杨树木质部特异启动子的序列分析和功能检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以已分离得到的三个木质部纤维素合酶基因JCesAP,YCesAP和MDCesAP序列为基础,旨在筛选出具有启动子活性和木质部特异性的启动子。为利用其融合并启动杀虫基因只在木质部特异性表达,防治蛀干害虫(尤其是天牛类害虫)奠定了基础。木质部纤维素合酶基因(CesA基因)在植物的正常生长期仅在木质部特异性表达,受到外界压力诱导时可在韧皮部表达。本研究通过植物启动子及其顺式作用元件数据库对JCesAP,YCesAP和MDCesAP序列进行了启动子顺式作用原件的分析,并利用基因重组技术构建了pJCesAP-GUS和pYCesAP-GUS植物表达载体,连同已构建成功的pCesAP-GFP(其中CesAP分别为JcesAP,YCesAP和MDCesAP)和pMDCesAP-GUS植物表达载体,分别以GFP和GUS作为报告基因转化烟草,根据报告基因表达情况,对三个序列启动子活性及其木质部特异性进行检测。试验进一步以毛白杨雄株-D无菌苗为实验材料,采用农杆菌介导法将CesAP-GFP基因导入毛白杨雄株-D的基因组中,并获得了少量愈伤组织,对部分抗性愈伤组织进行了GFP报告基因活性的检测。本研究的主要结果如下:
     1.启动子顺势作用元件分析结果表明,JCesAP、YCesAP和MDCesAP这三个序列均具有启动子的基本元件,木质部特异性元件和伤害诱导表达的元件。
     2.成功构建了pJCesAP-GUS和pYCesAP-GUS植物表达载体(均以GUS作为报告基因)。此可读框架通过木质部特异性启动子启动(选择标记基因是新霉素磷酸转移酶(nptⅡ)基因,用Kan为筛选试剂),并将构建的表达载体电激转化导入根癌农杆菌(Agrobacterium tumefaciens) AGL-Ⅰ中。
     3.确定烟草转化的头孢噻肟钠的抑菌浓度为400 mg/L。将植物表达载体pCesAP-GFP分别转入烟草中,均得到完整的烟草再生植株。经PCR检测,初步证明CesAP基因已整合到烟草的基因组中。GFP荧光检测结果表明,JCesAP,YCesAP和MDCesAP序列均诱导启动GFP蛋白的表达激发出黄绿色荧光,具有启动子的活性。
     4.确定了毛白杨雄株-D转化的潮霉素临界筛选浓度为10 mg/L。将CesAP-GFP基因转入毛白杨中,多次继代筛选后获得了少量抗性愈伤组织,GFP荧光检测结果表明,与阴性对照和阳性对照相比,抗性愈伤组织只有部分部位激发出黄绿色荧光,证明JCesAP,YCesAP和MDCesAP序列除具有启动子活性外,还均具有组织特异性。
The main purpose of this paper is to detect the xylem-specific promoter in the three sequences of JCesAP,YCesAP and MDCesAP. If the promoters can be used to incorporate Coleoptera-resistance genes and made these genes to be only expressed in the xylem, this will provide scientific basis for controlling the stem-boring pests especially Cerambycidae. Xylem-specific cellulose synthase gene (CesA gene) is confined to developing xylem cells during plant normal growth only and induced in developing phloem fibers undergoing tension stress also. The cis-acting elements of JCesAP, YCesAP and MDCesAP were analyzed by the PLACE database, the plant expression vector pJCesAP-GUS and pYCesAP-GUS were constructed using DNA recombination technology separately, and then all the plant expression vectors including our lab preserving harboring CesAP-GFP/CesAP-GUS were transformed into tobacco using leaf-disk method. The promoter activity and reporter gene expression levels were tested. Selecting Populus tomentosa Stub-D as the experiment materials, CesAP-GFP gene were integrated into Populus tomentosa Stub-D by Agrobacterium-mediated transformation method. Some resistant calli were obtained and observed under fluorescence microscope. The main results were as follows:
     1. The cis-acting elements of JCesAP, YCesAP and MDCesAP amplified respectively in earlier studies were analyzed by the PLACE database; the results showed that, the three sequences all had the core element of promoter and the elements related to xylem-specific and wound-defense functions.
     2. The plant expression vector pJCesAP-GUS and pYCesAP-GUS were constructed successfully using GUS as reporter gene. Each gene was promoted with CesA promoter, containing nptⅡgene as a selective marker. The plant expression vectors were transformed into Agrobacterium tumefaciens strain AGL-Ⅰ.
     3. Cefotaxime (CTX) critical concentration was 400 mg/L for the tobacco transformation. The plant expressed vector pCesAP-GFP was transformed to Agrobacterium tumefaciens strain AGL-I. GFP expression showed that, the green fluorescence was observed in all transgenic tobacco, it proved all the three sequences were of promoter activity.
     4. Hygromycin (Hyg) critical concentration was 10 mg/L for the Populus tomentosa Stub-D transformation. pCesAP-GFP gene was transformed to Populus tomentosa Stub-D leaves. Through several transformations and selections, some resistant calli were obtained, green fluorescence was only observed in local tissues of the transgenic calli comparing to negative control and positive control, it proved that the three sequences not only obtain the promoter activities, but also tissue-specific.
引文
[1]夏江东,程在全,吴渝生,等.高等植物启动子功能和结构研究进展[J].云南农业大学学报,2006,21(1):7-14.
    [2]胡廷章,罗凯,甘丽萍,等.植物基因启动子的类型及其应用[J].湖北农业科学,2007, 46(1):159-161.
    [3] Potenza C, Aleman L, Sengupta G C. Targeting transgene expression in research, agricultural and environmental applications: Promoters used in plant transformation[J]. In Vitro Cellular&Developmental Biology-Plant, 2004, 40 (1):1-22.
    [4] Yamamoto Y T , Taylor C G, Acedo G N ,et al. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco[J]. Plant Cell ,1991,3 :371-382.
    [5] Fluhr R,Kuhlemeier C,Nagy F, et al. Organ - specific and light induced expression of plant genes[J]. Science ,1986 ,232:1106~1112.
    [6] Christov N K,Imaishi H,Ohkawa H,et al. Green - tissue - specific expression of a reconstructed cry1C gene encoding the active fragment of Bacillus thuringiensis delta endotoxin in haploid tobaccoplants conferring resistance to S podoptera litura[J]. Biosci Biotechnol Biochem ,1999 ,63 :1433-1444.
    [7] Colleen G S , Gauil L S , Timothy W C,et al. Developmental and transgenic analysis of two tomato fruit enhanced genes[J]. Plant Mol Biol ,1997,33:405-416.
    [8] Shirsat A,Wilford NRC ,Bouter D,et al. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco [J]. Mol Gen Genet ,1989,215:326-331.
    [9] Cho M J ,Wong J H ,Marx C , et al. Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullu2 lanase) in barley grain [J]. Proc Natl Acad Sci USA ,1999,96:14641-14646.
    [10] Farmer E E ,Ryan C A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound - inducible proteinase inhibitors[J]. Plant Cell ,1992 ,4 :129-134.
    [11] Yin S ,Mei L.Regulation of sesquiterpene cyclase gene expression Characterization of an elicitor- and pathogen-inducible promoter[J]. Plant Physiol ,1997 ,115 :437-451.
    [12] Schroda M ,Blocker D,Beck C F,et al. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas[J]. Plant J ,2000 ,21 :121-131.
    [13] Pan L, Kawai M, Yano A, et al. Nucleoside diphosphate kinase required for coleoptile elongation in rice [J ]. Plant Physiol , 2000 ,122 :447-452.
    [14] Williams S, Friedrich L,Dincher S, et al. Chemical regulation of Bacillus thuringiensisδ-endotoxin expression in transgenic plants[J]. Bio/ technol ,1992 ,10 :540-543.
    [15] Chong D K,Langridge W H. Expression of full - length bioactive antimicrobial human lactoferrin in potato plants [J]. Transgenic Res ,2000 ,9 :71-78.
    [16] ZUO J,CHUA N H.Chemical-inducible systems for regulated expression of plant genes[J]. CurrOpin Biotechnol,2000,11:146-151.
    [17] Edwards J W,Walker E L,Coruzzi G M.Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase[J]. Proc Natl Acad Sci U S A,1990,87(9):3459-3463.
    [18] Luguang Wu,Chandrashekhar P.Joshi and Vincent L.Chiang, A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress[J]. The Plant Journal, 2000),22(6):495-502.
    [19] Lawson N D, Weinstein B M. In vivo imaging of embryonic vascular development using transgenic zebrafish[J]. Dev Biol,2002,248(2):307-18.
    [20] Jouaninal, Goujin T, Lapierre C. Lignification in Transgenic Poplars with Extremely Reduced Caffeic Acid O-Methyltransferase Activity[J]. Plant Physiol,2000,123:1363-1373.
    [21]刘志锋,姜勇.报告基因技术的理论基础及其应用.生理科学进展,2002,33(4): 361-363.
    [22]薛丽香,童坦君.报告基因的选择及其研究趋向. 2002,33(4):364-366.
    [23] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea[J]. J. Cell. Comp. Physiol,1962,59:223-239.
    [24]刘继红,邓秀新. GFP及其在植物学研究中的应用生命的化学[J]. 2001,21(3): 225-226.
    [25] Chattoaj M,King B A,Bublitz G U,et al. Ultra-fast excited state dynasmics in green fluorescent protein :multiple states and protein transfer[J]. Proc.Natl.Acad.Sci.USA,1996,93:8362-8367.
    [26] Ward WW, Cormier MJ. Energy transfer via protein-protein interaction in Renilla bioluminescence[J]. Photobiochem Photobiol,1978,27:389-396.
    [27] Ward WW, Cody CW, Hart RC, et al. Spectrophotometric identity of the energy transfer chromophores inRenillaand Aequoreagreen fluorescent proteins[J]. Photobiochem Photobiol, 1980,31:611-615.
    [28] Chalfie M, Tu YT, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science,1994,263:802-805.
    [29] Prasher DC,Eckenrode V K,Ward W W,et al. Primaty structure of the Aequorea victoriagreen fluorescent protein[J]. Gene,1992,111(2):229-233.
    [30] Inorye S,Tsulji FI. Aequoreagreen fluorescent protein:Expression of the gene and fluorescent characteristics of the recombinant protein[J]. FEBS Letters,1994,341:277-288.
    [31] Wang S, Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophilaorganism[J]. Nature,1994,369:400-403.
    [32] Hasting JW. Chemistries and colors of bioluminescent reactions:a review. Gene,1996,173:5-11.
    [33] Cubitt A B, Heim R, Stephen R A, et al. Understanding, improving and using green fluorescent proteins[J]. Trends in Biochem Sci, 1995, 20: 448-455.
    [34]刘艳红,肖调义,苏建明,等.用显微注射法将绿色荧光蛋白基因导入金鱼受精卵中表达[J].上海水产大学学报,2002,11(2):102-105.
    [35] Chiocchetti A, Tolosano E, Hirsch E. Biochim Biophys Green fluroscent protein as a reporter ofgene expression in transgenic mice[J]. Acta, 1997,1352(2):193-202.
    [36] Takada T,Lida K,Awajj T,et al. Selectyve production of transgenic mice using fluorescent protein as a marker[J]. Nat.Biotechnol,1997,15:458-461.
    [37]孙明军,赵晨,沙金,等.鸡输卵管组织特异性分泌表达载体的构建和表达[J].农业生物技术学报,2003,11(1):75-78.
    [38] Casper S J, Holt and C A. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector[J]. Gene,1996,173(1):69-73.
    [39]董越梅,安千里,李久蒂,等.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖[J].应用与环境生物学报,2000,6(1):61-65.
    [40]张庆华,陆承平.绿色荧光蛋白标记的嗜水气单胞菌在越冬水体的饥饿存活及复苏[J].水生生物学报,2002,36(5):465-471.
    [41] Prasher DC. Using GFP to see the light.Trends Genet, 1995,11(8):320~323
    [42] Tsien RY. The green fluorescent protein [J]. Annu Rev Biochem,1998,67:509-544.
    [43] Zolotukhin S,Potter M,Hauswirth WW,et al. A“Humanized”green fluorescent protein cDNA adapted for high-level expression in mammalian cells[J]. Journal of Virology,1996,70(7):4646-4654.
    [44] Heim R,Cubitt A B,Tsien R Y. Improved green fluorescence[J]. Nature,1995,373:663-664.
    [45] Heim R,Tsien RY. Engineering green fluorescent protein for improved brightness,longer wavelengths and fluorescece resonance energy transfer[J]. Curr Biol,1996,6:178-182.
    [46]黄国存,朱生伟,董越梅,等.绿色荧光蛋白及其在植物研究中的应用[J].植物学通报,1998,15(5):24-30.
    [47] Chalfie M,Tu Y,Euskirchen G,et al. Green fluorescent protein as a marker for gene expression[J]. Science,1994,263:802-805.
    [48]刘歆.绿色荧光蛋白基因(gfp)转化柑橘及植株再生[D].华中农业大学,2005.
    [49] Vain P,Worland B,Kohli A,et al. The green fluorescent protein (GFP) as a vital screenable marker in rice ransformation[J]. Theor Appl Genet,1998, 96:164-169.
    [50] Chiu WL,Niwa Y,Zheng W.et al. Engineered GFP as a vital reporter in plants[J]. Curr Biol,1996,6(3):325-330.
    [51]刘肖飞,梁卫红.根癌农杆菌介导的GFP在洋葱表皮细胞定位研究[J].河南师范大学学报(自然科学版),2009, 37(1):123-125
    [52]黄国存,张寒霜,高鹏,等. GFP基因在棉花转化中的应用遗传[J]. HEREDITAS(Beijing),2001,23(2):131-134.
    [53] WANG Li_Ping, ZHAO Jie. High Frequency of GFP Gene Transient Expression in Electroporated Zygotes and Early Proembryos of Wheat[J]. Acta Botanica Sinica,2003,45(2):200-204.
    [54] Sheen J,HwangS,Niwa Y,et al.Green-fluorescent protein as a new vital marker in plant cells[J]. The Plant Journal,1995,8:777-784.
    [55]李朝军,吕品,张东才.采用GFP标记技术研究钙调蛋白在活细胞中与细胞周期相关的分布[J].中国科学(C辑), 1999,29(5):491-502.
    [56]常永生,左瑾,张雪峰,等. Fudenine--一个新的与血糖调节相关的膜蛋白[J].中国医学科学院学报,2001, 23(1):63-64.
    [57] K?hler R H,Zipfel W R,Webb W W, et al. The green fluorescent protein as a marker to visualize plant mitochondria in vivo[J]. Plant J,1997,11(3):613-621.
    [58] Uedal K, Matsuyama1, Hashimoto1 T. Visualization of microtubules in living cells of transgenic Arabidopsis thaliana K[J]. Protoplasma,1999,206:201-206.
    [59]董越梅,李久蒂,朱至清.利用突变的绿色荧光蛋白基因为标记构建新型克隆载体[J].植物学报Acta Botanica Sinica,1999,41(5):487-489.
    [60] Voinnet O,Baulcombe,David C. Systemic signalling in gene silencing[J]. Nature, 1997 ,389( 6651): 553.
    [61] Oparka K J.Roberts A G., Cruz S S, et al. Using GFP to study virus invasion and spread in plant tissues[J]. Nature,1997,388(6640):401-402.
    [62] Jefferson R A,Kavanagh T A,Bevan M W. GUSfusion:β-glueuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO J., 1987,20,6(13): 3901–3907.
    [63]袁思玮,黄锐之,罗红兵. GUS报告基因在植物功能基因研究中的应用[J]. CROPRESEARCH,2008,22(5):310-314.
    [64]李新锋,赵淑清.转基因植物中报道基因GUS的活性检测及其应用[J].生命化学,2004, 24(1):71-73.
    [65] Jefferson R A , Wilson K J. The GUS gene fusion system[J]. Plant Mol Biol Manual,1991,124:31-33.
    [66] Hu C Y,Chee P P,Chesney R H,et al. Intrinsic GUS-like aerivities in seed plants[J]. Plant Cell Rep,1990,9:l-5.
    [67] Jefferson R A. DNA transformation of Caenorhabditis elegans: development and appliearion of a new gene fusion system [R]. Dissertation,University of Colorado,Boulder CO,USA,1985.
    [68] Quaedvlieg H,Sehlaman R M,Pieter C,et al. Fusions between green fluorescent protein andβ-glucuronidase as sensitive and vital bifunctional reporters in Plants[J]. plant Molecular Biology,1998:4167-4272.
    [69]郑世锴.杨树丰产栽培与病虫害防治[M].北京:金盾出版社,1996.
    [70]王世绩.杨树研究进展[M].北京:中国林业出版社,1995.
    [71]贺成林,李云.杨树基因工程研究进展[J].河北林果研究,2004,19(1):78-83.
    [72]林善枝,肖基浒,张志毅.杨树抗性基因工程研究进展[J].北京林业大学学报,2000,22(6):85-88.
    [73]赵华燕,卢善发,晁瑞堂.杨树的组织培养及基因工程[J].植物学通报,2001,18(2):169-176.
    [74]王永芳,高宝嘉,郑均宝.杨树抗虫基因转化及抗虫性研究[D].保定:河北农业大学,2005.
    [75]刘美清,李淑玲.杨树抗性研究的现状及展望[J].河南农业大学学报,1998,32(3):225-227.
    [76] McCown B H,McCabe D E,Russell D R,et al. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration[J]. Plant Cell Report,1991,9:590-594.
    [77] Klopfenstein N B, et al. Transgenic Popuplus hybrid expresses a wound-inducible potato proteinase inhibiritor II-CATgene fusion[J]. Can.J.For.Res. 1991, 21:1321-1328.
    [78] Leple J C,Brasileiro A C M,Michel M F,et al. Transgenic poplars: expression of chimeric genes using four different constructs[J]. Plant Cell Report,1992(11):137-141.
    [79] Kleiner K W,Ellis D D,McCown B H,et al. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cryIA(a) endotoxin gene against forest tent caterpillar and gypsy moth following winter dormancy[J]. Environmental Entomology,1995,24(5):1358-1364.
    [80] Howe G T,Goldfarb B,Strauss S H. Agrobacterium mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants[J]. Plant cell,Tissue and Organ Culture,1994,36:59-71.
    [81] Francis K E. Genetic transformation and transgenic analysis of hybrid poplar NM6. (P. nigra×P. maximowiczii)[J]. Plant Physiol,1996,98:796-797.
    [82] STRAUSS S H,JAMES R R, CROFT B A. Susceptibility of the Cottonwood leaf Beetle (Coleoptera: hrysomelidae) to different strains and transgenic toxins of Bacillus thuringiensis[J]. Environ Entomol,1999,28(1):108-I15.
    [83]田颖川,李太元,莽克强,等.抗虫转基因欧州黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    [84]陈颖,韩一凡,李玲,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J].林业科学,1995,31(2):97-103.
    [85]郑均宝,张玉满,杨文芝,等. 741杨离体叶片再生及抗虫基因转化[J].河北农业大学学报,1995,18(3):20-25.
    [86]郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究[J].植物学报,1999,41(6):936-940.
    [87]田颖川,郑均宝,虞红梅,等.转双抗虫基因杂种741白毛杨的研究[J].植物学报,2000,42(3):263-268.
    [88]李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].林业科学,2000,36(12):93-97.
    [89]伍宁丰,孙芹,姚斌,等.抗虫的AalT基因杨树的获得[J].生物工程学报,2000,16(2):129-133.
    [90]常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004, 32(6):30-31.
    [91]诸葛强,房丹,李秀芬,等.美洲黑杨杂种优良无性系转抗虫基因(Bt和CpTI)的研究[J].分子植物育种,2006,4(6):819-824.
    [92]王学聘,韩一凡,戴莲韵,李玲,田颖川.抗虫转基因欧美杨的培育[J].林业科学,1997, 33(1):69-74.
    [93]郝贵霞,朱祯,朱之悌.转CPTI基因毛白杨的获得[J].林业科学, 2000, 36(1):116-119.
    [94]饶红宇,陈英,黄敏仁,王明庥.杨树NL-80106转Bt基因植株的获得及抗虫性[J].植物资源与环境学报, 2000, 9(2):1-5.
    [95]罗青,曲玲,曹有龙.抗蚜虫转基因枸杞的初步研究[J].宁夏农林科技, 2001(1):1-3.
    [96] Hollock J B. A poplar tree proteinase inhibitor-like gene promoter is responsive to wounding in transgenic tobacco[J]. Plant Mol Biol, 1993, 23: 561-572.
    [97] Blada I.Testing Larch clones for Adelges Laricis resistance to disease and pests in forest trees[J]. Nat Bioted, 1982,16(2):472-477.
    [98]黄大昉.基因工程正在开辟植物病虫害防治的新途径[J].植物保护, 1999, 25(1): 34-36.
    [99]王宪辉,徐洪富,许永玉.昆虫分子生物学的一些研究进展[J].山东农业大学学报, 2001, 32(1): 95-98.
    [100]朱英,蔡秀玲,王宗阳.用无启动子的GUS报告基因捕获水稻基因启动子[J].植物生理与分子生物学学报,2003,29(4):289-294.
    [101] Li L G, Y H Zhou, X F Cheng. Combinatorial modification of mμltiple lignin traits in trees through mμltigene cotransformation. PNAS USA, 2003, 100 (8): 4939-4944.
    [102] Luguang Wu, P.Chandrashekhar Joshi and L.Vincent Chiang. A xylem-specific cellulose synthase gene from aspen (Populus tremuloides) is responsive to mechanical stress[J]. The Plant Journal, 2000,6:495-502.
    [103]李姗姗,迟彦,李凌飞,马玺,平文样,于冲.启动子克隆方法研究进展.中国生物工程杂志,2005,25(7):9-16.
    [104] Higo K,Ugawa Y,Iwamoto M,et al. Plant cis-acting regulatory DNA elements (PLACE) database[J]. Nucleic Acids Research,1999,21(1): 297-300.
    [105]田敏,夏琼梅,李纪元.植物的次生生长及其分子调控[J].遗传HEREDITAS(Beijing),2007,29(11):1324-1330.
    [106]卢善发,宋艳茹.维管组织分化的分子生物学研究[J].植物学通报,1999,16(3):219-227.
    [107]张毅,尹辉等.植物启动子的化学因素诱导元件[J].植物生理学通讯,2007,43(4):787-794.
    [108]高国庆,储成才,刘小强,等.植物W R K Y转录因子家族研究进展[J].植物学通报,2005,22(1):11-18.
    [109]苏琦,尚宇航,杜密英,等.植物WRKY转录因子研究进展[J].农业生物技术科学,2007, 23(5):94-97.
    [110]袁正强,贾燕涛,吴家和等.三个韧皮部特异性启动子在转基因烟草中表达的比较研究[J].农业生物技术学报,2002,10(1):6-9.
    [111]魏春红,李毅.现代分子生物学实验技术[M].北京:高等教育出版社,2006,167-168.
    [112]胡重怡,郑少清,陈兴江,等.烟草无菌苗培养前的种子消毒技术研究[J].烟草科学,2007,28(2):45-46,51.
    [113]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:275-278.
    [114] Horsch R B, Fry J E, Hoffman N L,et al. A simple and general method of transferring genes into plants[J]. Sciences,1985,227:1229-1231.
    [115]张宁,王蒂.农杆菌介导的烟草高效遗传转化体系研究[J].甘肃农业科技,2004, (2):11-15.
    [116]陈国胜.植物转基因沉默的机制及克服方法[J].河北农业科学,2008,12 (3):75-76.
    [117]程磊,周根余,沈革志.根癌农杆菌介导的水稻遗传转化[J].上海农业学报, 2000,16(4):43-51.
    [118]郝林,曹军. CaMV35S启动子显著提高转基因在拟南芥中表达水平的研究[J].植物生理学通讯,2000,36(6):517-519.
    [119] Elmayan T, Vauchereret H. Expressed 35S transgene can be silenced post-transcriptionally[J]. Plant J,1996,9:787-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700