Al-Mg-TM合金的热性质及Mg_(97)Zn_1Y_2中24R型长周期相的微结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拥有密度轻、比强度和比刚度高、易于回收等优良性能的镁合金以及铝镁合金是一种良好的轻质结构材料,已经被广泛运用到了汽车工业,航天航空工业,微电子工业中。但是比较差的高温力学性能也限制了它们在更为广阔的空间发挥作用。为进一步改善这些合金的性能,虽进行了大量的实验探索,但理论研究相对较少。为此,本文运用第一性原理计算研究Al-Mg-TM(TM=Sc、Zr)合金的热性质及Mg_(97)Zn_1Y_2中24R型长周期结构。论文的主要内容如下:
     利用密度泛函理论,并结合密度泛函微扰理论对Al-Mg-TM(TM=Sc、Zr)合金中的二元面心立方结构相(Al_3Mg、Al_3Sc和Al_3Zr)在不同的温度和压强下的热性质做了比较详细的研究,并与纯Al的热性质做了比较。开始是通过密度泛函微扰理论获得了声子谱。同时还利用准谐近似获得了这些二元面心立方结构相自由能,从而可以得到多种以温度和压强为函数的热学量,比如:热格临爱森常数、热容、热膨胀系数以及熵,对它们的变化趋势也做了详细的讨论。还对Al_3Zr的绝热体模量以及等温体模量做了研究。这些研究结果为这个材料的设计与技术运用提供了非常有用的信息。
     基于密度泛函理论和密度泛函微扰理论,研究了Al-Mg-TM(TM=Sc、Zr)合金中的三元合金Al-Mg-Sc、Al-Mg-Zr以及四元合金Al-Mg-Sc-Zr的热性质。对这几种合金的声子谱,及以温度和压强为函数的热学量(热格临爱森常数、定体热容、定压热容、热膨胀系数、绝热体模量、等温体模量以及熵)做了详细的研究和讨论。研究的结果表明了四元合金Al-Mg-Sc-Zr的热膨胀系数非常明显地小于三元合金Al-Mg-Sc、Al-Mg-Zr的。同时还发现四元合金Al-Mg-Sc-Zr的热膨胀系数及绝热体模量的变化特征也明显的不同于三元合金Al-Mg-Sc、Al-Mg-Zr的。
     运用基于密度泛函理论的第一性原理对Mg_(97)Zn_1Y_2合金中的有奇异性能的24R型长周期相的微结构进行了研究。研究结果确定了添加的Y和Zn原子的位置,表明了这些添加的Y和Zn原子首先是富集在长周期相的两端的层错层,然后是少部分的添加的Y和Zn原子分布在长周期相的中间的层错层。同时还发现这些富集在层错层的添加原子是沿着对角线分布。并进一步研究了24R型长周期相的结构稳定性和电子态密度。
As lightweight structural materials with a good combination of mechanical properties such as low density, good stiffness, the highest strength-to-weight-ratio, especially the significant advantages of easy-recycling, Mg alloys and Al-Mg alloys have been applied extensively in the field of automotive, aerospace and microelectronic industries. However, applications of these alloys are still restrained due to the limited mechanical properties at high temperature. In order to further improve their properties, many experimental investigations have been performed. However, the theoretical study is very scarce. In this dissertation, First principles calculations have been carried out for study of thermal properties of Al-Mg-TM(TM=Sc、Zr) alloys and the microstructure of 24R-type LPSO phase. The main contents of the dissertation are as following:
     Ab inito density functional theory (DFT) and density function perturbation theory (DFPT) have been used to investigate the thermal properties of the face-center-cubic (fcc) Al_3X (X=Mg、Sc、Zr) alloys over a wide range of pressure and temperature, in comparison with fcc Al. Phonon dispersions were obtained at equilibrium and strained configurations by density functional perturbation theory. Using the quasiharmonic approximation for the free energy, several thermal quantities of interest such as thermal Grüneisen parameter, heat capacity, thermal expansion coefficient, and entropy, were calculated as a function of temperature and pressure, as well as adiabatic bulk modulus and isothermal bulk modulus of Al_3Zr, and the variation features of these quantities were discussed in details. The present investigation provides useful information for design and applications of technologically relevant Al-based alloys.
     Ab initio density functional theory (DFT) and density function perturbation theory (DFPT) have also been used to investigate the thermal properties of the Al-Mg-Sc、Al-Mg-Zr and Al-Mg-Sc-Zr alloys over a wide range of temperature and pressure. Phonon dispersions were obtained at equilibrium and strained configurations by DFPT. Using the quasiharmonic approximation (QHA) for the free energy, several physical quantities of interest such as thermal Grüneisen parameter, heat capacity at constant pressure and at constant volume, thermal expansion coefficient, entropy, adiabatic bulk modulus and isothermal bulk modulus as a function of temperature and pressure are calculated and discussed. The present results show that the thermal expansion coefficient of the Al-Mg-Sc-Zr is far lower than that of Al-Mg-Sc and Al-Mg-Zr, and the variation feature in the adiabatic bulk modulus and isothermal bulk modulus for the Al-Mg-Sc-Zr are also very different from that of Al-Mg-Sc and Al-Mg-Zr.
     The first-principles calculation based on density functional theory has been carried out to study the microstructural feature of the novel 24R-type long period stacking ordered structure in Mg_(97)Zn_1Y_2 alloy. The lattice positions of the Y and Zn atoms are determined theoretically, it is shown that the additive atoms are firstly enriched in the stacking fault layers at the two ends, a small amount are distributed in the interior stacking fault layers of the structure. And the arrangement of these Y and Zn atoms trends to be along the diagonal line of the unit cell. The structural stability is analyzed and the electronic density of state is discussed as well as.
引文
[1]吉泽升,李德锋,孙荣滨.镁合金压铸技术的发展现状[J].轻合金加工技术, 2001, 12:1-4
    [2]刘刚强,陈乐平,艾云龙.稀土Nd对ZM5合金组织与性能影响的研究[J].特种铸造及有色合金, 2005, 25 :496-498
    [3]刘子利,丁文江,袁广银.镁铝基耐热铸造镁合金的进展[J].机械工程材料, 2001, 25:1-4
    [4] Karen P, Kjekshus A, Huang Q. The crystal structure of magnesium dicarbide [J]. Journal of Alloys and Compounds, 1999, 282:72-75
    [5]刘正,王越,王中光,李锋,审志勇.镁基轻质材料的研究与应用[J].材料研究学报, 2000, 145:449-452
    [6]赖华清,徐翔.镁合金在汽车中的应用[J].汽车技术, 2003, 26:35-37
    [7]潘青林,尹志民.微量Sc在Al-Mg合金中的作用金属学报[J]. 2001,37:749-753
    [8]柏振海,尹振兴. AI-Mg-Sc合金铸态组织观察[J].轻合金加工技术,2003,31:7-14
    [9] Zhang Y. H., Yin Z.M. Recrystallization of Al-Mg-Sc-Zr alloys [J]. Rare Metal Materials and Engineering, 2002, 31:167-170.
    [10]李绍禄,潘青林. Sc和Ti复合微合金化对Al-Mg合金组织和性能的影响[J].兵器材料科学与工程, 2003, 26:11-15
    [11] Filatov A. Y. New Al-Mg-Sc alloys [J]. Materials Science and Engineering A, 2000, 289:3924-3927
    [12]潘青林,尹志民. Sc和Zr复合微合金化在Al-Mg合金中的存在形式与作用[J].航空材料学报, 2002, 22:6-10
    [13]尹志民,高拥政.微量Sc和Zr对Al-Mg合金铸态组织的晶粒细化作用[J].中国有色金属学报, 1997, 7:75-78
    [14]柏振海,罗兵辉.微量Sc和Zr对Al-Mg合金组织和性能的影响[J].材料科学与工艺, 2002, 10:306-309
    [15] Yin Z. M. Effact of minor Sc and Zr on the microsturcture and mechanical properties of Al-Mg based alloys [J]. Materials Science and Engineering A, 2000, 280:151-155
    [16] Parker B. The effact of small additions of scandium on the properties of aluminum alloys [J]. Jounral of Materials Science, 1995, 30:452-458
    [17] Lathbaai S., Lloyd P.G. The effact of scandium on the microsturcture, mechnaieal properties and weldability of cast Al-Mg alloy [J]. Acta Materialia, 2002, 50:4275-4292
    [18] Maeng D. Y., Lee J. H. The eeffct of transition elements on the superplastic behavior of AI-Mg alloys [J]. Materials Science and Engineering A, 2003, 357:188-195
    [19]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为[M].北京:兵器工业出版社, 1992:75-296
    [20] Ferro R., Saecone A., Borzone G. Rare earth metals in light alloys [J]. Jounral of Rare Earths, 1997, 15:45-61
    [21]郭旭涛,李培杰,刘树勋.稀土耐热镁舍金发展现状及展望[J].铸造, 2002, 51:68
    [22]刘斌,刘顺华,金文中.稀土在镁合金中的作用和影响[J].上海有色金属, 2003, 24: 27-31
    [23]黎业生,董定乾,吴子平.稀土镁合金的研究现状及应用前景[J].轻合金加工技术, 2006, 34:1-6
    [24]马刚,郭胜利.稀土在镁合金中的应用[J].宁夏工程技术, 2005, 4:265- 269
    [25] Schumann S., Friedrich H. Current and future use of magnesium in the automotive industry [J]. Materials Science Forum, 2003, 51:419-422.
    [26] Schlapbach L., Zuttel A. Hydrogen storage materials for mobile applications [J]. Nature, 2001, 414:353-358
    [27] Smola B., Stul?kova I., Buch F., Mordike B. Structural aspects of high performance Mg alloys design [J]. Materials Science and Engineering A, 2002, 324:113-117
    [28] Kürti J., Kresse G, Kuzmany H. First-principles calculations of the radial breathing mode of single-wall carbon nanotubes [J]. Physical Review B, 1998, 58: 4-10
    [29] Sánchez D., Artacho E., Soler J. M., Rudio A., Ordejon P. Ab initio structural, elastic and vibrational properties of carbon nanotubes [J]. Physical Review B, 1999, 59: 12678-12688
    [30] Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects [J]. Physical Review B, 1965, 140: A1133-A1138
    [31] Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Physical Review B, 1964, 136: 864-B871
    [32] Levy M., Perdew H. Density-functional method in physics [M]. New York: Plenum, 1985
    [33]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社, 1998
    [34] Perdew J. P., Chevary J. A., Vosko S. H. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1993, 46: 6671-6687
    [35] Appelbaum J. A., Hamann D. R. Self-consistent pseudopotential for Si [J]. Physical Review B, 1973, 8: 1777-1780
    [36] Hamann D. R., Schlüter M., Chiang C. Norm-conserving pseudopotentials [J]. Physical Review Letters, 1979, 43: 1494-1497
    [37] Baroni S., deGironcoli S., DalCorso A., Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73:515-562
    [38] Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54: 11169-11186
    [39] Lathabai S., Lioyd P. G. The effect of scandium on the microstructure, mechanical properties and weldability of a cast Al-Mg alloy [J]. Acta Materialia, 2002, 50: 4275-4292
    [40] Lee S., Utsunomiya A. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys [J]. Acta Materialia, 2002, 50:553-564
    [41] Sanschagrin A., Tremblay R., Angers R. Mechanical properties and microstructure of new magnesium-lithium base alloys [J]. Materials Science and Engineering A, 1996, 220:69-77
    [42] Polmear I. J. Recent developments in light alloys [J]. Materials Transactions, 1996, 37:12-31
    [43] Li Y., Jones H. Structure and mechanical properties of Magnesium alloys and applications [J]. Material Science Technology, 1996, 12 : 81-87
    [44] Lu Y. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys [J]. Materials Science and Engineering A, 2000, 278: 66-71
    [45] Mordike B. L. Development of highly creep resistant magnesium alloy [J]. Materials Processing Technology, 2001, 117(3): 391-394
    [46] Li D.Q., Wang Q.D., Ding W.J. Structural materials: properties, microstructure and processing [J]. Materials Science and Engineering A, 2007, 448:165-170
    [47] Socjusz P. M., Litynska L. Effect of yttrium on structure and mechanical properties of Mg alloys [J]. Materials Chemistry and Physics, 2003, 80:472-475
    [48] Jun J.H., Park B.K., Kim J.M., Kim K.T., Jung W.J. Effects of Ca addition on microstructure and mechanical properties of Mg-RE-Zn casting alloy [J]. Materials Science Forum, 2005, 488:107-110
    [49] Lee W. S., Chen T.H. Mechanical and microstructural response of aluminum–scandium (Al–Sc) alloy as a function of strain rate and temperature [J]. Materials Chemistry and Physics, 2009, 113:734-745
    [50] Kramer L.S., Tack W.T. Fernandes M.T., Scandium in aluminum alloys [J]. Advanced Material Process, 1997, 152:23-24
    [51] Staley J.T., Liu J., Fernandes M.T. Aluminum alloys for aerostructures [J], Advanced Material Process, 1997, 152:17-20
    [52] Von B. F., Mordike B.L., Pisch A., Schmid F. R. Development of Mg–Sc–Mn alloys [J]. Materials Science and Engineering A, 1999, 263: 1-7
    [53] Pisch A., Crobner J., Fetzrer R. S. Mg-rich phase equilibria and thermodynamic assessment of the Mg-Sc system [J ]. Materials Science and Engineering A, 1998, 89: 474-477
    [54] Sawtell R. R., Jensen C.L. Mechanical properties and microstructures of Al-Mg-Sc alloys [J]. Metall Transition A, 1990, 21: 421-430
    [55] Toropova L.S., Eskin D.G., Kharakterova M.L., Dobatkina T.V. Advanced Aluminium Alloys Containing Scandium: Structure and Properties [M]. The Netherlands: Gordon and Breach Science Publishers, 1998
    [56] Davydov V.G., Rostova T.D., Zakharov V.V. Filatove Y. A., Yelagin V. I. Al-Mg-Sc alloys [J]. Materials Science and Engineering A, 2000, 280: 30
    [57] Roeder O, Schauerte O, Lutjering G, Gysler A. Correlation between microstructure and mechanical properties of Al-Mg wlloys without and with scandium [J]. Material Sciece Forum, 1996, 217: 1835- 1840
    [58] Aiura T, Sugawara N, Miura Y. Scientific principles of making an alloying addition of scandium to aluminium alloys [J]. Materials Science and Engineering A, 2000, 280: 30-36
    [59] Gao Y. J., Ban D.M., Han Y.J., Zhong X.P. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloys [J]. Transition Nonferrous Metal Social China, 2004, 14: 922-927
    [60] Wang Z.Z., Wang Y.F., Hu Y.L., Deng Y.H., Tang B.Y., Study on crystalline and electronic structures of Al-Mg-Sc Alloys based on the first-principles (accepted)
    [61] Shobhana N., Stefano d. G. Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA [J]. Physical Review B, 2002, 65: 064302
    [62] Debernardi A. Anharmonic effects in the phonons of III-V semiconductors: first principles calculations [J]. Solid State Communication, 2000, 113(1): 1-10
    [63] Wallace D. C. Thermodynamics of Crystals [M] (Dover, New York, 1972)
    [64] Ashcroft N. W., Mermin N. D., Solid State Physics [M] (Holt-Saunders, Tokyo, 1981)
    [65] Baroni S., Dal Corso A., Gironcoli S., Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physical, 2001, 73: 515
    [66] Perdew J. P. and Wang Y., Accurate and simple analytic representation of the electron-gas correlationenergy [J]. Physical Review B, 1992, 45: 13244-13249
    [67] Vanderbilt D. Soft self-consistent pseudopotentials in ageneralized eigenvalue formalism [J]. Physical Review B, 1990, 41: 7892-7895
    [68] Fu C.L., Ho K.M. First-principles calculation of the equilibrium ground state properties of transition metals: applications to Nb and Mo [J]. Physical Review B, 1983, 28: 5480-5486
    [69] Gironcoli S. de Lattice dynamics of metals from density-functional perturbation theory [J]. Physical Review B, 1995, 51: 6773-6776
    [70] http://www.vlab.msi.umn.edu/
    [71] Karki B. B., Wentzcovitch R. M. High-pressure lattice dynamics and thermoelasticity of MgO [J]. Physical Review B, 2000, 61: 8793-8800
    [72] Wu Z.Q., Wentzcovitch R. M. PVT relations in MgO: an ultra-high PVT scale for planetary sciences applications [J]. Geophys Research, 2008, 113:1-12
    [73] Tao S., Koichiro U., Wu Z.Q., Wentzcovitch R. M. Lattice dynamics and thermal equation of state of platinum [J]. Physical Review B, 2008, 78: 024304-024315
    [74] Norman A. F., Prangnell P. B., Mcewen R. S. The solidification behaviour of dilute aluminium and scandium alloys [J]. Acta Materialia, 1998, 46: 5715-5732
    [75] Jr. Hyland R.W., Asta M., Foiles S.M., Rohrer C.L. Al3Sc interphase boundary energy calculations [J]. Acta Mow, 1998, 46: 3667-3678
    [76] Asta, Ozolins. Structural, vibrational, and thermodynamic properties of Al-Sc alloys and intermetallic compounds [J]. Physical Review B, 2001, 64: 094104-09117
    [77] Fleszar A., Resta R. Real-space force constants for lattice dynamics in silicon and germanium in the adiabatic bond-charge model [J]. Physical Review B, 1986, 34: 7140-7145
    [78] Kunk K., Gomes Dacosta P. Real-space convergence of the force series in the lattice dynamics of germanium [J]. Physical Review B, 1985, 32: 2010-2021
    [79] Hofmeister A. M., Mao H. K. Pressure derivatives of shear and bulk moduli from the thermal Grüneisen parameter and volume-pressure data [J]. Geochimica Cosmochimica Acta, 2003, 67: 1207-1227
    [80] Li Z.Q., John S. T. Ab initio studies on the vibrational and thermal properties of Al3Li [J]. Physical Review B, 2001, 61(21):14531-14536
    [81] Masuda J.K., Hung V. V. Thermodynamic quantities of metals investigated by an analytic statistical moment method [J]. Physical Review B, 2003, 67: 094301-094314
    [82] Li Y., Barojas E. B. Structure and dynamics of alkali-metal clusters and fission of highly charged clusters [J]. Physical Review B, 1998,57: 15519-15532
    [83] Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys [J]. Physical Review B, 1993, 48: 22-33
    [84] Harada Y., Dun D.C. Thermal Expansion of Al3Sc and Al3(Sc0.75X0.25) [J]. Scripta Materialia, 2003, 48: 219-222
    [85] Debernardi A., Alouani M. Ab initio thermodynamics of metals: Al and W [J]. Physical Review B, 2001, 63: 064305-064311
    [86] Robson J.D., Prangnell P.B. Modelling Al3Zr dispersoid precipitation in multicomponent aluminium Alloys [J]. Material Science and Engineering A, 2003, 352: 240-250
    [87] Flower H.M., Gregson P.J. Solid state phase transformations in aluminum alloys containing lithium [J]. Material Science Technology, 1987, 3:81-90
    [88] Ma Z.Y., Mishra R.S. High strain rate superplasticity in friction stir processed Al-Mg-Zr Alloy [J]. Material Science and Engineering A, 2003, 351: 148-153
    [89]周惦武,刘金水,杨峰,李贵发,陈律,彭平.铝镁稀土合金的电子结构[J].特种铸造及有色合金, 2006, 26(2):115-118
    [90] Deschamps A., Bre′chet, Y. Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–(Zr) alloy [J]. Material Science and Engineering A, 1998, 251: 200-207
    [91] Polmear I J. Light alloys-metallurgy of the light metals [M], 3rd ed. London: Arnold, a division of Hodder Headline PLC, 1995
    [92] ASM metals handbook, properties and selection: nonferrous alloys and special-purpose materials [M]. vol. 2, 10th ed. Ohio, USA: ASM International; 1990
    [93] Polmear I. J. Light Alloys [M]. Metallurgy and Materials Science Series, seconded., Edward Arnold, London, 1989,26: 97-103
    [94] Conserva M., Di Russo E., Caloni O. Comparison of the influence of chromium and zirconium on the quench sensitivity of aluminum-zinc-magnesium-copper alloys [J]. Metalle Transition, 1971, 2: 1227-1232
    [95] Mukhopadhyay A. K., Yang Q. B., Singh S. R. The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy [J]. Acta Metalle Materialia, 1994, 42: 3083-3091
    [96] Yin Z.M., Gao Y.Z., Pan Q.L. Grain refining caused by addition of minor Sc and Zr to the as cast of Al-Mg alloys [J]. Journal of Nonferrous Metals, 1997, 7: 75-78
    [97] Kendig K. L., Miracle D.B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy, Acta Materialia, 2002, 50: 4165-4175
    [98] Dai X.Y., Xia C.Q. Structure and properties of an ultra-high strength 7xxx aluminum alloy contained Sc and Zr [J]. Journal of University of Science and Technology Beijing, 2008, 15: 276-279
    [99] Lenczowski B., Munich R. R., Bonn D. W., Tempus G. Aluminium [M]. 2000,76: 200-206
    [100] Liu J.H., Liang X. Study of microbiologically induced comsion action on A1-6Mg-Zr and Al-6Mg-Zr-Sc [J]. Journal of Rare Earths, 2007, 25: 609-614
    [101] Turba K., Malek P., Cieslar M.. Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing [J]. Material Science and Engineering A, 2007, 462: 91-94
    [102] Raju P. N., Srinivasa Rao K. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions [J]. Material Science and Engeering A, 2007, 464: 192-201
    [103] Zhao J., Jiang F. Trends in composite materials and their design [J]. Materials and Design, 2010,31: 306-311
    [104] Li D.L., Chen P., Yi J.X., Tang B.Y., Peng L.M., Ding W.J. Ab initio study on the thermal properties of the fcc Al3Mg and Al3Sc alloys [J]. Journal of Physics D: Applied Physics, 2009, 42:225407-225414
    [105] Li D.L., Chen P., Yi J.X., Tang B.Y. Thermal properties of FCC Al3Zr: First-principles study [J]. Material Science Forum, 2010, 650:313-319
    [106] Pierre C., Wentzcovitch R. M. First-principles prediction of crystal structures at high temperaturesusing the quasiharmonic approximation [J]. Physical Review B, 2007, 76:064116-064121
    [107] Edgar R.L. Magnesium Alloys and their Application [M]. K.U. Kainer Pub, France, 2000, p.3
    [108] Kawamura Y., Hayashi K., Inoue A., Masumoto T. Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa [J]. Material Transition, 2001, 42: 1172-1176
    [109]Kawamura Y., Yoshimoto S. High strength Mg-Zn-Y Alloys with LPSO structure [J]. Mg Technology TMS (The Minerals, Metals & Materials Society), 2005, 499-502
    [110] Inoue A., Matsushita M., Kawamura Y., Amiya K., Hayashi K. Novel hexagonal structure of ultra-high strength magnesium-based alloys [J]. Material Transition, 2002,43: 580-584
    [111] Ono A., Abe E., Itoi T., Hirohashi M., Yamasaki M., Kawamura Y. Microstructure evolutions of rapidly-solidified and conventionally-cast Mg97Zn1Y2 alloys [J]. Material Transition, 2008, 49: 990-994
    [112] Zhu Y.M., Weyland M., Morton A.J., Oh-ishi K., Hono K., Nie J. F. The building block of long-period structures in Mg-RE-Zn alloys [J]. Scripta Materialia 2009, 60: 980-983
    [113] Yamasaki M., Nyu K., Kawamura Y. Development of high strength Mg alloys by P/M process [J]. Material Science Forum, 2003, 419(422): 739-744
    [114] Nishida M. and Yamamuro T. Electron microscopy study of microstructure modifications in RS P/M Mg97Zn1Y2 alloy [J]. Material Science Forum, 2003, 419(422): 715-720
    [115] Abe E., Kawamura Y., Hayashi K. Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolution Z-contrast STEM [J]. Acta Materialia, 2002, 50: 3845-3857
    [116] Ping D. H., Hono K. Local chemistry of a nanocrysta1line high strength Mg97Zn1Y2 alloy [J]. Philosophy Magazine Letter, 2002, 82: 543-551
    [117] Matsuda M., Ii S., Kawanura Y. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy [J]. Material Science and Engineering A, 2005, 393: 269-274
    [118] Yamasaki M., Anan T., Yoshimoto S. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long period stacking ordered structure precipitate [J]. Scripta Materialia, 2005, 53: 799-803
    [119] Amiya1 K., Ohsuna T. Long-period hexagonal structures in me1t-spun Mg97 Ln2Znl(Ln=lanthanide meta1) alloys [J]. Material Transition, 2003, 44: 2151-2156
    [120] Kawamura Y., Scri T. K., Izumi S. Elevated temperature Mg97Cu1Y2 alloy with long period ordered structure [J]. Scripta Materialia, 2006, 55: 453-456
    [121] Matsuura M., Konno K. Precipitates with peculiar morphology consisting of a disk-shaped amorphous core sandwiched between 14H-typed long period stacking order crystals in a me1t-quenched Mg98Cu1Y1 alloy [J]. Material Transition, 2006, 47: 1264-1267
    [122] Luo Z. P., Zhang S. Q. Microstructures of Mg-Zn-Zr-RE alloys with high RE and low Zn contents [J]. Journal of Alloys and Compounds, 1994, 209: 275-278
    [123] Polmear I. J. Magnesium alloys and applications [J]. Material Science Technology, 1994, 10: 1-16
    [124] Matsuda M., Ii S., Kawamura Y. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy [J]. Material Science Engeering A, 2004, 386: 447-452
    [125] Itoi T., Seimiya T. Long period stacking structure observed in Mg97Zn1Y2 alloy [J]. Scripta Materialia, 2004, 51: 107-111
    [126] Wang Y. F., Wang Z. Z., Yu N., Tang B.Y. Microstructure investigation of the 6H-type long-period stacking order phase in Mg97Zn1Y2 alloy [J]. Scripta Materialia, 2008, 58: 807-810
    [127] Chen P., Li D. L., Yi J. X., Tang B. Y., Peng L. M. Microstructure and electronic characteristics of the 6H-type ABACAB LPSO structure in Mg97Zn1Y2 alloy [J]. Journal of Alloys and Compounds, 2009, 485: 672-676
    [128] Yi J. X., Chen P., Li D. L., Tang B. Y., Peng L. M. Journal of Alloys and Compounds, (accepted)
    [129] Bl?chl P. E. Projector augmented-wave method [J]. Physical Review B, 1994, 50: 17953-17979
    [130] Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physics Reviwe B, 1999, 59: 1758-1775
    [131] Monkhorst H. J., Pack J. D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13: 5188-5192
    [132] Bl?chl P. E., Jepsen O. Improved tetrahedron method for brillouin-zone integrations [J]. Physical Review B, 1994, 49: 16223-16233
    [133] Pearson W. B. A handbook of lattice spacings and structures of metals and alloys [M]. Pergamon, Oxford, 1967
    [134] Datta A., Ramamurty U. Crystal structures of a Mg–Zn–Y Alloy: A first-principles study [J]. Compute Material Science, 2006, 37: 69-73
    [135] Matsuura M., Sakurai M. Local structures around Zn and Y in the melt-quenched Mg97Zn1Y2 ribbon[J]. Journal of Alloys and Compounds, 2003, 353: 240-245
    [136] Wolverton C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys [J]. Acta Materialia, 2001, 49: 3129-3142
    [137] Zhu Y. M., Morton A. J., Weyland M., Nie J. F. Characterization of planar features in Mg-Y-Zn alloys [J]. Acta Materialia, 2010, 58:464-475
    [138] Zubov U. I., Tretiakov N. P. Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a Van der Waals crystal-fullerene C60 [J] Physical Letter A, 1995, 198: 223-227
    [139] Sahu B. R. Electronic structure and bonding of ultralight LiMg [J], Material Science and Engineering B, 1997, 49: 74-78
    [140] Norbert H., Huang Y.D. Intermetallics in magnesium alloys [J]. Advance Engineering Material, 2006, 8: 235-240
    [141] Gilman J. J. Electronic basis of the strength of materials [M]. Cambridge University Press, United Kingdom, 2003, pp. 1–4 and 201–225.
    [142] Garcés G., Maeso M., Todd I., Pérez P., Adeva P. Deformation behaviour in rapidly solidified Mg97Zn1Y2 (at.%) alloy [J]. Journal of Alloys and Compounds, 2007, 432: 10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700