抗骨桥蛋白单链抗体可抑制乳腺癌转移和血管生成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨桥蛋白(Osteopontin,OPN)与肿瘤的生长和转移有密切的关系。为系统研究抗OPN抗体在抑制肿瘤转移过程中的作用,探讨OPN作为肿瘤转移治疗靶点的可能性,本实验在建立噬菌体抗体展示平台的基础上,筛选得到抗OPN单克隆单链抗体,构建并表达获得抗OPN单链抗体-Fc融合蛋白;研究抗OPN单链抗体-Fe融合蛋白在体内外对乳腺癌转移和血管生成的作用。结果表明抗OPN单链抗体-Fc融合蛋白1A12和2H8不但能够抑制乳腺癌细胞MDA-MB-435s在体外的粘附、侵袭、迁移和锚定非依赖生长,而且可以抑制OPN体内外的促血管生成作用;该血管生成抑制作用是通过抑制NF-κB介导的细胞生存调节通路,促进内皮细胞凋亡而实现的。在体内模型中,1A12和2H8能够抑制MDA-MB-435s在裸鼠体内的原发肿瘤生长和自发性肺转移,并能够降低肿瘤组织中微血管密度,增加肿瘤内皮细胞凋亡。本研究发现OPN是抑制肿瘤转移的有效治疗靶点,抗OPN单链抗体-Fc融合蛋白可以通过抑制肿瘤细胞的转移活性同时阻碍肿瘤血管生成,从而达到抑制肿瘤转移的目的。
Osteopontin (OPN) has been associated with tumor growth and metastasis. In order to study the function of anti-OPN antibodies in inhibiting tumor metastasis, we have raised several anti-OPN single-chain Fv (scFv) antibodies from phage antibody library and expressed them as scFv-Fc fusion proteins. We studied their anti-tumor effects in vitro and in vivo. Two anti-OPN scFv-Fc fusion proteins 1A12 and 2H8 were able to inhibit MDA-MB-435s breast cancer cell attachment, invasion, migration and colony formation in soft agar. 1A12 and 2H8 showed markedly inhibitory effects toward angiogenesis, and this inhibitory effect was achieved by inhibiting NF-kB mediated cell survival pathway and increasing endothelial cell apoptosis. In vivo studies showed 1A12 and 2H8 delayed primary tumor growth and reduced spontaneous lung metastasis in breast cancer xenograft model; furthermore, they reduced tumor microvessel density and increased tumor endothelial cell apoptosis. The present study has demonstrated OPN is an effective target in the treatment of tumor, and anti-OPN scFv-Fc fusion proteins could inhibit tumor metastasis by inhibiting angiogenesis and breast cancer cell migration.
引文
1. Senger, D.R., D.F. Wirth, and R.O. Hynes. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell. 1979; 16(4): 885-893.
    2. Crosby, A.H., S.J. Edwards, J.C. Murray, et al. Genomic organization of the human osteopontin gene: exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type II. Genomics. 1995; 27(1): 155-160.
    3. Smith, GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705): 1315-1317.
    4. Denhardt, D.T. and X. Guo. Osteopontin: a protein with diverse functions. Faseb J. 1993; 7(15): 1475-1482.
    5. Reinholt, F.P., K. Hultenby, A. Oldberg, et al. Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A. 1990; 87(12): 4473-4475.
    6. Leali, D., P. Dell'Era, H. Stabile, et al. Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol. 2003; 171(2): 1085-1093.
    7. Senger, D.R., S.R. Ledbetter, K.P. Claffey, et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol. 1996; 149(1): 293-305.
    8. Kiefer, M.C., D.M. Bauer, and P.J. Barr. The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Res. 1989; 17(8): 3306.
    9. Kerr, J.M., L.W. Fisher, J.D. Termine, et al. The cDNA cloning and RNA distribution of bovine osteopontin. Gene. 1991; 108(2): 237-243.
    10. Wrana, J.L., Q. Zhang, and J. Sodek. Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Res. 1989; 17(23): 10119.
    11. Tezuka, K., T. Sato, H. Kamioka, et al. Identification of osteopontin in isolated rabbit osteoclasts. Biochem Biophys Res Commun. 1992; 186(2): 911-917.
    12. Oldberg, A., A. Franzen, and D. Heinegard. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986; 83(23): 8819-8823.
    13. Craig, A.M., J.H. Smith, and D.T. Denhardt. Osteopontin, a transformation-associated cell adhesion phosphoprotein, is induced by 12-O-tetradecanoylphorbol 13-acetate in mouse epidermis. J Biol Chem. 1989; 264(16): 9682-9689.
    14. Moore, M.A., Y. Gotoh, K. Rafidi, et al. Characterization of a cDNA for chicken osteopontin: expression during bone development, osteoblast differentiation, and tissue distribution. Biochemistry. 1991; 30(9): 2501-2508.
    15. Yokosaki, Y, N. Matsuura, T. Sasaki, et al. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SWYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem. 1999; 274(51): 36328-36334.
    16. Prols, F., B. Loser, and M. Marx. Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis. Exp Cell Res. 1998; 239(1): 1-10.
    17. Hirama, M., F. Takahashi, K. Takahashi, et al. Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett. 2003; 198(1): 107-117.
    18. Hamada, Y., K. Nokihara, M. Okazaki, et al. Angiogenic activity of osteopontin-derived peptide SWYGLR. Biochem Biophys Res Commun. 2003; 310(1): 153-157.
    19. Thalmann, GN., R.A. Sikes, R.E. Devoll, et al. Osteopontin: possible role in prostate cancer progression. Clin Cancer Res. 1999; 5(8): 2271-2277.
    20. Adler, B., S. Ashkar, H. Cantor, et al. Costimulation by extracellular matrix proteins determines the response to TCR ligation. Cell Immunol. 2001; 210(1): 30-40.
    21. Gotoh, M., M. Sakamoto, K. Kanetaka, et al. Overexpression of osteopontin in hepatocellular carcinoma. Pathol Int. 2002; 52(1): 19-24.
    22. Tuck, A.B. and A.F. Chambers. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia. 2001; 6(4): 419-429.
    23. Faccio, R., M. Grano, S. Colucci, et al. Activation of alphav beta3 integrin on human osteoclast-like cells stimulates adhesion and migration in response to osteopontin. Biochem Biophys Res Commun. 1998; 249(2): 522-525.
    24. Bautista, D.S., J.W. Xuan, C. Hota, et al. Inhibition of Arg-Gly-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J Biol Chem. 1994; 269(37): 23280-23285.
    25. Hijiya, N., M. Setoguchi, K. Matsuura, et al. Cloning and characterization of the human osteopontin gene and its promoter. Biochem J. 1994; 303 ( Pt 1): 255-262.
    26. Young, M.F., J.M. Kerr, J.D. Termine, et al. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics. 1990; 7(4): 491-502.
    27. He, B., M. Mirza, and GF. Weber. An osteopontin splice variant induces anchorage independence in human breast cancer cells. Oncogene. 2006; 25(15): 2192-2202.
    28. Krebber, A., S. Bornhauser, J. Burmester, et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods. 1997; 201(1): 35-55.
    29. Kettleborough, C.A., J. Saldanha, K.H. Ansell, et al. Optimization of primers for cloning libraries of mouse immunoglobulin genes using the polymerase chain reaction. Eur J Immunol. 1993; 23(1): 206-211.
    30. Zhou, H., R.J. Fisher, and T.S. Papas. Optimization of primer sequences for mouse scFv repertoire display library construction. Nucleic Acids Res. 1994; 22(5): 888-889.
    31. Vieira, J. and J. Messing. Production of single-stranded plasmid DNA. Methods Enzymol. 1987; 153: 3-11.
    32. Coppola, D., M. Szabo, D. Boulware, et al. Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res. 2004; 10(1 Pt 1): 184-190.
    33. Gao, C, H. Guo, L. Downey, et al. Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis. 2003; 24(12): 1871-1878.
    34. Tuck, A.B., D.M. Arsenault, F.P. O'Malley, et al. Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene. 1999; 18(29): 4237-4246.
    35. Chambers, A.F., S.M. Wilson, N. Kerkvliet, et al. Osteopontin expression in lung cancer. Lung Cancer. 1996; 15(3): 311-323.
    36. Tuck, A.B., F.P. O'Malley, H. Singhal, et al. Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med. 1997; 121(6): 578-584.
    37. Agrawal, D., T. Chen, R. Irby, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst. 2002; 94(7): 513-521.
    38. Kim, J.H., S.J. Skates, T. Uede, et al. Osteopontin as a potential diagnostic biomarker for ovarian cancer. Jama. 2002; 287(13): 1671-1679.
    39. Ribatti, D., B. Nico, A. Vacca, et al. The gelatin sponge-chorioallantoic membrane assay. Nat Protoc. 2006; 1(1): 85-91.
    40. Shijubo, N., T. Uede, S. Kon, et al. Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog. 2000; 11(2): 135-146.
    41. Shijubo, N., T. Uede, S. Kon, et al. Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. Am J Respir Crit Care Med. 1999; 160(4): 1269-1273.
    42. Takagi, H., K. Suzuma, A. Otani, et al. Role of vitronectin receptor-type integrins and osteopontin in ischemia-induced retinal neovascularization. Jpn J Ophthalmol. 2002; 46(3): 270-278.
    43. Nguyen, M., Y. Shing, and J. Folkman. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res. 1994; 47(1): 31-40.
    44. Gimbrone, M.A., Jr., R.S. Cotran, S.B. Leapman, et al. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst. 1974; 52(2): 413-427.
    45. Ziche, M, G Alessandri, and P.M. Gullino. Gangliosides promote the angiogenic response. Lab Invest. 1989; 61(6): 629-634.
    46. Kenyon, B.M., E.E. Voest, C.C. Chen, et al. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 1996; 37(8): 1625-1632.
    47. Jain, R.K., K. Schlenger, M. Hockel, et al. Quantitative angiogenesis assays: progress and problems. Nat Med. 1997; 3(11): 1203-1208.
    48. Denhardt, D.T., C.A. Lopez, E.E. Rollo, et al. Osteopontin-induced modifications of cellular functions. Ann NY Acad Sci. 1995; 760: 127-142.
    49. Kleinman, J.G, E.M. Worcester, A.M. Beshensky, et al. Upregulation of osteopontin expression by ischemia in rat kidney. Ann N Y Acad Sci. 1995; 760: 321-323.
    50. Padanilam, B.J., D.R. Martin, and M.R. Hammerman. Insulin-like growth factor I-enhanced renal expression of osteopontin after acute ischemic injury in rats. Endocrinology. 1996; 137(5): 2133-2140.
    51. Khan, S.A., C.A. Lopez-Chua, J. Zhang, et al. Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. J Cell Biochem. 2002; 85(4): 728-736.
    52. Kroemer, G The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997; 3(6): 614-620.
    53. Liotta, L.A. Cancer cell invasion and metastasis. Sci Am. 1992; 266(2): 54-59,62-53.
    54. Fidler, I.J. Critical factors in the biology of human cancer metastasis: twenty-eighth GH.A. Clowes memorial award lecture. Cancer Res. 1990; 50(19): 6130-6138.
    55. Chambers, A.F., I.C. MacDonald, E.E. Schmidt, et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 1995; 14(4): 279-301.
    56. Liotta, L.A., RS. Steeg, and W.G Stetler-Stevenson. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991; 64(2): 327-336.
    57. Torosian, M.H. and R.B. Donoway. Growth hormone inhibits tumor metastasis. Cancer. 1991; 67(9): 2280-2283.
    58. Fidler, I.J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 1986; 5(1): 29-49.
    59. Liotta, L.A. Tumor invasion and metastases—role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 1986; 46(1): 1-7.
    60. Kubota, T. Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem. 1994; 56(1): 4-8.
    61. Giavazzi, R., D.E. Campbell, J.M. Jessup, et al. Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice. Cancer Res. 1986; 46(4 Pt 2): 1928-1933.
    62. Naito, S., A.C. von Eschenbach, and I.J. Fidler. Different growth pattern and biologic behavior of human renal cell carcinoma implanted into different organs of nude mice. J Natl Cancer Inst. 1987; 78(2): 377-385.
    63. Niederkorn, J., J.W. Streilein, and J.A. Shadduck. Deviant immune responses to allogeneic tumors injected intracamerally and subcutaneously in mice. Invest Ophthalmol Vis Sci. 1981; 20(3): 355-363.
    64. Theodorescu, D., I. Cornil, B.J. Fernandez, et al. Overexpression of normal and mutated forms of HRAS induces orthotopic bladder invasion in a human transitional cell carcinoma. Proc Natl Acad Sci U S A. 1990; 87(22): 9047-9051.
    65. Meschter, C.L., J.M. Connolly, and D.P. Rose. Influence of regional location of the inoculation site and dietary fat on the pathology of MDA-MB-435 human breast cancer cell-derived tumors grown in nude mice. Clin Exp Metastasis. 1992; 10(3): 167-173.
    66. Howard, R.B., H. Chu, B.E. Zeligman, et al. Irradiated nude rat model for orthotopic human lung cancers. Cancer Res. 1991; 51(12): 3274-3280.
    67. Fridman, R., G Giaccone, T. Kanemoto, et al. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 1990; 87(17): 6698-6702.
    68. Picard, O., Y. Rolland, and M.F. Poupon. Fibroblast-dependent tumorigenicity of cells in nude mice: implication for implantation of metastases. Cancer Res. 1986; 46(7): 3290-3294.
    69. Folkman, J. and M. Klagsbrun. Angiogenic factors. Science. 1987; 235(4787): 442-447.
    70. Hori, K., M. Suzuki, S. Tanda, et al. Characterization of heterogeneous distribution of tumor blood flow in the rat. Jpn J Cancer Res. 1991; 82(1): 109-117.
    71. Takano, S., K. Tsuboi, Y. Tomono, et al. Tissue factor, osteopontin, alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer. 2000; 82(12): 1967-1973.
    72. Soga, N., J.O. Connolly, M. Chellaiah, et al. Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun Adhes. 2001; 8(1): 1-13.
    1. Senger, D. R., D. F. Wirth, and R. O. Hynes. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell. 1979; 16(4): 885-893.
    2. Craig, A. M., J. H. Smith, and D. T. Denhardt. Osteopontin, a transformation-associated cell adhesion phosphoprotein, is induced by 12-O-tetradecanoylphorbol 13-acetate in mouse epidermis. J Biol Chem. 1989; 264(16): 9682-9689.
    3. Patarca, R., G. J. Freeman, R. P. Singh, et al. Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J Exp Med. 1989; 170(1): 145-161.
    4. Crosby, A. H., S. J. Edwards, J. C. Murray, et al. Genomic organization of the human osteopontin gene: exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type Ⅱ. Genomics. 1995; 27(1): 155-160.
    5. Sodek, J., B. Ganss, and M. D. McKee. Osteopontin. Crit Rev Oral Biol Med. 2000; 11(3): 279-303.
    6. Yokosaki, Y., N. Matsuura, T. Sasaki, et al. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment ofosteopontin. J Biol Chem. 1999; 274(51): 36328-36334.
    7. Katagiri, Y. U., J. Sleeman, H. Fujii, et al. CD44 variants but not CD44s cooperate with beta 1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res. 1999; 59(1): 219-226.
    8. Kiefer, M.C., D.M. Bauer, and P.J. Barr. The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Res. 1989; 17(8): 3306.
    9. Kerr, J.M., L.W. Fisher, J.D. Termine, et al. The cDNA cloning and RNA distribution of bovine osteopontin. Gene. 1991; 108(2): 237-243.
    10. Wrana, J.L., Q. Zhang, and J. Sodek. Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Res. 1989; 17(23): 10119.
    11. Tezuka, K., T. Sato, H. Kamioka, et al. Identification of osteopontin in isolated rabbit osteoclasts. Biochem Biophys Res Commun. 1992; 186(2): 911-917.
    12. Oldberg, A., A. Franzen, and D. Heinegard. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986; 83(23): 8819-8823.
    13. Moore, M.A., Y. Gotoh, K. Rafidi, et al. Characterization of a cDNA for chicken osteopontin: expression during bone development, osteoblast differentiation, and tissue distribution. Biochemistry. 1991; 30(9): 2501-2508.
    14. Thayer, J.M. and GC. Schoenwolf. Early expression of Osteopontin in the chick is restricted to rhombomeres 5 and 6 and to a subpopulation of neural crest cells that arise from these segments. Anat Rec. 1998; 250(2): 199-209.
    15. Suzuki, K. [Osteopontin-gene, structure and biosynthesis]. Nippon Rinsho. 2005; 63 Suppl 10:608-612.
    16. Thompson, J.D., D.G Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22): 4673-4680.
    17. Ganss, B., R.H. Kim, and J. Sodek. Bone sialoprotein. Crit Rev Oral Biol Med. 1999; 10(1): 79-98.
    18. Prols, F., B. Loser, and M. Marx. Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis. Exp Cell Res. 1998; 239(1): 1-10.
    19. Hirama, M., F. Takahashi, K. Takahashi, et al. Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett. 2003; 198(1): 107-117.
    20. Hamada, Y., K. Nokihara, M. Okazaki, et al. Angiogenic activity of osteopontin-derived peptide SWYGLR. Biochem Biophys Res Commun. 2003; 310(1): 153-157.
    21. Thalmann, GN., R.A. Sikes, R.E. Devoll, et al. Osteopontin: possible role in prostate cancer progression. Clin Cancer Res. 1999; 5(8): 2271-2277.
    22. Adler, B., S. Ashkar, H. Cantor, et al. Costimulation by extracellular matrix proteins determines the response to TCR ligation. Cell Immunol. 2001; 210(1): 30-40.
    23. Chang, P.L., M. Cao, and P. Hicks. Osteopontin induction is required for tumor promoter-induced transformation of preneoplastic mouse cells. Carcinogenesis. 2003; 24(11): 1749-1758.
    24. Gotoh, M, M. Sakamoto, K. Kanetaka, et al. Overexpression of osteopontin in hepatocellular carcinoma. Pathol Int. 2002; 52(1): 19-24.
    25. Tuck, A.B. and A.F. Chambers. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia. 2001; 6(4): 419-429.
    26. Philip, S., A. Bulbule, and GC. Kundu. Osteopontin stimulates tumor growth and activation of promatnx metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem. 2001; 276(48): 44926-44935.
    27. Fedarko, N.S., A. Jain, A. Karadag, et al. Three small integrin binding ligand N-linked glycoproteins (SIBLINGS) bind and activate specific matrix metalloproteinases. Faseb J. 2004; 18(6): 734-736.
    28. Tuck, A.B., D.M. Arsenault, F.P. O'Malley, et al. Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene. 1999; 18(29): 4237-4246.
    29. Aznavoorian, S., A.N. Murphy, W.G Stetler-Stevenson, et al. Molecular aspects of tumor cell invasion and metastasis. Cancer. 1993; 71(4): 1368-1383.
    30. Faccio, R., M. Grano, S. Colucci, et al. Activation of alphav beta3 integrin on human osteoclast-like cells stimulates adhesion and migration in response to osteopontin. Biochem Biophys Res Commun. 1998; 249(2): 522-525.
    31. Angelucci, A., C. Festuccia, G.L. Gravina, et al. Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate. 2004; 59(2): 157-166.
    32. Wu, Y., D.T. Denhardt, and S.R. Rittling. Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. Br J Cancer. 2000; 83(2): 156-163.
    33. Nam, T.J., W.H. Busby, Jr., C. Rees, et al. Thrombospondin and osteopontin bind to insulin-like growth factor (IGF)-binding protein-5 leading to an alteration in IGF-I-stimulated cell growth. Endocrinology. 2000; 141(3): 1100-1106.
    34. Huang, W., B. Carlsen, G Rudkin, et al. Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells. Bone. 2004; 34(5): 799-808.
    35. Perrien, D.S., E.C. Brown, J. Aronson, et al. Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. J Histochem Cytochem. 2002; 50(4): 567-574.
    36. Rittling, S.R. and A.F. Chambers. Role of osteopontin in tumour progression. Br J Cancer. 2004; 90(10): 1877-1881.
    37. Brown, L.F., A. Papadopoulos-Sergiou, B. Berse, et al. Osteopontin expression and distribution in human carcinomas. Am J Pathol. 1994; 145(3): 610-623.
    38. Agrawal, D., T. Chen, R. Irby, et al. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst. 2002; 94(7): 513-521.
    39. Tuck, A.B., B.E. Elliott, C. Hota, et al. Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem. 2000; 78(3): 465-475.
    40. Bellahcene, A. and V. Castronovo. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am J Pathol. 1995; 146(1): 95-100.
    41. Ue, T., H. Yokozaki, Y. Kitadai, et al. Co-expression of osteopontin and CD44v9 in gastric cancer. Int J Cancer. 1998; 79(2): 127-132.
    42. Saitoh, Y., J. Kuratsu, H. Takeshima, et al. Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab Invest. 1995; 72(1): 55-63.
    43. Chambers, A.F., S.M. Wilson, N. Kerkvliet, et al. Osteopontin expression in lung cancer. Lung Cancer. 1996; 15(3): 311-323.
    44. Donati, V., L. Boldrini, M. DeU'Omodarme, et al. Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin Cancer Res. 2005; 11(18): 6459-6465.
    45. Rudland, P.S., A. Platt-Higgins, M. El-Tanani, et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res. 2002; 62(12): 3417-3427.
    46. Le, Q.T., P.D. Sutphin, S. Raychaudhuri, et al. Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res. 2003; 9(1): 59-67.
    47. Yeatman, T.J. and A.F. Chambers. Osteopontin and colon cancer progression. Clin Exp Metastasis. 2003; 20(1): 85-90.
    48. Kon, S., M. Maeda, T. Segawa, et al. Antibodies to different peptides in osteopontin reveal complexities in the various secreted forms. J Cell Biochem. 2000; 77(3): 487-498.
    49. Wai, P.Y., Z. Mi, H. Guo, et al. Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis. 2005; 26(4): 741-751.
    50. Halatsch, M.E., U. Schmidt, I.C. Botefur, et al. Marked inhibition of glioblastoma target cell tumorigenicity in vitro by retrovirus-mediated transfer of a hairpin ribozyme against deletion-mutant epidermal growth factor receptor messenger RNA. J Neurosurg. 2000; 92(2): 297-305.
    51. Gibson, S.A., C. Pellenz, R.E. Hutchison, et al. Induction of apoptosis in oral cancer cells by an anti-bcl-2 ribozyme delivered by an adenovirus vector. Clin Cancer Res. 2000; 6(1): 213-222.
    52. Suzuki, T., B. Anderegg, T. Ohkawa, et al. Adenovirus-mediated ribozyme targeting of HER-2/neu inhibits in vivo growth of breast cancer cells. Gene Ther. 2000; 7(3): 241-248.
    53. Funato, T., T. Ishii, M. Kambe, et al. Anti-K-ras ribozyme induces growth inhibition and increased chemosensitivity in human colon cancer cells. Cancer Gene Ther. 2000; 7(3): 495-500.
    54. Feng, B., E.E. Rollo, and D.T. Denhardt. Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: evidence from cell lines down-regulated for OPN expression by a targeted ribozyme. Clin Exp Metastasis. 1995; 13(6): 453-462.
    55. Behrend, E.I., A.M. Craig, S.M. Wilson, et al. Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Res. 1994; 54(3): 832-837.
    56. Behrend, E.I., A.M. Craig, S.M. Wilson, et al. Expression of antisense osteopontin RNA in metastatic mouse fibroblasts is associated with reduced malignancy. Ann N Y Acad Sci. 1995; 760: 299-301.
    57. Brown, P.D. Matrix metalloproteinase inhibitors. Breast Cancer Res Treat. 1998; 52(1-3): 125-136.
    58. Bautista, D.S., J.W. Xuan, C. Hota, et al. Inhibition of Arg-GIy-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J Biol Chem. 1994; 269(37): 23280-23285.
    59. Helfrich, M.H., S.A. Nesbitt, E.L. Dorey, et al. Rat osteoclasts adhere to a wide range of RGD (Arg-GIy-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res. 1992; 7(3): 335-343.
    60. Pettersson, E., B. Luning, H. Mickos, et al. Synthesis, NMR and function of an O-phosphorylated peptide, comprising the RGD-adhesion sequence of osteopontin. Acta Chem Scand. 1991; 45(6): 604-608.
    61. Furger, K.A., A.L. Allan, S.M. Wilson, et al. Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res. 2003; 1(11): 810-819.
    62. Gao, C, H. Guo, L. Downey, et al. Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis. 2003; 24(12): 1871-1878.
    63. Ariztia, E.V., V. Subbarao, D.B. Solt, et al. Osteopontin contributes to hepatocyte growth factor-induced tumor growth and metastasis formation. Exp Cell Res. 2003; 288(2): 257-267.
    64. Denhardt, D. T., D. Mistretta, A. F. Chambers, et al. Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-aetivated enhancer in the human OPN promoter. Clin Exp Metastasis. 2003; 20(1): 77-84.
    65. Wang, D., S. Yamamoto, N. Hijiya, et al. Transcriptional regulation of the human osteopontin promoter: functional analysis and DNA-protein interactions. Oneogene. 2000; 19(50): 5801-5809.
    1. Winter, G, A.D. Griffiths, R.E. Hawkins, et al. Making antibodies by phage display technology. Annu Rev Immunol. 1994; 12:433-455.
    2. Orlandi, R., D.H. Gussow, P.T. Jones, et al. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989; 86(10): 3833-3837.
    3. Better, M, C.P. Chang, R.R. Robinson, et al. Escherichia coli secretion of an active chimeric antibody fragment. Science. 1988; 240(4855): 1041-1043.
    4. Smith, GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228(4705): 1315-1317.
    5. Barbas, C.F., 3rd, A.S. Kang, R.A. Lerner, et al. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A. 1991; 88(18): 7978-7982.
    6. Kang, A.S., C.F. Barbas, K.D. Janda, et al. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci U S A. 1991; 88(10): 4363-4366.
    7. Horton, R.M., Z.L. Cai, S.N. Ho, et al. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990; 8(5): 528-535.
    8. Sblattero, D. and A. Bradbury. A definitive set of oligonucleotide primers for amplifying human V regions. Immunotechnology. 1998; 3(4): 271-278.
    9. Kim, S.H., C.C. Titlow, and M.N. Margolies. An approach for preventing recombination-deletion of the 40-50 anti-digoxin antibody V(H) gene from the phage display vector pComb3. Gene. 2000; 241(1): 19-25.
    10. Smith, GP. and J.K. Scott. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993; 217: 228-257.
    11. Ridgway, J.B., E. Ng, J.A. Kern, et al. Identification of a human anti-CD55 single-chain Fv by subtractive panning of a phage library using tumor and nontumor cell lines. Cancer Res. 1999; 59(11): 2718-2723.
    12. Jung, S., K.M. Arndt, K.M. Muller, et al. Selectively infective phage (SIP) technology: scope and limitations. J Immunol Methods. 1999; 231(1-2): 93-104.
    13. Benhar, I., R. Azriel, L. Nahary, et al. Highly efficient selection of phage antibodies mediated by display of antigen as Lpp-OmpA' fusions on live bacteria. J Mol Biol. 2000; 301(4): 893-904.
    14. Waterhouse, P., A.D. Griffiths, K.S. Johnson, et al. Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res. 1993; 21(9): 2265-2266.
    15. Perelson, A.S. and GF. Oster. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination. J Theor Biol. 1979; 81(4): 645-670.
    16. Sblattero, D. and A. Bradbury. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol. 2000; 18(1): 75-80.
    17. Marks, J.D., H.R. Hoogenboom, T.P. Bonnert, et al. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991; 222(3): 581-597.
    18. Chester, K.A., R.H. Begent, L. Robson, et al. Phage libraries for generation of clinically useful antibodies. Lancet. 1994; 343(8895): 455-456.
    19. Barbas, C.F., 3rd, J.D. Bain, D.M. Hoekstra, et al. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc Natl Acad Sci U S A. 1992; 89(10): 4457-4461.
    20. Knappik, A., L. Ge, A. Honegger, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000; 296(1): 57-86.
    21. Griffiths, A.D., S.C. Williams, O. Hartley, et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. Embo J. 1994; 13(14): 3245-3260.
    22. Sheets, M.D., P. Amersdorfer, R. Finnern, et al. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A. 1998; 95(11): 6157-6162.
    23. Burton, D.R., C.F. Barbas, 3rd, M.A. Persson, et al. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci U S A. 1991; 88(22): 10134-10137.
    24. Cai, X. and A. Garen. A melanoma-specific VH antibody cloned from a fusion phage library of a vaccinated melanoma patient. Proc Natl Acad Sci U S A. 1996; 93(13): 6280-6285.
    25. Hennecke, F., C. Krebber, and A. Pluckthun. Non-repetitive single-chain Fv linkers selected by selectively infective phage (SIP) technology. Protein Eng. 1998; 11(5): 405-410.
    26. Coia, G, A. Ayres, GG Lilley, et al. Use of imitator cells as a means for increasing production levels of a recombinant antibody directed against Hepatitis B. Gene. 1997; 201(1-2): 203-209.
    27. Saviranta, P., M. Pajunen, P. Jauria, et al. Engineering the steroid-specificity of an anti-17beta-estradiol Fab by random mutagenesis and competitive phage panning. Protein Eng. 1998; 11(2): 143-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700