新型咪唑啉金属配合物的合成及其与DNA的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了化合物与核酸相互作用方式及其研究的发展状况,总结了化合物与核酸作用的研究方法、研究技术、发展方向及其应用前景,简单介绍了咪唑啉类化合物合成方法及研究进展,以及在医药、缓蚀剂、表面活性剂和催化剂等方面的应用。
     本课题采用微波辐射法,由吡啶-2,6-二甲酸与乙二胺一步合成了2,6-二(2’-咪唑啉-2’-基)吡啶化合物,收率达到71%,反应时间仅为1.5h。而文献曾报道用吡啶-2,6-二甲酸、SOCl2、P2S5、乙二胺等为原料,通过多步反应合成了此化合物,但操作繁琐、耗时长,且产生有毒气体,收率仅为47.7%。相比之下,采用微波辐射法显著缩短了反应时间,提高了收率,减少了环境污染。
     采用常规方法,合成了铬、锌、铜、镍四种过渡金属的2,6-二(2’-咪唑啉-2’-基)吡啶配合物,并通过红外、紫外、核磁、摩尔电导率、元素分析、热重分析等对其进行了表征与分析,推测出配合物的化学式分别为:[ZnLNO3]NO3、[CuLNO3]NO3·2H2O、[NiLNO3]NO3·2H2O、[CrL2][NO3]3。配合物的红外光谱、紫外光谱、核磁数据相对配体都发生了不程度的移动,充分说明金属离子已与配体发生配位作用。
     采用紫外光谱、黏度法研究了这四种过渡金属配合物及配体与DNA的相互作用。研究发现:这些物质与DNA作用时,紫外吸收都发生了不同程度的增色,表明它们与DNA发生氢键作用;DNA溶液黏度随配合物浓度增加而减少,表明配合物与DNA发生了静电作用,而DNA溶液黏度随配体浓度增加变化不明显,表明配体与DNA可能发生了沟面结合作用。
     本工作还运用Guassian 03量子化学程序包中的密度泛函理论(DFT),研究了由吡啶-2,6-二甲酸与乙二胺一步合成2,6-二(2’-咪唑啉-2’-基)吡啶化合物的反应过程。对化合物和脱氧核糖核苷酸单体(dAMP, dGMP, dTMP, dCMP)全自由度几何优化。相同水平计算得到分子NBO电荷、分子半径、偶极矩、分子总能量、分子前线轨道能量、红外光谱图。通过TD-DFT方法,计算紫外吸收光谱。采用规范不变原子轨道GIAO法,计算它们的1H NMR和13C NMR化学位移值。通过分析比较,计算值与理论值在一定程度上相对一致。并模拟了化合物与DNA相互作用,得到了与实验一致的结论。
The investigation of the interaction between molecule and nucleic acid was fully described in the dissertation paper. It involved interaction modes and research methods and research techniques. The direction and prospects of the interaction between molecule and nucleic acid were also expatiated. The recent advances in the study of imidazolines and their derivatives and their application of drugs in medicine, corrosion resistance in industry, surfactant in lives and catalysts in synghesis were reviewed.
     2,6-di(2'-imidazoline-2'-yl)pyridine (dimlpy, ligand, L) has been synthesized by using pyridine 2,6-dicarboxylic acid and ethylenediamine under the condition of microwave irradiation and catalyst free. The overall yield was 71% and the irradiation time was 1.5 h. The method provided a simple and inexpensive access to the title compound. The method has a characteristic of low energy consumptions and environmental protection. Compared with the conventional methods, this procedure has the advantages of simple operation and short reaction times. However, it had been synthesized by using pyridine 2,6-dicarboxylic acid, SOC12, P2S5, and ethylenediamine by Baker. The overall yield was only 47.7%. But this method provided an expensive and intricacy access to the title compound. The method has a characteristic of environmental pollution.
     The four complexes of chromium (Ⅲ), zinc (Ⅱ), copper (Ⅱ) and nickel (Ⅱ) with 2,6-di(2'-imidazoline-2'-yl)pyridine were synthesized in the conventional condition and characterized by infrared spectroscopy, UV, NMR, mass spectrometry, elemental analyses, molar conductivity, TG-DSC. The results showed that the complexes had been synthesized successfully and the general chemical formulas were [CrL2][NO3]3, [ZnLNO3]NO3, [CuLNO3]NO3-2H2O, [NiLNO3]NO3·2H2O, respectively.
     UV absorption and viscosity measurements were used to study of these complexes and ligand interaction with DNA. The absorbance of the complexes and ligand all increase, but the wavelength has not red shifted with increasing DNA concentration. The results of viscosity measurements reveal that the presence of these complexes decreases the relative viscosity of DNA. So, these complexes may bind to DNA by hydrogen bonding and external electrostatic binding. But, the results of viscosity measurements reveal that the presence of ligand has no obvious effect on the relative viscosity of DNA. It may bind to DNA by hydrogen bonding and groove-face binding.
     Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) with hybrid functional B3LYP were used to investigate several physical and chemical properties of the compounds, including the geometry, electron structure, charge population, IR, NMR, as well as UV absorption spectra. Other physicochemical characteristics, such as bond lengths, dipole moments, energies of the lowest unoccupied (LUMO) and highest occupied (HOMO) molecular orbitals, molecular total energy and Fukui functions were also obtained from theoretical calculations. Calculations were also reported to explain the experimental behavior of these systems. The calculated UV absorption spectrum was in good agreement with the experimental spectrum. This was also confirmed by a comparison of experimental IR with frequencies derived theoretically.1H and 13C chemical shifts obtained at the gauge-independent atomic orbital (GIAO) level of theory were explained. Synthetic principle and the interaction between the compounds and DNA have been discussed. Calculations were also reported to explain the interaction between these compounds and DNA. The calculated conclusions were in good agreement with the experimental phenomena.
引文
[1]Oberhaven K. J., Riehardson J. P., Bvehanan R. M., et al. Synthesis and characterization of dinuclear copper complexes of the dinuclearing ligand 2,6-bis[(bis((1-methylimidazole-2-yl) methyl)amino)methyl]-4-methylphenol [J]. Inorg. Chem.,1990,30:1357-1365.
    [2]Lermer L., Roupioz Y., Ting R., et al. Toward an RNaseA Mimic:A DNAzyme with Imidazoles and Cationic Amines [J]. J. Am. Chem. Soc.,2002,124:9960-9961.
    [3]Sharma S., Abuzar S. The benzimidazole anthelmintics chemistry and biological activity[J]. Prog. Drug. Res.,1983,27:85-161.
    [4]Tebbe M. J., Jensen C. B., Spitzer W. A., et al. The effects of antirhino and enteroviral vinylacetylene benximidazoles on cytochrome P450 function and hepatic porphyrin levels in mice [J]. Antiviral Res.,1999,42:25-33.
    [5]孙秋香,李武客,李东风等.含苯并咪哩八齿配体EGTB双核钴(Ⅱ)配合物的合成和表征[J].华中师范大学学报(自然科学版),1999,33:220-224.
    [6]Wang J. L., Shuai L., Xiao X. M. Synthesis, characterization and DNA binding studies of a zinc complex with 2,6-bis(benzimidazlo-2-yl)pyridine [J]. Journal of Inorganic Biochemistry, 2005,99 (3):883-885.
    [7]郭睿,张春生,包亮等.新型咪唑啉缓蚀剂的合成与应用[J].应用化学,2008,25(4):494-498.
    [8]Gonzalez Y. I., Stjerndahl M., Danino D., et al. Spontaneous Vesicle Formation and Phase Behavior in Mixtures of an Anionic Surfactant with Imidazoline Compounds [J]. Langmuir, 2004,20,7053-7063.
    [9]Bhor S., Anilkumar G., Tse M. K., et al. Synthesis of a New Chiral N,N,N-Tridentate Pyridinebisimidazoline Ligand Library and Its Application in Ru-Catalyzed Asymmetric Epoxidation [J]. Org. Lett,2005,7(16):3393-3396.
    [10]Baker A. T., Singh P., Vignevich V. Iron (Ⅱ) and Nickel (Ⅱ) Complexes of 2,6-Di(thiazol-2-y l)pyridine and Related Ligands [J]. Aust. J. Chem.,1991,44:1041-1048.
    [11]Matier W. L., Owens D. A., Comer W. T. Antihypertensive Agents. Synthesis and Biological Properties of 2-Amino-4-aryl-2-imidazolines [J]. J. Med. Chem.,1973,16(8):901-908.
    [12]Maeda S., Koizumi T. A., Yamamoto T., et al. Aerobic oxidative dehydrogenation of coordinated imidazoline units of pincer ruthenium complex [J]. J. Organomet Chem.,2007, 692:5495-5500.
    [13]Ren C. X., Li S. Y., Yin Z. Z., et al. [2,6-Bis(4,5-dihydro-1H-imidazol-2-yl) pyridine] dichloridomanganese(II) [J].Acta. Cryst.,2009,65:572-573.
    [14]Baker A. T., Craig D. C, Singh P. Palladium(Ⅱ) Complexes of Tridentate Ligands.The Crystal Structure of Chloro[2,6-di(2-imidazolin-2-yl)pyridine]palladium(II) chloride[J]. Aust. J. Chem.,1991,44:1659-1667.
    [15]Kraft A., Frohlich R. Star-branched non-covalent complexes between carboxylic acids and a Tris (imidazoline) base [J]. Chem. Commun.,1998,1085-1086.
    [16]Ren C. X., Ye B. H., He F., et al. Syntheses, structures, and photoluminescence studies of [2:2] metallomacrocyclic silver(I) complexes with 1,3-bis(4,5-dihydro-1H-imidazol-2-yl) benzene [J]. Cryst. Eng. Comm.,2004,6(35):200-206.
    [17]Divya B., Tyagi V. K. Microwave Synthesis of Cationic Fatty Imidazolines and their Characterization[J]. J. Surfact Deterg,2008,11:79-87.
    [18]Mohsin Y. P., Vijaykumar V. P., Pandurang R. P., et al. Microwave-assisted facile synthesis of 2-substituted 2-imidazolines [J].Arkivoc,2006:205-210.
    [19]Valiollah M., Majid M., Shahram T. et al. Rapid and efficient synthesis of 2-imidazolines and bis-imidazolines under ultrasonic irradiation [J]. Tetrahedron Letters,2006,47:2129-2132.
    [20]Neef G., Eder U., Sauer G. One-Step Conversions of Esters to 2-Imidazolines, Benzimidazoles, and Benzothiazoles by Aluminum Organic Reagents[J]. J. Org. Chem.,1981, 46(13):2824-2826.
    [21]Scholz C. R. Imdazole Derivatives with Sympathomimetic Activity [J], Industrial and Engineering Chemistry.1945,37(2):120-125.
    [22]Hao X. Q., Gong J. F., Du C. X., et al. Synthesis, characterization and photoluminescent properties of platinum complexes with novel bis(imidazoline) pincer ligands [J]. Tetrahedron Letters,2006,47:5033-5036.
    [23]Kenichi M., Maiko M., Ryo N., et al. Concise Total Synthesis of (-)-Spongotine A [J]. J. Org. Chem,2007,72:8947-8949.
    [24]张林,邓春光.水溶性缓蚀剂HS-2000研究开发[J].石油化工腐蚀与防护,2001,18(3):30-35.
    [25]中明周.ERI-1缓蚀剂的合成及性能评价[J].石油化工腐蚀与防护,2002,19(3):42-45.
    [26]史真,杨卫国.二羟乙基咪唑啉阳离子表面活性剂的合成[J].化学世界,1994,1:14-15.
    [27]史真,李娜.烷基咪唑啉二羧酸盐的合成[J].西北大学学报(自然科学版),1994,24(3):219-221.
    [28]Achyuta N. A., John M. O., Richard A. H. A Novel Approach for Solid-Phase Synthesis of Substituted Imidazolines and Bis-Imidazolines [J]. J. Org. Chem.,2001,66:8673-8676.
    [29]李广‘仁,冯柏成,李高宁等.咪唑啉型表面表面活性剂的合成与应用[J].山东大学报(自然科学版),1996,11(2):47-50.
    [30]Wang S. F., Furuno T., Cheng Z. Synthesis of 1-hydroxyethyl-2-alkyl-2-imidazoline and its derivative sulfonate amphoteric surfactant from tall oil fatty acid [J]. J. Wood Sci.,2003,49: 371-376.
    [31]苏克松,廖刚.新型高效盐水介质缓蚀剂的合成及性能[J].应用化工,2008,37(5):
    507-510.
    [32]王新刚,王晶,张波等.油酸基咪唑啉类缓蚀剂的复配及其缓蚀性能研究[J].材料保护,2008,41(1):20-23.
    [33]石顺存,方茹苕,蒋华鹏等.环烷酸咪唑啉膦酰胺缓蚀性能的研究[J].材料保护,2008,41(3):62-64.
    [34]燕音刘,瑞泉王,献群等.咪唑啉季铵盐对Q235钢在盐酸溶液中的缓蚀性能[J].中国腐蚀与防护学报,2008,28(5):291-295.
    [35]Rondu F., Bihan G. L., Wang X., et al. Design and Synthesis of Imidazoline Derivatives Active on Glucose Homeostasis in a Rat Model of Type II Diabetes.1. Synthesis and Biological Activities of N-Benzyl-N'-(arylalkyl)-2-(4',5'-dihydro-1'H-imidazol-2'-yl) piperazines [J]. J. Med. Chem.,1997,40:3793-3803.
    [36]Bihan G. L., Rondu F., Tounian A. P., et al. Design and Synthesis of Imidazoline Derivatives Active on Glucose Homeostasis in a Rat Model of Type Ⅱ Diabetes.2. Syntheses and Biological Activities of 1,4-Dialkyl-,1,4-Dibenzyl, and 1-Benzyl-4-alkyl-2-(4',5'-dihydro-1'H-imidazol-2'-yl)piperazines and Isosteric Analogues of Imidazoline [J]. J. Med. Chem.,1999,42:1587-1603.
    [37]Touzeau F., Arrault A., Guillaumet G., et al. Synthesis and Biological Evaluation of New 2-(4,5-Dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine Derivatives [J]. J. Med. Chem.,2003,46:1962-1979.
    [38]Schann S., Bruban V., Pompermayer K., et al. Synthesis and Biological Evaluation of Pyrrolinic Isosteres of Rilmenidine. Discovery of cis-/trans-Dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3H-pyrrol-2-yl)-amine (LNP 509), an Il Imidazoline Receptor Selective Ligand with Hypotensive Activity [J]. J. Med. Chem.,2001,44:1588-1593.
    [39]Morton H., Francis E. S. Gerald M. M.2-(Alkoxyaryl)-2-imidazolineM onoamine Oxidase Inhibitors with Antidepressant Activity, Journal of Medicinal Chemistry [J].1978,21(4): 405-409.
    [40]Klaus W., Colin C. B., Charles D., et al. Synthesis and Central Nervous System Properties of 2-[(Alkoxycarbonyl)amino]-4(5)-phenyl-2-imidazolines1 [J]. J. Med. Chem.,1984,27: 616-627.
    [41]Francesco G., Mario G., Alessandro P., et al.α2-Adrenoreceptors Profile Modulation.2. Biphenyline Analogues as Tools for Selective Activation of thea2C-Subtype [J]. J. Med. Chem.,2004,47:6160-6173.
    [42]Francesco G., Pascal B., Livio B., et al. a2-Adrenoreceptors Profile Modulation and High Antinociceptive Activity of (S)-(-)-2-[1-(Biphenyl-2-yloxy)ethyl]-4,5-dihydro-1H-imidazole [J]. J. Med. Chem.,2002,45:32-40.
    [43]Menges F., Neuburger M., Pfaltz A. Synthesis and Application of Chiral Phosphino-Imidazoline Ligands:Ir-Catalyzed Enantioselective Hydrogenation [J]. Organic Letters,2002, 4(26):4713-4716.
    [44]Arai T., Mizukami T., Yanagisawa A. Reaction Optimization Using Solid-Phase Catalysis-CD HTS:Nb-Imidazoline-Cu (I)-Catalyzed Asymmetric Benzoylation of 1,2-Diols [J]. Organic Letters,2007,9(6):1145-1147.
    [45]Ren C. X., Cheng L., Ye B. H., et al. Metallocycle and ring-opening polymerization of silver (1) complexes with 1,3-bis(4,5-dihydro-lH-imidazol-2-yl)benzene ligand [J]. Inorganica ChimicaActa,2007,360:3741-3747.
    [46]Dervan P. B. Design of sequence-specific DNA-binding molecules [J]. Science,1986,232: 464-471.
    [47]Sundquist W. I., Banceroft D. P., Lippard S. J. Synthesis, characterization, and biological activity of cis-diamine platinum (Ⅱ) complexes of the DNA intercalators 9-aminoacridine and chloroqine [J]. J. Am. Chem. Soc,1990,112:1590-1596.
    [48]Pang D. W., Abruna, H. D. Micromethod of the Investigation of the Interactions between DNA and Redox-Active Molecules [J].Anal. Chem.,1998,70:3162-3169.
    [49]Carte M. T., Rodriguez M., Bard A. J. Voltmametric studies of the interaction of Metal chelates with DNA.2.Tris-chelated complexes of cobalt(III)and iron (II) with 1,10-Phenanthroline and 2,2'-bipyridine [J]. J. Am. Chem. Soc,1989,111:8901-8911.
    [50]Anneheim H. G., Perree F. M., Gaudemer A., et al. Porphyrin-netropsin a potential ligand of DNA [J]. Tetrahedron Lett.,1993,34:7263-7266.
    [51]Wang Y, Yang Z. Y., Wang Q., et al. Crystal strueture, antitumor Activities and DNA binding properties of the La(III) complex with Phthalazin-1 (2H)-one prepared by a novel route [J]. J.Ogranomet.Chem.2005,690:4557-4563.
    [52]Erkkila K. E., Odom D. T., Barton J. K. Recognition andreaction of metallointercalators with DNA [J]. Chem. Rev.,1999,99:2777-2795.
    [53]Reedijk J. Improved understanding in platinium antitumour chemistry [J]. Chem. Commun., 1996,801-806.
    [54]Thederahn T. B., Kuwabara M. D., Larsen T. A., et al. Nuclease activity of 1,10-phenanthroline-copper:kinetic mechanism [J]. J. Am. Chem. Soc,1989,111:4941-4946.
    [55]Li L., Karlin K.D., Rokita S. E. Changing Selectivity of DNA Oxidation from Deoxyribose to Guanine by Ligand Design and a New Binuclear Copper Complex [J]. J. Am. Chem. Soc., 2005,127:520-521.
    [56]Horn A. J., Vencato I., Bortoluzzi A. J., et al. Synthesis crystal structure and properties of dinuclear iron (Ⅲ) complexes containing terminally coordinated phenolate/H2O/OH- groups as models for purple acid phosphatases:efficient hydrolytic DNA cleavage [J]. Inorg.Chim.Acta.,2005,358:339-351.
    [57]Satyanarayana S., Dabrowiak J. C., Chaires J. B. Neither △-nor A-tris(phenanthroline) ruthenium(Ⅱ) binds to DNA by classical intercalation. Biochemistry 1992,31(39):9319-9324.
    [58]Wu J. Z., Ye B. H., Wang L., et al. Bis(2,2'-bipyridine)ruthenium(II) complexes with imidazo [4,5-f][1,10]-phenanthroline or 2-phenylimidazo[4,5-f][1,10]phenanthroline. J Chem. Soc.
    Dalton Trans.1997,1395-1401.
    [59]Timothy B., Yu B. Z., Hung K. L., et al. Human nonpancreatic secreted phospholipase A2: interfacial parameters, substrate specificities, and competitive inhibitors [J]. Biochemistry, 1993,32(2):573-584.
    [60]Sastri C. V., Eswaramoorthy D., Giribabu L., et al. DNA interactions of new mixed-ligand complexes of cobalt(Ⅲ) and nickel(Ⅱ) that incorporate modified phenanthroline ligands[J]. Inorg.Biochem,2003,94:138-145.
    [61]Tysoe S. A., Robert J. M., David B. A., et al. Spectroscopic investigation of differential binding modes of.DELTA.-and.LAMBDA.-Ru(bpy)2(ppz)2+with calf thymus DNA [J]. J. Phys Chem.,1993,97(8):1707-1711.
    [62]Liu J., Zhang T. X., Lu T. B., et al. DNA-binding and cleavage studies of macrocyclic copper (Ⅱ) complexes [J]. J Inorg Biochem,2002,91:269-276.
    [63]Tu C., Wu X. F., Liu Q., et al. Crystal structure, DNA-binding ablility and cytotoxic activity of platinum(Ⅱ) 2,2'-dipyridylamine complexes [J]. Inorg. Chim. Acta.,2004,357(1):95-102.
    [64]Pasternack R. F., Gibbs E. J., Villafranca J. J. Interactions of porphyrins with nucleic acids [J]. Biochemistry,1983,22:2406-2414.
    [65]Jin L., Yang P., Li Q. S. Studies on the mechanism of the chiral metal complexs with DNA by fluorimetry method [J]. Chem. Chin. Univ.,1996,17(9):134-138.
    [66]Wu J. Z., Li Y.; Wu J. F. Synthesis and DNA binding of u-[2,9-bis(2-imidazo[4,5-f][1,10] phenanthroline)-1,10-phenanthroline]bis[1,10-phenanthrolinecopper(Ⅱ)] [J]. J. Inorg. Biochem.,2005,99:2211-2216.
    [67]Wang L. R., Wang R. X., Yang L. Z., et al. Study of the interaction of CTZAMB-Cu(Ⅱ) with DNA and the determination of DNA [J]. J. Elect. Chem.,2005,585:214-219.
    [68]Xu. X. H., Bard A. J. Immobilization and hybridization of DNA on an aluminum (Ⅲ) Alkanebisphosphonate thin-film with electrogenatated chemiluminescent detection [J]. J. Am. Chem. Soc,1995,117(9):2627-2671.
    [69]Carter M. T., Bard A. J. Voltammetric studies of the interaction of metal chelates with DNA. Tris-chelated complexes of coblt (Ⅲ) and iron(Ⅱ) with 1,10-phenanthroline [J]. J. Am. Chem. Soc.,1989,111:8901-8911.
    [70]葛存旺,王南平,顾宁.DNA与5-氟尿嘧啶相互作用的电化学和谱学研究[J].化学学报,2006,64:1837-1842.
    [71]Dupureur C. M., Barton J. K., Structural of △-ang ∧-[Ru(phen)2dppz]2+bound to d(GTCGAC)2:Characterization of enantioselective intercalation [J]. Inorg. Chem.,1997,36: 33-43.
    [72]Liu J. G., Ye B. H., Ji L. N., et al. Enantiomeric ruthenium (Ⅱ) complexes binding to DNA: binding modes and enantioselectivity [J]. J. Bio. Inorg. Chem.,2000,5(1):119-128.
    [73]Zhao Y. D., Pang D. W., Wang Z. L., et al. DNA-modified electrode. Part 2. Electrochemical characterization of gold electrodes modified with DNA [J]. J. Electroanal. Chem.,1997, 431(2):203-209.
    [74]Breuzard G., Millot J. M., Riou J. F., et al. Selective interactions of ethidiums with G-quadruplex DNA revealed by surface-enhanced raman scattering[J]. Anal. Chem.,2003, 75(16):4305-4311.
    [75]Wang L., Le X. L., Liang N. J. Stacking between pyrido (3,2-f) (1,7)phenanthroline andnucleic bases [J]. Olymers for Advanced Technologies.,1998,7(8):723-725.
    [76]欧阳泽英,肖小明,张金艳等.二(2-苯并咪唑亚甲基)胺合镝的合成及其与DNA作用的光谱研究[J].光谱实验室,2009,26(1):67-70.
    [77]Gedye R., Smith F., Westawa K., et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Lett,1986,27(3):279-282.
    [78]Banik B. K., Barakat K. J., Wagle D. R., et al. Microwave-assisted rapid and simplifies hydrogenation [J].J. Org. Chem.,1999,64(16):5746-5753.
    [79]Moghaddam I. M., Mkhammadi M, Hosseinnia A. Water promoted Michael addition of secondary amines toa,β-unsaturated carbonyl compounds under microwave [J]. Synth. Conmmun.,2000,30(4):643-650.
    [80]Varma R. S. Solvent-free organic using supported reagents and microwave irradiation [J]. Green Chem.,1999,1:43-45.
    [81]Lidstrom P., Tierney J., Wathy B., et al. Microwave assisted organic synthesis-a review [J]. Tetrahedron,2001,57(45):9225-9283.
    [82]肖小明,芳贺正明,松村竹子.2,6-二(苯并咪唑-2’)吡啶及其与钌配合物的’H NMR研究[J].高等学校化学学报,1991,12:1672-1674.
    [83]肖小明,熊士荣,曾跃等.2,6-二(苯并咪唑-2’)吡啶钌配合物的13C NMR与电子转移作用[J].化学物理学报,1998,11(2):134-137.
    [84]陈强,台夕市,唐宁等.1,1,1-三[3-(2-苯并咪唑基)-2-氧杂丙基]丙烷镍配合物合成及结构测定[J].化学学报,2002,60(8):1527-1530.
    [85]Jamieaon E. T., Dunbar S. J. Structure, recognition, and processing of cisplatin-DNA adducts [J]. Chem. Rev.,1999,99(9):2467-2498.
    [86]Cohen M. D., Kargacin B., Klein C. B., et al. Mechanisms of Chromium Carcinogenicity and Toxicity [J]. Critical Reviews in Toxicology,1993,23(3):255-281.
    [87]Arakawa H, Ahmad R, Naoui M, et al. A Comparative Study of Calf Thymus DNA Binding to Cr (III) and Cr (VI) Ions [J]. JBiol Chem.,2000,275(14):10150-10153.
    [88]Dillon C T, Lay PA, Bonin A M, et al. Permeability, Cytotoxicity, and Genotoxicity of Cr(III) Complexes and Some Cr(V) Analogues in V79 Chinese Hamster Lung Cells [J]. Chem. Res. Toxicol,2000,13:742-748.
    [89]Dillon C. T., Lay P. A., Bonin A. M., et al. DNA Interactions and Bacterial Mutagenicity of Some Chromium(III) Imine Complexes and their Chromium(V) Analogues. Evidence for Chromium (V) Intermediates in the Genotoxicity of Chromium(III) [J]. Aust J Chem,2000, 53:411-424.
    [90]史黎薇.铬化合物对健康影响的研究进展[J].卫生研究,2003,4:410-412.
    [91]William N. L., Norbert S. Recent Advances in Zinc Enzymology [J]. Chem. Rev.,1996,96: 2375-2433.
    [92]Edda C. F., Bemhard L. [Zn3(OH)2(1-MeC-N3)5(1-MeC-O2)3]4+(1-MeC=1-Methylcytosine): Structural Model for DNA Cross-Linking and DNA Rewinding by Zn(Ⅱ)? [J]. J. Am. Chem. Soc,1994,116:7204-7209.
    [93]Jacqueline K. B., Dannenberg J. J., Raphael A. L. Enantiomeric selectivity in binding tris(phenanthroline)zinc(Ⅱ) to DNA [J]. J. Am. Chem. Soc,1982,104(18):4967-4969.
    [94]朱莉,廖展如,龙云飞等.含苯并咪唑锌配合物的合成、表征及晶体结构[J].无机化学学报,2004,20(4):399-402.
    [95]Sigman D. S., Graham D. R., Aurora D., et al., Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline cuprous complex [J]. J. Biol. Chem.,1979,254(24):12269-12272.
    [96]周庆华,杨频.二(2-苯并咪唑亚甲基)胺合铜(Ⅱ)配合物与DNA作用方式的光谱研究[J].化学学报,2005,63(1):71-74.
    [97]Li L. Z., Zhao C., Xu T., et al. Synthesis, crystal structure and nuclease activity of a Schiff base copper (Ⅱ) complex [J]. J. Inorg. Biochem,2005,99(5):1076-1082.
    [98]Cleare M. J., Hydes P. C. Metal ions in biological systems (11) [M]. New York:Dekker,1980, 1-60.
    [99]华瑞年,李岩,肖玉龙等.7种治疗胃炎中成药物中铬镍铅镉的含量测定[J].微量元素与健康研究,2000,17(4):44-45.
    [100]Maria A., Ioannis T., Catherine D. S. High nuclearity nickel compounds with three, four or five metal atoms showing antibacterial activity [J]. J. Inorg. Bioch,2003,93:256-264.
    [101]康敬万,王秀杰,董树清.六氮杂镍配合物与DNA相互作用的研究[J].西北师范大学学报,2006,42(5):57-62.
    [102]陈威,雷群芳,王国平.氧氟沙星镍配合物的合成、红外光谱、热分析与抗肿瘤活性[J].浙江大学学报,2008,35(5):553-556.
    [103]Gear W. J, The use of conductivity measuments in organic solvents for the characterization of coordination compounds [J]. Coord.Chem. Rev.1971,7:81-122.
    [104]Vaidyanathan G. V., Nair B. U. Synthesis, Characterization and DNA Binding Studies of a ruthenium (Ⅱ) Complex [J].J. Inorg.Biochem.,2002,91(2):405-412.
    [105]Vaidyanathan G. V., Nair B. U. Oxidative cleavage of DNA by tridentate Copper (Ⅱ) Eomplex [J]. J. Inorg.Biochem.,2003,93(3-4):271-276.
    [106]Vaidyanathan G. V., Nair B. U. Photooxidation of DNA by a cobalt (Ⅱ) tridentate eomplex [J]. J. Inorg. Biochem.,2003,94 (1-2):121-126.
    [107]Vaidyanathan G. V., Nair B. U. Synthesis, Characterization and DNA Binding Studies of a Chromium (Ⅲ) Complex Containing a Tridentate Ligand [J]. European Journal of Inorganic Chemistry,2003,95(4):334-342.
    [108]Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms [J]. J.Mol.Biol.,1961,3:208-218.
    [109]Reichmann M. E., Rice S. A., Thomas C. A., et al. A further examination of the molecular weight and size of deoxypentose nucleic acid [J]. J. Am. Chem. Soc.,1954,76:3047-3053.
    [110]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [111]荣春英.密度泛函对含铁多重态体系的理论和计算研究[D].湖南师范大学硕士学位论文,2007,
    [112]刘述斌.概念密度泛函理论及近来的一些进展[J].物理化学学报,2009,25(3):590-600.
    [113]黄莺.用概念DFT、含时-DFT计算不同金属取代的卟啉钳子钯化合物的结构、光谱和反应性质[D].湖南师范大学硕士学位论文,2008.
    [114]Parr R.G., Yang W. Density Functional Theory of Atoms and Molecules [M]. Oxford University Press:Oxford,1989.
    [115]Geerlings P., DeProft F., Langenaeker W. Conceptual Density Functional Thery [J]. Chem. Rev.,2003,103:1793-1874.
    [116]唐智勇,胡云楚,赵莹等.氰乙基对几种芳胺结构和光谱的影响[J].物理化学学报,2009,25(4):701-706.
    [117]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J. Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Challacombe,M.;Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.04; Gaussian, Inc. Pittsburgh, PA,2003.
    [118]Becke A. D. Density-functional thermochemistry.Ⅲ.The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [119]Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B,1988,37:785-789.
    [120]Reed A. E., Curtiss L. A., Weinhold F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint [J].Chem. Rev.1988,88:899-926.
    [121]Carpenter J. E., Weinhold F. Analysis of the Geometry of the Hydroxymethyl Radical by the "Different Hybrids for Different Spins" Natural Bond Orbital Procedure* [J].J. Mol. Struct. (THEOCHEM),1988,169:41-62.
    [122]Bauernschmitt R., Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J]. Chem. Phys. Lett.,1996,256: 454-464.
    [123]Janusz R., Piotr S., Maciej G. Hartree-Fock and Density Functional Methods and IR and NMR Spectroscopies in the Examination of Tautomerism and Features of Neutral 9-Acridinamine in Gaseous and Condensed Media [J]. J. Phys. Chem. A.,1997,101: 283-292.
    [124]Tao S. X., Zhao J. W. Advanced organic chemistry, Beijing:People's Education Press,1981:16[陶慎熹,赵景文.高等有机化学.北京:人民教育出版社,1981:16]
    [125]Xia. Y., Yin.D. L. Impact of Lewis Acids on Diels-Alder Reaction Reactivity:A Conceptual Density Functional Theory Study [J]. J. Phys. Chem. A.,2008,112:9970-9977.
    [126]Boris G., Sonia I., Henry F. S. An Efficient Computational Approach for the Evaluation of Substituent Constants [J]. J. Org. Chem.,2006,71:6382-6387
    [127]Riahi S., Eynollahi S., Ganjali M. R. Calculation of Standard Electrode Potential and Study of Solvent Effect on Electronic Parameters of Anthraquinone-1-carboxylic Acid [J]. Int. J. Electrochem. Sci.,2009,4:1128-1137
    [128]Zhang Y. X., Cai X., Zhou Y., et al. Structures and spectroscop icproperties of bis(phthalocyaninato) yttrium and lanthanum comp lexes:theoretical study based on Density Functional Theory calculations [J]. J. Phys. Chem. A.,2007,111:392-400.
    [129]Ditchfield R. Self-consistent perturbation theory of diamagnetism I. A gauge-invariant LCAO method for NMR chemical shifts [J]. Mol. Phys.,1974,27:789-807.
    [130]Gauss, J. Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts [J]. J. Chem. Phys.,1993,99:3629-3643.
    [131]Wolinski K., Hinton J. F., Pulay P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations [J]. J. Am. Chem. Soc.1990, 112:8251-8260.
    [132]Parr R.G., Yang W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity [J]. J. Am. Chem. Soc.,1984,106:4049-4050.
    [133]Yang W., Mortier W. J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines [J]. J. Am. Chem. Soc.,1986,108: 5708-5711.
    [134]Singh L., Singh Ishar M. P., Elango M., et al. Synthesis of Unsymmetrical Substituted 1,4-Dihydropyridines through Thermal and Micromave Assisted [4+2] Cycloadditions of 1-Azadienes and Allenic Esters [J]. J. Org. Chem.,2008,73:2224-2233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700