:4233-4240.
    [14] Y. Yamaguchi, C. Naito. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands[J]. 2003,International Journal of Remote Sensing, 24(22),pp:4311-4323.
    [15] Hunt G..R. . Spectroscopic properties of rocks and minerals. In: Carmichael R C,ed. Practical Handbook of Physical Properties of Rocks and Minerals[J].1989,Boca Raton,Florid:CRC Press Inc,pp:599-669.
    [16] Hunt G R, Salisbury J W. Visible and near-infrared spectra of minerals and rocks: L Silicate minerals[J]. 1970,Modern Geology,1,pp:283-300.
    [17] Hunt G R, Salisbury J W, Lenhoff C J. Visible and near-infrared spectra of minerals and rocks: VL Additional silicate minerals[J].1974,pp:331-363.
    [18] Ray L. Frost, J. Theo Kloprogge. Infrared emission spectroscopic study of brucite[J]. 1999,Spectrochimica Acta Part A 55,pp:2195-2205.
    [19] N.O. Gopal , K.V. Narasimhulu,J.Lakshmana Rao.Optical absorption,EPR,infrared and Raman Spectral studies of clinochlore mineral[J].2004,Journal of Physics and Chemistry of Solids 65,pp:1887-1893.
    [20] Robin H.A.Ras, József Németh, Cliff T. Johnston, Imre Dékány, Robert A. Schoonheydt. Infrared reflection absorption spectroscopy study of smectite clay monolayers[J].2004,Thin Solid Films,466,pp:291-294.
    [21] S.E. Jorge Villar, H.G.M. Edwards.Near-infrared Raman spectra of terrestrial minerals: relevance for the remote ananlysis of Martian spectral signatures[J].2005,Vibrational Spectroscopy 39,pp:88-94.
    [22] Francisco Velasco, Ana Alvaro, Saioa Suarez et al. Mapping Fe-bearing hydrated sulphate minerals with short wave infrared(SWIR) spectral analysis at San Miguel mine environment, Iberian Pyrite Belt(SW Spain)[J]. 2005,Journal of Geochemical Exploration,87,pp:45-72.
    [23] 王晓鹏,谢志清,伍跃中.ETM 图像数据中矿化蚀变信息的提取—以西昆仑塔什库尔干地区为例[J].地质与资源,2002,11(2):119-122.
    [24] 毛晓长,刘文灿,杜建国等.ETM+和 ASTER 数据在遥感矿化蚀变信息提取应用中的比较—以安徽铜陵凤凰山矿田为例[J].现代地质,2005,19(2):309-314.
    [25] 惠凤鸣,田庆久,李应成.ASTER 数据的 DEM 生产及精度评价[J].遥感信息,2004,1,14-17.
    [26] 沈强,鄂栋臣,周春霞.ASTER 卫星影像自动生成南极格罗夫山地区相对 DEM[J].测绘信息与工程,2005,30(3):7-9.
    [27] 聂凤军,江思宏,赵省民.短红外光谱技术在矿产资源评价中的应用[J].中国地质,2000,4,38-42.
    [28] 章革,连长云,元春华.PIMA 在云南普朗斑岩铜矿矿物识别中的应用[J].地学前缘,2004,11(4):460.
    [29] 章革,连长云,王润生.便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿矿物填图中的应用[J].地质通报,2005,24(5):480-484.
    [30] 连云长,章革,元春华等.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用—以土屋斑岩铜矿为例[J].中国地质,2005,32(3):483-494.
    [31] 肖克炎,朱裕生,张晓华等.矿产资源评价中的成矿信息提取与综合技术[J].矿床地质,1999,18(4):389-384.
    [32] 郑威,陈述彭.资源遥感纲要[M].北京:中国科学技术出版社,1995.
    [33] 李锦轶,王克卓,李文铅等.东天山晚古生代以来大地构造与矿产勘查[J].新疆地质,2002,20(4):295-301.
    [34] 姬金生,陶洪祥,杨兴科.东天山中段不同构造环境火山岩地球化学特征[J].岩石矿物学杂志,1994,13(4):297-304.
    [35] 李文明,任秉琛,杨兴科等.东天山中酸性侵入岩浆作用及其地球化学意义[J].西北地质,2002,35(4):41-64.
    [36] 王赐银,舒良树,赵明等.东天山北部哈尔里克晚古生代推覆构造与岩浆作用研究[J].高校地质学报,1996,2(2):198-206.
    [37] 董富荣,李嵩龄,冯新昌.新疆太古宙变质岩系岩石组合特征[J].新疆地质,2001,19(4):251-255.
    [38] 王赐银,马瑞士,舒良树等.东天山造山带区域变质作用及其构造环境研究[J].南京大学学报,1994,30(3):494-503.
    [39] 方国庆.东天山古生板块构造特点及其演化模式[J].甘肃地质学报,1994,3(1):34-40.
    [40] 秦克章,方同辉,王书来等.东天山板块构造分区、演化与成矿地质背景研究[J].新疆地质,2002,20(4):302-308.
    [41] 冯益民,朱宝清,杨军录等.东天山大地构造及演化—1:50 万东天山大地构造图简要说明[J].新疆地质,2002,20(4):309-314.
    [42]王学求,迟清华,孙宏伟.荒漠戈壁区超低密度地球化学调查与评价—以东天山为例[J].新疆地质,2001,19(3):200-206.
    [43] 杜佩轩,田素荣.新疆岩石.岩屑.水系沉积物元素背景平均值[J].物探与化探,2001,25(2):117-122.
    [44] 朱志新,田文全,倪梁等.新疆东天山西段却勒塔格蛇绿岩地球化学特征[J].新疆地质,2004,22(2):131-135.
    [45] 姬金生,陶洪祥,杨兴科.东天山中段不同构造环境火山岩地球化学特征[J].岩石矿物学杂志,1994,13(4):297-304.
    [46] 李伍平,王涛,李金宝等.东天山红柳河地区海西期花岗岩的岩石学、地球化学及其构造环境[J].地质论评,2001,47(4):368-376.
    [47] 毛景文,杨建民,屈文俊等.新疆黄山东铜镍硫化物矿床 Re-Os 同位素测定及其地球动力学意义[J].矿床地质,2002,21(4):323-330.
    [48] 韩宝福,季建清,宋彪等.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的 SHRIMP 锆石U-Pb 年龄及其地质意义[J].科学通报,2004,49(22):2324-2328.
    [49] 肖昱.新疆哈密市沙泉子铜矿地质特征及其找矿方向[J].矿产与地质,2003,17(增):345-347.
    [50] 花宝林,阳翔,钟华.新疆东天山沙泉子地区地球化学特征及找矿预测[J].矿产与地质,2002,16(5):291-296.
    [51] 方维萱,徐杰,刘正桃等.东疆库姆塔格-沙泉子地区岩屑地球化学异常优选排队方法[J].地质与物探,2003,39(5):57-62.
    [52] 花林宝.新疆东天山雅满苏-沙泉子城矿区元素地球化学分区及找矿方向[J].桂林工学院学报,2001,21(2):99-103.
    [53] 刘德权,唐延龄,周汝洪.新疆斑岩铜矿的成矿条件和远景[J].新疆地质,2001,19(1):43-48.
    [54] 姚金炎.关于斑岩铜矿的找矿[J].矿产与地质,1999,13(2):65-69.
    [55] 高合明.斑岩铜矿床研究综述[J].地球科学进展,1995,10(1):40-46.
    [56] 谭康华,李光军,黄定柱等.普朗大型斑岩铜矿控矿条件[J].云南地质,2005,24(2):167-174.
    [57] 汤中立.中国镁铁、超镁铁岩浆矿床系列的聚集与演化[J].地学前缘,2004,11(1):113-119.
    [58] 苏尚国,邓晋福,汤中立等.镁铁质-超镁铁质岩浆作用与成矿作用的新进展[J].现代地质,2004,18(4):454-459.
    [59] 胡素芳,周新华.镁铁-超镁铁层状侵入体研究现状[J].矿物岩石地球化学通报,2001,20(1):52-57.
    [60] 王伏泉.中国前中生代海相火山岩铜矿床的多因复成性[J].大地构造与成科学,1994,18(4):339-343.
    [61] 黄松,朱文凤.海相火山岩型伴生金矿床的时空分布特征及区域控矿作用[J].桂林工学院学报,1998,18(3):238-244.
    [62] 吴健民,黄永平,刘肇昌.扬子地台西缘海相火山岩建造(元古界为主)及其控矿特征分析[J].云南地质,1998,17(2):120-127.
    [63] 吴言昌,常印佛.关于岩浆矽卡岩问题[J].地学前缘,1998,5(4):291-301.
    [64] 吴言昌,邵桂清,吴炼.岩浆矽卡岩及其矿床[J].安徽地质,1996,6(2):30-39.
    [65] 黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,1(3~4):105-111.
    [66] 程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列问题[J].中国地质科学院院报,1979,1(1):32-58.
    [67] 程裕淇,陈毓川,赵一鸣等.再论矿床的成矿系列问题[J].中国地质科学院院报,1983,6(1):1-52.
    [68] 梅燕雄,裴荣富,李进文等.中国中生代矿床成矿系列类型及其演化[J].矿床地质,2004,23(2):190-197.
    [69] 刘春涌.新疆铜矿成矿系列和成矿类型[J].新疆地质,1997,15(4):379-384.
    [70] 陈昌勇.成矿系列研究现状及展望[J].昆明理工大学学报,1997,22(2):12-16.
    [71] 汤中立,李文渊.中国与基性-超基性岩有关的 Cu-Ni(Pt)矿床成矿系列类型[J].甘肃地质学报,1996,5(1):50-64.
    [72] 陈毓川.矿床的成矿系列研究现状与趋势[J].地质与勘探,1997,33(1):21-25.
    [73] 陈毓川.矿床的成矿系列[J].1994,1(3~4):90-94.
    [74] 何国琦,刘德权,李茂松等.新疆主要造山带地壳发展的五阶段模式及成矿系列[J].新疆地质,1995,13(2):99-195.
    [75] 陈毓川等.中国矿床成矿系列初论[M].北京:地质出版社,1998.
    [76] 赵善定,王学求.土屋铜矿上方覆盖层元素分布规律研究[J].新疆地质,2005,23(3):239-243.
    [77] 黄崇轲等.中国铜矿床(上、下)[M].北京:地质出版社,2001.
    [78] Hunt G..R. , Salisbury JW. Visible and Near-infrared Spectra of Minerals and Rocks: II. Carbonates[J] .Modern Geology, 1971,(2):23-30.
    [79] Hunt G.R. ,Salisbury JW. Visible and Near-infrared Spectra of Minerals and Rocks:III. Oxides and Hydroxides[J].Modern Geology,1971,(2):195-205.
    [80] Hunt G.R. , Salisbury JW. Visible and Near-infrared Spectra of Minerals and Rocks:IV. Sulphates[J]. Modern Geology,1971,(3):1-14.
    [81] Hunt G.R. , Salisbury JW. Visible and Near-infrared Spectra of Minerals and Rocks:V. Halides, Arsenates, Vanadates and Borates[J].Modern Geology,1972,(3):121-132.
    [82] Hunt G.R. , Salisbury JW, Lenhoff C.J. Visible and Near-infrared Spectra of Minerals and Rocks:VI.Additional Silicate Minerals[J].Modern Geology,1973,(4):85-106.
    [83] Hunt G.R. , Salisbury JW,Lenhoff C.J. Visible and Near-infrared Spectra of Minerals and Rocks:VII.Acidic Igeous Rocks[J].Modern Geology,1973,(4):217-224.
    [84] Hunt G.R. , Salisbury JW, Lenhoff C.J. Visible and Near-infrared Spectra of Minerals and Rocks:VIII.Intermediate Igneous Rocks[J].Modern Geology,1973,(4):237-244.
    [85] Hunt G.R. , Salisbury JW, Lenhoff C.J. Visible and Near-infrared Spectra of Minerals and Rocks:IX.Basic & Ultrabasic Igneous Rocks[J].Modern Geology,1974,(5):15-22.
    [86] Hunt G.R. , Salisbury JW. Visible and Near-infrared Spectra of Minerals and Rocks: XI.Sedimentary Rocks[J].Modern Geology,1976,(5):211-217.
    [87] Hunt G.R. , Salisbury JW. Visible and Near-infrared Spectra of Minerals and Rocks: XII.Metamorphic Rocks[J].Modern Geology,1976,(5):219-228.
    [88] Hunt G.R. . Spectral Signature of Particular Minerals,in the Visible and Infrared[J]. Geophysics,1977,(42):501-513.
    [89] Hunt G.R. , Salisbury JW.Assessment of Landsat Filers for Rock Type Discrimination, Based on Intrinsic Information in Laboratory Spectra[J].Geophysics,1978,43:738-747.
    [90] Hunt G.R. .Electromagnetic Radiation: The Communication Link in Remote Sensing[A].In: B. Siegal and A. Gillespie(Eds). Remote Sensing in Geology[C].New York,Wiley: 1980,702.
    [91] Hunt G.R. , Hall R.B. .Identification of Kaolins and Associated Minerals in Altered Volcanic Rocks by Infrared Spectroscopy[J].Clays and Clay Minerals,1981,29:76-78.
    [92] Clark R.N.King T.V.V.Kejwa M.G.Swayze.Vergo N.High. Spectral Resolution Reflectance. Spectroscopy of Minerals.J.Geophys.Res.in press.1990,95:12653-12680.
    [93] Clark R.N. . Spectroscopy of Rocks and Minerals, and Principals of Spectroscopy[A].In: Remots sensing for the Earth Sciences: Manual of Remote Sensing[C].3cd,Vol.3.edited by Rencz An,Wiley J,Sons.Inc,1999,3-58.
    [94] 童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990.
    [95] 吴华,李华芹,莫新华等.新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义[J] .地质学报,2005.79(4):490-502.
    [96] 赵秋艳.LANDSAT-7 卫星的有效载荷 ETM+[J].航天返回与遥感.2000,21(4):25-32.
    [97] 李海涛,田庆久.ASTER 数据产品的特性及其计划介绍[J].遥感信息,2004,3:53-55,47.
    [98] 程博,刘少峰,杨巍然.Terra 卫星 ASTER 数据的特点与应用[J].华东地质学报.2003,26(1):15-17.
    [99] 郭亚东,史舟.先进星载热发射和反射辐射仪(ASTER)的特点及应用[J] .遥感技术与应用.2003,18(5):346-351.
    [100] Pearson k.On lines and planes of closest fit to systems of points in space[J].Philos Mag,1901,6(2):559-572.
    [101] Hotelling H.Analysis of a complex of statistical variables into principal components[J].Journal of Educational Psychology.1933,24:417-441,498-520.
    [102] Karhunen K.Uber lineare methoden in der wahrscheinlichkeitsrechnung[J].Amer Acad Sci,Fennicade Ser A I.1947,37:3-79.
    [103] Loéve M.Processus Stochastiques et Mouvenent Brownien[M].Paris:Hermann,1948.
    [104] 李玉珍,王宜怀.主成分分析及算法[J].苏州大学学报(自然科学版).2005,21(1):32-36.
    [105] Kendall M.Multivariate Analysis[M].England:Charles Griffin and Company limited,1975.
    [106] 孙文爽,陈兰祥.多元统计分析[M].北京:高等教育出版社,1994.
    [107] 郎锐.数字图像处理学 Visual C++实现[M].北京:北京希望电子出版社,2002.
    [108] 李成,孔旭,程福臻.主成分分析法在天体物理中的应用[J].天文学进展.2001,19(1):9-16.
    [109] 梁继,王建,王建华.基于光谱角分类器遥感影像的自动分类和精度分析研究[J].遥感技术与应用.2002,17(6):299-303.
    [110] 唐宏,杜培军,方涛等.光谱角制图模型的误差源分析与改进算法[J].光谱学与光谱分析.2005,25(8):1180-1183.
    [111] 赵春霞,钱乐祥.遥感影像监督分类与非监督分类的比较[J].河南大学学报(自然科学版).2004,34(3):90-93.
    [112] 吴昊,郁文贤,匡纲要.一种基于混合概率 PCA 模型的高光谱图像非监督分类方法[J].国防科技大学学报.2005,27(2):61-64.
    [113] 张景雄.遥感影像的全模糊监督分类[J].武汉测绘科技大学学报.1998,23(3):211-214.
    [114] 刘志刚,史文中,李德仁等.一种基于支撑向量机的遥感影像不完全监督分类新方法[J].遥感学报.2005,9(4):363-373.
    [115] [日]遥感研究会著,刘勇卫,贺雪鸿译.遥感精解.北京:测绘出版社,1993.
    [116] 朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000.
    [117] 冯钟葵.Landsat 7 ETM+数据的增益设置及增益改变[J].(中国遥感卫星地面站)用户简讯.2001(3):8-9.
    [118] 冯钟葵.关于地物辐射值的计算问题[J] .(中国遥感卫星地面站)用户简讯.2002(2):1.
    [119] 盛骤,谢式千,潘承毅.概率论与数理统计[M].第二版,北京:高等教育出版社,1989.
    [120] 吴林. 小波变换在图像压缩编码中的应用研究[M]:(硕士学位论文) .大连:大连理工大学,2001.
    [121] 庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2002.
    [122] Курек Н . Н . .Измененные околорудные породы и их поисковое значение [M] .Госгеотехиздат,Москва,1954. (中译本为:蚀变围岩及其找矿意义,1955) .
    [123] Шехтман.热液矿床详细构造预测图[M] .北京:地质出版社,1982.
    [124] Barnes.热液矿床地球化学(上,下)[M] .北京:地质出版社,1985,1987.
    [125] 李德仁.论全球定位系统(GPS)、数字摄影测量系统(DPS)、遥感(RS)、地理信息系统(GIS)和专家系统(ES)的结合-纪念夏坚白教授诞辰 90 周年瞻望测绘科学的发展前景[J] .测绘通报.1994,1:3-8.
    [126] 谢秋,黄涛.GIS 在矿业中的应用探讨[J].地理空间信息.2005,2(4):33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700