纳米金—双氧水催化体系在烯烃环氧化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
负载型纳米金催化剂是一类新型的工业和环保催化材料,其在CO低温氧化,醇、醛的选择氧化,烯烃环氧化,碳氢化合物的催化燃烧,卤代有机化合物的氧化分解及氮氧化物的去除等许多领域表现出了广泛的应用前景。本论文采用多种不同的方法制备了双硫-离子液体功能化的有机-无机杂化介孔材料及含氨基的聚离子液体,以其为载体制备了一系列纳米金催化剂,并考察了所得催化剂在烯烃环氧化中的催化性能,具体内容如下:
     (1)先合成含二硫醚-离子液体单元的有机硅氧烷,在不同表面活性剂作用下,以其为有机硅前驱体与正硅酸乙酯或九水硅酸钠共水解-缩聚,一步合成了三种具有不同织构性质的桥键嵌入型有机-无机杂化介孔材料。利用材料孔道表面硅羟基为还原剂及二硫醚对金纳米粒子的稳定作用成功制备了相应的负载型纳米金催化剂。在一系列烯烃的环氧化反应中,三种催化剂表现出了不同的催化性能。整体而言,具有一维孔道的复合纳米金催化剂较有着三维交叉孔道的催化剂有更好的催化性能;而其中,具有较大孔径的催化剂又有更好的催化性能。值得指出的是,三种复合纳米金催化剂都有着相当好的重复使用性能,所有催化剂在使用10次后,催化活性基本不变。
     (2)将上述含二硫醚-离子液体单元的有机硅氧烷后嫁接到纯硅SBA-15材料孔道表面,利用材料孔道表面硅羟基为还原剂及二硫醚对金纳米粒子的稳定作用制备了负载型纳米金催化剂,并采用N:吸附-脱附、TEM、EDX-mapping、29Si MAS-NMR、FT-IR及UV-Vis等手段对其进行了表征。将该催化剂应用于α-蒎烯环氧化反应,考察了反应时间、温度、氧化剂用量、催化剂用量等反应条件对α-蒎烯环氧化规律的影响。在优化条件下,α-蒎烯转化率和环氧化物选择性分别可达81.8%和94.9%,且催化剂在使用6次后,催化活性基本不变。
     (3)合成了氨基功能化乙烯基咪唑离子液体(AIL),利用氨基固定金纳米粒子以及双键的聚合作用,获得了聚离子液体固载金纳米粒子的催化齐(GNPs-P-AIL)。采用红外光谱、紫外-可见光谱和透射电子显微镜等方法对GNPs-P-AIL进行了表征。结果表明,AIL在固定金纳米粒子并聚合后仍然保持着离子液体的基本结构,金纳米粒子分布均匀,粒径为6-8 nm。GNPs-P-AIL催化剂对苯乙烯环氧化具有较好的催化活性,以双氧水为氧化剂,在60℃下反应6h时,苯乙烯的转化率和环氧苯乙烷的选择性分别可达81.5%和88.3%。
Supported gold nanoparticles (GNPs) are a new kind of catalytic materials, which have been demonstrated to be very promising catalysts in many important industrial processes and environmental protection fields, such as low-temperature CO oxidation, selective oxidation of alcohols or aldehydes, epoxidation of olefins, catalytic combustion of hydrocarbons, oxidative decomposition of halogenated organic compounds, removal of NOx, etc. In this dissertation, a series of periodic mesoporous organosilica (PMO) materials incorporating disulfide-ionic liquid moieties and a NH2-containing ionic liquid polymer were prepared and used as support for fabricating supported GNP catalysts. Catalytic performance of the resultant catalysts was investigated in epoxidation of olefins. The main contents discussed were as follows:
     (1) An organic bridged silsesquioxane precursor containing disulfide-ionic liquid moieties was synthesized and co-condensed with tetraethoxysilane or sodium silicate in the presence of different templates, leading to three PMO materials with various pore architectures. GNPs, derived from in-situ reduction of aqueous chloroaurate ions by the silanols located on the pore surface of the PMO materials, were captured by sulfide groups, giving rise to relative GNP/PMO composite catalysts. In a series of epoxidation reactions of various olefins, the three GNP/PMO composite catalysts showed different catalytic performance. In general, the catalysts with 1-D pore architecture revealed better catalytic performance than the catalysts with 3-D pore architecture, meanwhile, the larger pore size in the catalysts with 1-D pore architecture, the better catalytic performance. It should be noted that the three GNP/PMO composite catalysts possess rather excellent reusability; they could be reused for 10 times without significant loss of catalytic activity.
     (2) The above-stated organic bridged silsesquioxane precursor was grafted onto siliceous SBA-15 via a post-synthesis procedure. The resultant PMO material was employed for fabricating GNP/PMO composite catalyst via a process involving in-situ reduction of aqueous chloroaurate ions by the silanols located on the pore surface and successive capture of the formed GNPs by sulfide groups. The obtained GNP/PMO composite catalyst was well characterized by means of N2 adsorption-desorption, TEM, EDX-mapping,29Si MAS-NMR, FT-IR and UV-Vis. Using epoxidation of a-pinene as test reaction, the effects of reaction time, reaction temperature, oxidant amount and catalyst amount on catalytic performance of the GNP/PMO composite catalyst were investigated systemically. Under optimum conditions, the conversion of a-pinene and the selectivity toα-pinene epoxide were as high as 81.8% and 94.9%, respectively; moreover, the catalyst could be reused for 6 times without significant loss of catalytic activity.
     (3) An amino-functionalized ionic liquid of N-(3-aminopropyl), N(3)-(vinyl)-imidazolium bromide (AIL) was synthesized and used to stabilize gold nanoparticles (GNPs). Further polymerization of the resultant GNP-containing AIL led to a composite catalyst with GNPs being supported by ionic copolymer (GNPs-P-AIL). The obtained composite catalyst was characterized by means of FT-IR, UV-Vis, and TEM. It was found that GNPs-P-AIL remained the structure of ionic liquid moieties in the parent AIL after GNPs loading and successive polymerization processes and that GNPs in the composite catalyst dispersed uniformly with the particle size of 6-8 nm. GNPs-P-AIL showed good catalytic performance in the epoxidation of styrene using H2O2 as the oxidant. The conversion of styrene and the selectivity for styrene oxide were as high as 81.5% and 88.3%, respectively, when the reaction was performed at 60℃for 6 h.
引文
[1]Soares J.M.C., Morrall P., Crossley A., et al. Catalytic and noncatalytie CO oxidation on Au/TiO2 catalysts[J]. J. Catal,2003,219(1):17-24.
    [2]Hashmi A.S.K. Homogeneous catalysis by gold[J]. Gold Bull.,2004,37(1-2): 51-65.
    [3]Bond G.C. Gold:a relatively new catalyst[J]. Catal Today,2002,72(1-2):5-9.
    [4]Galvangno S., Parravano G. Chemical reactivity of supported gold:IV Reduction of NO by H2[J]. J. Catal.,1978,55(2):178-190.
    [5]Fukushima T., Galvangno S., Parravano G. Oxygen chemisorption on supported gold[J].J. Catal,1979,57(1):177-182.
    [6]Lee J.Y., Schwank J. Infrared spectroscopic study of NO reduction by H2 on supported gold catalysts[J]. J. Catal,1986,102(1):207-215.
    [7]Shastri A.G., Datye A.K., Schwank J. Gold-titania interactions:Temperature dependence of surface area and crystallinity of TiO2 and gold dispersion[J]. J. Catal.,1984,87(1):265-275.
    [8]Chapman D.L., Ramsbottom J.E., Trotman C.G. The union of hydrogen and oxygen in presence of silver and gold[J]. Pro. Soc. London A.,1925,107:29-35.
    [9]Benton A.F., Elgin J.C. The Catalytic synthesis of water vapor in contact with metallic gold[J]. J. Am. Chem. Soc.,1927,49:2426-2438.
    [10]Chambers R.P., Boudart M. Selectivity of gold for hydrogenation and dehydrogenation of cyclohexene[J]. J. Catal,1966,5:517-520.
    [11]Cant N.W., Fredrickson P.W. Silver and gold catalyzed reactions of carbon monoxide with nitric oxide and with oxygen[J]. J. Catal.,1975,37:531-539.
    [12]Bond G.C. The catalytic properties gold[J]. Gold Bull.,1972,5(1):11-13.
    [13]Haruta M., Kobayashi T., Sano H., et al. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃[J]. Chem. Lett.,1987,16(2): 405-408.
    [14]Haruta M., Yamada N., Kobayshi T., et al. Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J. Catal.,1989,115(2):301-309.
    [15]齐世学,邹旭华,安立敦,负载型会催化剂[J],化学通报,2002,11:734-736.
    [16]Raoc N.R., Kulkarnl G.U., Thomas P.J., et al. Metal nanoparticle and their assemblies[J]. Chem. Soc. Rev.,2000,29(1):27-35.
    [17]Mafune F., Kohno J., Takeda Y., et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant [J]. J. Phys. Chem. B,2001,105(22): 5114-5120.
    [18]Xu Q., Kharas K.C.C., Datye A. K. The preparation of highly dispersed Au/Al2O3 by aqueous impregnation[J]. Catal. Lett.,2003,85 (3-4):229-235.
    [19]Hsiao C.Y. Master Thesis[M]. Department of Chemical Engineering, National Taiwan University,1994.
    [20]Okumura M., Nakamura S., Tsubota S., et al. Chemical vapor deposition of gold
    A12O3, SiO2, and TiO2 for the oxidation of CO and of H2[J]. Catal. Lett.,1998, 51(1-2):53-58.
    [21]Wolf A., Schuth F. A systematic study of the synthesis conditions for the the preparatio of highly active gold catalysts[J]. Appl. Catal. A,2002,226(1-2): 1-13.
    [22]Zanella R., Giorgio S., Shin C.H., et al. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea[J]. J. Catal.,2004,222(2): 357-367.
    [23]Park E.D., Lee J.S. Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts[J].J.Catal.,1999,186(1):1-11.
    [24]Kim T.S., Gong J., Ojifinni R.A., et al. Water activated by atomie Oxygen on Au(III)to oxidize CO at low temperatures [J]. J. Am. Chem. Soc.,2006,128(19): 6282-6283.
    [25]Sunoyama H.T, Sakurai H., Tsukuda T. Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol[J]. Chem. Phys. Lett., 2006,429(4-6):528-532.
    [26]Debeila M.A., Wells R.P.K., Anderson J.A. Influence of water and pretreatment conditions on CO oxidation over Au/TiO2-In2O3 catalysts [J]. J. Catal.,2006, 239(1):162-172.
    [27]Haruta M. Gold as a novel catalyst in the 21st century:Preparation, working mechanism and applications[J]. Gold Bull,2004,37(1-2):27-36.
    [28]Thompson D.T. An overview of gold-catalysed oxidation processes[J]. Top. Catal.,2006,38(4):231-240.
    [29]Hutehings G.J. New directions in gold catalysis[J]. Gold Bull.,2004,37(1-2): 3-11.
    [30]Hutehings G.J. Gold catalysis in chemical proeessing[J]. Catal. Today,2002, 72(1-2):11-17.
    [31]Calla J.T., Davis R.J. Influence of dihydrogen and water vapor on the kinetics of CO oxidation over Au/Al2O3[J]. Ind. Eng. Chem. Res.,2005,44(14):5403-5410.
    [32]Date M., Haruta M. Moisture effect on CO oxidation over Au/TiO2 catalyst[J]. J. Catal.,2001,201(2):221-224.
    [33]Bongiorno A., Landman U. Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters[J]. Phys. Rev. Lett.,2005,95(10).
    [34]Chen B.S., Bai C.S., Cook R., et al. Gold/cobalt oxide catalysts for oxidative destruction of dichloromethane[J]. Catal. Today,1996,30(1-3):15-20.
    [35]Quijada C., Huerta F.J., Morallon E., et al. Electro-chemical behaviour of aqueous SO2 at polycrystalline gold electrodes in acidic media:a voltammetric and in situ vibrational study Part1. Reduction of SO2:deposition of monomeric and polymeric sulphur[J]. Electrochim. Aeta,2000,45(11):1847-1862.
    [36]Streeter I., Wain A.J., Davis J., et al. Cathodic reduction of bisulfite and sulfur dioxide in aqueous solutions on copper electrodes:An electrochemical ESR study[J]. J. Phys. Chem. B,2005,109(39):18500-18506.
    [37]Okumura M., Akita T., Haruta M., et al. Mult-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin[J]. Appl. Catal. B:Environ.,2003,41(1-2):43-52.
    [38]Parvulescu V.I., Grange P., Delmon B. Catalytic removal of NO[J]. Catal. Today, 1998,46(4):233-316.
    [39]Landon P., Ferguson J., Solsona B.E., et al. Selective oxidation of CO in the presence of H2, H2O and CO2 utilising Au/alpha-Fe2O3 catalysts for use in fuel cells[J]. J. Mater. Chem.,2006,16(2):199-208.
    [40]Tabakova T., Idakiev V., Tenehev K., et al. Pure hydrogen production on a new gold-thoria catalyst for fuel cell applications [J]. Appl.Catal. B:Environ.,2006, 63(1-2):94-103.
    [41]Nkosi B., Coville N.J., Hutehings G.J. Reactivation of a supported gold catalyst for acetylene hydrochlorination[J]. Chem. Commu.,1988,1:71-72.
    [42]Edwards J.K., Solsona B., Landon P., et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd/Fe2O3 catalysts[J]. J. Mater. Chem.,2005,15(43): 4595-4600.
    [43]Lopez-Sanehez J.A., Lennon D. The use of titania-and ironoxide-supported gold catalysts for the hydrogenation of propyne[J]. Appl. Catal. A.Gen.,2005,291(1-2): 230-237.
    [44]Chen M.S., Luo K., Wei T., et al. The nature of the active site for Vinyl acetate synthesis over pd-Au[J]. Catal. Today,2006,117(1-3):37-45.
    [45]Renneke R., Melntosh S., Arunajatesan V., et al. Development of high performance catalysts for the production of vinyl acetate monomer [J]. Top. Catal., 2006,38(4):279-287.
    [46]Lin S.D., Gluhoi A.C., Nieuwenhuys B.E. Ammonia oxidation over Au/MOx/gamma-Al2O3-activity, selectivity and FT-IR measurements [J]. Catal. Today,2004,90(1-2):3-14.
    [47]Hughes M.D., Xu Y.J., Jenkins P., et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions [J]. Nature,2005,437(7062): 1132-1135.
    [48]Sinha A.K., Seelan S., Tsubota S., et al. Catalysis by gold nanopartieles: epoxidation of propene[J]. Top. Catal.,2004,29(3-4):95-102.
    [49]Hutehings G. J., Carrettin S., Landon P., et al. New approaches to designing selective oxidation catalysts:Au/C a versatile catalyst[J]. Top. Catal.,2006,38(4): 223-230.
    [50]Biella S., Prati L., Rossi M. Selective oxidation of D-glucose on gold catalyst[J]. J. Catal.,2002,206(2):242-247.
    [51]Prati L., Rossi M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols[J].J. Catal.,1998,176(2):552-560.
    [52]Choudhary V.R., Jha R., Jana P. Solvent-free selective oxidation of benzyl alcohol by molecular oxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-free benzaldehyde[J]. Green Chem.,2007,9(3):267-272.
    [53]Abad A., Almela C., Corma A., et al. Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over Palladium catalysts[J]. Tetrahedron,2006,62(28):6666-6672.
    [54]Corma A., Domine M.E. Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid Phase[J]. Chem. Commu.,2005,32:4042-4044.
    [55]Mirescu A., Prusse U. A new environmental friendly method for the preparation of sugar acids via catalytic oxidation pn gold catalysts [J]. Appl. Catal. B: Environ.,2007,70(1-4):644-652.
    [56]Comotti M., Dellapina C., Falletta E., et al. Is the biochemical route always advantageous? The case of glueose oxidation[J]. J. Catal.,2006,244(1):122-125.
    [57]Onal Y., Sehimpf S., Claus P. Structure sensitivity and kincties of D-glucose oxidation to D-gluconic acid over carbon-supported gold catalysts[J]. J. Catal., 2004,223(1):122-133.
    [58]Schubert M.M., Hackenberg S., Van A.C., et al. CO oxidation over supported gold catalysts "inert" and "active" support materials and their role for the oxygen supply during reaction[J]. J. Catal.,2001,197(1):113-122.
    [59]Grisel R.J.H., Weststrate C.J., Goossens A., et al. Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment[J]. Catal. Taday,2002,72:123-132.
    [60]Wang G.Y., Li X.M., Bai N. Au/ZnO催化剂的制备及常温常湿条件下CO氧化催化性能[J].Chem. J. Chin. Univer,2001,22(3):431-434.
    [61]Chi Y.S., Lin H.P., Mou C.Y. CO oxidation over gold nanocatalyst confined in mesoporous silica[J]. Appl. Catal. A.Gen.,2005,284:199-206.
    [62]Jin Y., Wang P., Yin D., et al. Gold nanoparticles stabilized in a novel periodic mesoporous organosilica of SBA-15 for styrene epoxidation[J]. Micropor. Mesopor. Mater.,2008,111(1-3):569-576.
    [63]Jin Y., Zhang D.Y., Yu N.Y., et al. Epoxidation of styrene over gold nanoparticles supported on organic-inorganic hybrid mesoporous silicas with aqueous hydrogen peroxide[J]. Micropor. Mesopor. Mater.,2009,126:159-165.
    [64]李标模,喻宁亚,王平军等.硫醚功能化离子液体固载纳米金粒子的制备及其催化性能[J].催化学报,2007,28(10):875-879.
    [65]Luo L.R., Yu N.Y., Yin D.H., et al. Gold nanoparticles stabilized by task-specific oligomeric ionic liquid for styrene epoxidation without using VOCs as solvent[J]. Catal. Lett.,2009,130(3-4):489-495.
    [66]Sing K.S.W., Everett D.H., Haul A.W., et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure. Appl. Chem.,1985,57:603-619.
    [67]Ying J.Y., Mehnert C.P., Weng M.S., et al. Synthesis and applications of supramolecular-templated mesoporous materials[J]. Angew. Chem. Int. Ed.,1999, 38:56-77.
    [68]Kresge C.T., Leonowickz M.E., Roth W.J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359: 710-712.
    [69]Beck J.S., Vartuli J.C., Roth W.J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc.,1992,114: 10834-10843.
    [70]Tanev P.T., Pinnavaia T.J. A neutral templating route to mesoporous molecular sieves[J]. Science,1995,267(10):865-867.
    [71]Bagshaw S.A., Prouzet E., Pinnavaia T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants[J]. Science,1995,269(1): 1242-1244.
    [72]Zhao D.Y., Feng J.L., Huo Q.S., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279: 548-552.
    [73]Zhao D.Y., Huo Q.S., Feng J.L., et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable mesoporous silica structures [J]. J. Am. Chem. Soc,1998,120:6024-6036.
    [74]Huo Q.S., Leon R., Petroff P.M., et al. Mesostructure design with Gemini surfactants:supercage formation in a three-dimensional hexagonal array[J]. Science,1995,268:1324-1327.
    [75]Ryoo R., Kim I.M., Shin C.H. Disordered molecular sieves with branched mesoporous channel network[J]. J. Phys. Chem.,1996,100:17718-17721.
    [76]Blin J.L., Leonard A., Su B.L. Well-ordered spherical mesoporous materials CMI-1 synthesized via an assembly of decaoxyethylene cetyl ether and TMOS[J]. Chem. Mater.,2001,13:3542-3553.
    [77]Schubert U., Husing N., Lorenz A. Inorganic-organic materials by sol-gel processing of organo-functinal metal alkoxides[J]. Chem. Mater.,1995,7: 2010-2027.
    [78]Wen J., Wilkes G. L. Organic/inorganic hybrid network materials by the sol-gel approach[J]. Chem. Mater.,1996,8:1667-1681.
    [79]Kimura T., Kuroda K., Sugahara Y., et al. Esterification of the silanol groups in the mesoporous silica derived from kanemite[J]. J. Porous. Mater.,1998,5: 127-132.
    [80]Anwander R., Palm C., Stelzer J., et al. Silazane-silylation of mesoporous silicates:towards tailor-made support material[J]. Stud. Surf. Sci. Catal.,1998, 117:135-142.
    [81]Zhao X.S., Lu G.Q. Modification of MCM-41 by surface silylation with trimethylchlorosilane (TMCS) [J]. J. Phys. Chem. B,1998,102:1556-1559.
    [82]Jaroniec C.P., Kruk M., Jaroniec M., et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes[J]. J. Phys. Chem. B, 1998,102:5503-5510.
    [83]Ryoo R., Ko C.H., Kruk M., et al. Block-copolymer-templated ordered mesoporous silica:array of uniform mesopores or mesopore-micropore network? [J]. J. Phys. Chem. B,2000,104:11465-11471.
    [84]Burkett S.L, Sims S.D., Mann S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors[J]. Chem. Commun.,1996,1367-1368.
    [85]Sims S.D., Burkett S.L., Mann S. The synthesis and characterisation of ordered mesoporous materials incorporating organo-siloxane[J]. Mater. Res. Soc. Symp. Proc.,1996,431:77-81.
    [86]Macquarrie D.J. Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM[J]. Chem. Commun.,1996,1961-1962.
    [87]Huo Q., Margolese D.I., Stucky G.D. Urfactant control of phase in the synthesis of mesoporous silica-based materials[J]. Chem. Mater.,1996,8:1147-1151.
    [88]Lim M.H., Blanford C.F., Stein A. Synthesis and characterization of a reactive vinyl-functionalized MCM-41:probing the internal pore structure by a bromination reaction[J].J. Am. Chem. Soc.,1997,119:4090-4091.
    [89]Babonneau F., Leite L., Fontlupt S. Structural characterization of organically-modified porous silicates synthesizes using CTA+ surfactant and acidic conditions[J]. J. Mater. Chem.,1999,9:175-178.
    [90]Gong Y., Li Z., Wu D., et al. Synthesis and characterization of ureidopropyl-MSU-X silica[J]. Micropor. Mesopor. Mater.,2001,49:95-102.
    [91]巩雁军,李志宏,吴东等.有机官能化MSU-x介孔分子筛的界面特征[J].物理化学学报,2001,17:1-4.
    [92]巩雁军,李志宏,吴东等.有机官能基对硅基MSU-x的织构性能的影响[J].化学学报,2001,59:1592-1595.
    [93]巩雁军,李志宏,吴东等.双有机官能化MSU-x硅基介孔材料的合成[J].高等学校化学学报,2000,21:1915-1916.
    [94]Yu N.Y., Gong Y, Wu D., et al. One-Pot synthesis of mesoporous organosilicas using sodium silicate as a substitute for tetraalkoxysilane[J]. Micropor. Mesopor. Mater.,2004,72:25-32.
    [95]Welton T. Room-temperature ionic liquids-solvents for synthesis and catalysis[J]. Chem. Rev.,1999,99(88):2071-2080.
    [96]Henderson W.A., Passerini S. Phase Behavior of Ionic Liquid-LiX Mixtures: Pyrrolidinium Cations and TFSI-Anions[J]. Chem. Mater.,2004,16: 2881-2885.
    [97]Anderson J.L., Ding R., Ellern A., et al. Structure and properties of high stability geminal dicationic ionic liquids[J]. J. Am. Chem. Soc.,2005,127: 593-604.
    [98]Gao Y, Arritt S.W., Twamley B., et al. Guanidinium-based ionic liquids[J]. Inorg. Chem.,2005,44(6):1704-1712.
    [99]Roggers R.D., Seddon K.R. Ionic liquids as green solvents:progress and prospects[M]. Wasserscheid P., Bosmann A., Chapter 5, Oxford Univ. Pr.,2003, 57-69.
    [100]Roggers R.D., Seddon K.R. Ionic liquids as green solvents:progress and prospects[M]. Turner J.D., Holbrey M.B., Rogers R.D., Chapter 2, Oxford Univ. Pr.,2003,14-31.
    [101]Davis H.J., Forrester K.J. Thiazolium-ion based organic ionic liquids (OILs). Novel OILs which promote the benzoin condensation[J]. Tetrahedron Lett., 1999,40:1621-1622.
    [102]Bhushan M.K., Geeta L.R. Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel [J]. Organ. Process Res. Dev.,2002,6: 826-828.
    [103]Earle M.J., Seddon K.R. Preparation of imidazole carbenes and the use thereof for the synthesis of ionic liquids[P]. World Patent,2001, WO 0177081.
    [104]Watanabe M., Yamada S.L, Ogata N. Ionic conductivity of polymer electrolytes containing room temperature molten salts based on pyridinium halide and aluminum chloride[J]. Elactrochim. Acta,1995,40(13):2285-2288.
    [105]Ohno H., Yoshizawa M., Ogihara W. Development of new class of ion conductive polymers based on ionic liquids[J]. Electrochim. Acta,2004,50: 255-261.
    [106]Washiro S., Yoshizawa M., Nakajima H., et al. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids[J]. Polymer,2004,45:1577-1582.
    [107]Nakajima H., Ohno H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives[J]. Polymer,2005,46:11499-11504.
    [108]Marcilla R., Blazquez J.A., Rodriguez J., et al. Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions[J]. J. Polym. Sci.. Pt. A:Polym. Chem.,2004,42:208-212.
    [109]Wang J., Smith T.W. Synthesis and polymerization of liquid ionic 1-methyl-3-alkyl-5-vinylimidazolium salts[J]. Polym. Preprints,2004,45(2): 290-291.
    [110]Brust M., Walker M., Bethell D., et al. Synthesis of thiol-derivatised old nanoparticles in a two-phase liquid-liquid system[J]. Chem. Commun.,1994, 801-802.
    [111]E1-Sayed M.A. Some interesting properties of metals confined in time and nanometer space of different shapes[J]. AcC. Chem. Res.,2001,34:257-264.
    [112]Daniel M.C., Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechology[J]. Chem. Rev.,2004,104:293-330.
    [113]Chao M.C., Lin H.P., Mou C.Y. et al. Synthesis of nano-sized mesoporous silicas with metal incorporation [J]. Catal. Today,2004,97:81-83.
    [114]Lang N., Tuel A. A fast and efficient ion-exchange procedure to remove surfactant molecules from MCM-41 materials[J]. Chem. Mater.2004,16: 1961-1966.
    [115]Bore M.T., Pham H.N., Ward T.L., et al. Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica Electronic supplementary information (ESI) available:XRD patterns for mesoporous silica synthesized by batch and aerosol method and HAADF TEM image of gold nanoparticles supported on MCM-41 before reduction[J]. Chem. Commun.,2004,2620-2621.
    [116]Bore M.T., Pham H.N., Switzer E.E., et al. The role of pore size and structure on the thermal stability of gold nanoparticles within mesoporous silica[J]. J. Phys. Chem. B,2005,109(7):2873-2877.
    [117]Gabaldon J.P., Bore M., Datye A.K. Mesoporous silica supports for improved thermal stability in supported Au catalysts[J]. Top. Catal,2007,44(1-2): 253-262.
    [118]Aprile C., Abad A., Garcia H., et al. Synthesis and catalytic activity of periodic mesoporous materials incorporating gold nanoparticles[J]. J. Mater. Chem., 2005,15:4408-4413.
    [119]Blatchford C.G., Campbell J.R., Creighton J.A. Plasma resonance-enhanced raman scattering by absorbates on gold colloids:The effects of aggregatin[J]. Surf. Sci.,1982,120:435-455.
    [120]Payne G.B., Deming P.H., Williams P.H. Reactions of hydrogen peroxide. VII. alkali-catalyzed epoxidation and oxidation using a nitrile as co-reactant[J]. J. Org. Chem.,1961,26:659-663.
    [121]Suh M., Bagus P.S., Pak S., et al. Reactions of hydroxyl radicals on titania, silica, alumina, and gold surfaces[J]. J. Phys. Chem. B,2000,104(12): 2736-2742.
    [122]Kaneda K., Yamaguchi K., Mori K., et al. Catalyst design of hydrotalcite compounds for efficient oxidations [J]. Catal. Surv. Jpn.,2000,4(1):31-38.
    [123]Chen Y., Reymond J.L. Epoxidation of olefins with formamide-hydrogen peroxide[J]. Tetrahedr. Lett.,1995,36(23):4015-4018.
    [124]Kaneda K., Yamashita T. Heterogeneous Baeyer-Villiger oxidation of ketones using m-chloroperbenzoic acid catalyzed by hydrotalcites[J]. Tetrahedr. Lett. 1996,37(26):4555-4558.
    [125]Schuster C., Mollmann E., Tompos A., et al. Highly stereoselective epoxidation of (-)-α-pinene over chiral transition metal (salen) complexes occluded in zeolitic hosts[J]. Catal. lett.,2001,74(1-2):69-75.
    [126]Liu Y., Tsunoyama H., Akita T., et al. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatiteElectronic supplementary information (ESI) available:Optical spectra of Au25(SG)18 in water and on HAP; preparation, characterization, kinetic analysis, and result of resuse test of Au-HAP catalysts[J]. Chem. Commun.,2010,550-552.
    [127]Tan R., Yin D.H., Yu N.Y., et al. Self-assembled solvent-regulated phase transfer catalyst for epoxidation of non-functionalized alkenes[J]. Catal. lett.,2009,129:471-477.
    [128]Zhong S., Tan Y.M., Fu Z.H., et al. A highly efficient method of epoxidation of olefins with hydrogen peroxide catalyzed by changeable hexadentate 8-quinolinolato manganese(Ⅲ) complexes[J]. J. Catal.,2008,256:154-158.
    [129]Zhang F., Yan Y., Yang H., et al. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15[J]. J. Phys. Chem. B, 2005,109:8723-8732.
    [130]徐成华,吕绍洁,邱发礼.苯乙烯环氧化制环氧苯乙烷的研究.[J]石油与天然气化工,1998,27(2):72-77.
    [131]Lutz J.T., Eckroth M.G., Bushey G.J., et al. Kirk-Othmer encyclopedia of chemical technology. New York:Wiley,1980,9(3):251-258.
    [132]Patil N.S., Jha R., Uphade B.S., et al. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over gold supported on A12O3, Ga2O3, In2O3 and Ti2O3[J]. Appl. Catal. A:Gen.,2004,275(1-2):87-93.
    [133]邹鸣,牟新东,寇元等.离子液体中离子型共聚高分子保护的铂纳米粒子催化剂催化肉桂醛选择性加氢[J].催化学报,2007,28(5):389-391.
    [134]Bates E.D., Mayton R.D., Ntai I., et al. CO2 capture by a task-specific ionic liquid[J]. J. Am. Chem. Soc.,2002,124(6):926-927.
    [135]Nakashima T., Kimizuka N. Interfacial synthesis of hollow TiO2 microspheres in ionic liquids[J]. J. Am. Chem. Soc.,2003,125:6386-6387.
    [136]Tan R., Yin D.H., Yu N.Y., et al. A novel polymeric chiral salen Mn(Ⅲ) complex as solvent-regulated phase transfer catalyst in the asymmetric epoxidation of styrene[J]. J. Mol. Catal. A:Chem.,2006,259(1-2):125-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700