有机修饰硼粉及其聚合物基复合材料的制备、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究有机修饰硼粉的制备、表征及其在聚合物基复合材料中的应用。
     利用苯乙烯(St)与马来酸酐(MAH)的共聚物(SMA)中的酸酐基团、硬脂酸(HSt)中的羧基与硼粉表面的羟基之间的化学反应,分别制备了SMA修饰硼粉和硬脂酸修饰硼粉。利用红外(IR)、透射电镜(TEM)、热重分析(TGA)分别对其化学修饰的价键结构、有机修饰前后的微观形貌和有机修饰硼粉中有机含量进行了表征和测定,利用激光粒径分析仪(Laser Particles Size Analyzer)测试了修饰前后的硼粉的粒径变化。IR结果表明有机修饰的硼粉中硼粉与SMA、硬脂酸之间为化学键连接;TGA结果表明两种有机修饰硼粉中有机物含量为10%左右;TEM结果显示SMA修饰的硼粉前后由团聚态变为单独存在的硼粉颗粒;粒径测试结果显示SMA修饰后硼粉粒径在乙醇溶液中由原来的2.2μm增加到3.7μm,与TEM结果相吻合;溶剂分散性试验和表面能测试结果也证实了修饰后硼粉表面极性由亲水性变为亲油性,在三氯甲烷溶剂中有较好的分散。
     将未处理的硼粉和SMA修饰的超细硼粉与尼龙6(PA6)进行熔融共混制备了PA6/硼粉复合材料。Molau试验结果表明,用SMA修饰的硼粉与PA6之间存在着一定的化学键合。力学性能测试结果表明:未处理的硼粉与有机修饰硼粉均能改善复合材料的力学性能;添加1%的改性硼粉,复合材料力学性能最优;SEM结果显示SMA修饰的硼粉在PA6中的分散性优于未处理的硼粉。
     将未处理的硼粉和SMA修饰硼粉与聚碳酸酯(PC)进行熔融共混制备了PC硼粉复合材料。MFR测试结果显示随着有机修饰硼粉含量的增加,MFR大幅增加;TGA结果显示未处理的硼粉和SMA修饰硼粉均能改善复合材料的热稳定性;力学性能测试结果表明添加1%的改性硼粉,复合材料力学性能最优。
     将未处理的硼粉和HSt修饰的硼粉与聚丙烯(PP)进行熔融共混制备了PP/硼粉复合材料。其复合材料力学性能和热降解性能均有不同程度的提高。与纯PP相比,添加3%的未处理硼粉时,复合材料拉伸强度增加了12%,冲击强度提高了17%,热降解温度T5%升高了26℃;添加3%的HSt修饰硼粉时,复合材料的拉伸强度增加了15%,冲击强度提高了35%,热降解温度T5%升高了20℃;与纯PP相比,含硼复合材料的MFR均有不同程度的下降。
The preparation, characterization and properties of organically-modified boron powder and their composites were studied.
     The surface modification of boron powder with poly (styrene-co-maleic anhydride) (SMA) and stearic acid (HSt) have been achieved through the reactions between the hydroxyl groups on the boron surface and the maleic anhydride groups in SMA or carboxylic acid groups in HSt. These novel organically-modified boron were characterized using IR, TGA, TEM, and laser particle size analyzer. Experimental results from IR analysis indicated that the surface of boron was successfully modified by SMA and HSt, and TGA data analysis indicated that the amount of organic materials on the boron surface was about 10%of the total mass of modified boron. TEM images of SMA-modified boron indicated that the morphology of boron after modification has also been changed from an aggregated form to separated particles. The average particle size of the boron after modification with SMA was significantly increased from 2.7μm to 3.7μm in ethanol, which was obtained from the laser particle size analysis. The solvent dispersion of this modified boron and surface energy were also tested. Experimental results indicated that the modified-boron powder surface has also been changed in polarity from hydrophilic into hydrophobic and formed a well dispersed and stable suspension in chloroform.
     PA6/boron composites have been prepared by melt blending of PA6 with untreated boron and SMA-modified boron. Molau tests revealed that there was certain linkage between PA6 and SMA-modified boron. MFR study of composites has shown that the MFR values increased with the increasing content of loaded SMA-modified boron. The testing results of mechanical properties have shown that the mechanical properties of PA6/untreated boron and PA6/SMA-modified boron composites are significantly improved. the results show that the comprehensive properties are good when the content of SMA-modified boron is 10%. SEM analysis has shown that SMA-modified boron is well dispersed in PA6 matrix.
     PC/boron composites have been prepared by melt blending of PA6 with untreated boron powder and SMA-modified boron. The thermal analysis results have indicated that the thermal stability of PC/untreated boron and PC/SMA-modified boron composites has been enhanced. Melt flow rate (MFR) study of composites has been shown that the MFR values increased with the increasing content of loaded modified boron. The testing results of mechanical properties have shown that that the comprehensive properties are good when the content of SMA-modified boron is 10%.
     PP/boron composites have been prepared by melt blending of PP with untreated boron powder and SMA-modified boron. The results suggested that the mechanical properties and thermal stability of composites have been significantly improved. Melt flow rate (MFR) study of composites has been shown that the MFR values decreased with the increasing content of loaded modified boron.
引文
[1]倪礼忠,陈麒编著.聚合物基复合材料[M].上海:华东理工大学出版社,2007.
    [2]宋焕成,赵时熙编著.聚合物基复合材料[M].北京:国防工业出版社,1986.
    [3]E.L.托马斯(美)主编.施良知,沈静铢等译.聚合物结构与性质[M].北京:科学出版社,1999.聚合物基复合材料.
    [4]蔡绪扶,王贵恒编著.高分子复合材料界面科学基础[M].成都:四川大学高分子材料系,2001.
    [5]胡福增,郑安呐等编.聚合物及其复合材料界面[M].北京:中国轻工业出版社,2001.
    [6]葛建芳,卢风纪.高性能无机填料在PP改性中的应用[J].合成树脂及塑料,2000,17(4):63-66.
    [7]蔡长庚.填料的表面处理及其应用[J].铜箔与基材,2000,5:18-20.
    [8]Hancock M. Filled thermoplastics, Charpter 8. In:Rothon R,ed. Particulate-Filled Polymer Composites. London:Longman Group Limited,1995.279-316
    [9]吴绍吟,马文石.塑料工业中无机填料高性能化研究进展[J].中国塑料,1999,13(6):20-23.
    [10]朱锦涛.粉体填充性聚合物基复合材料界面粘接性能研究[D].湖南大学,2003.
    [11]何益艳,杜仕国.无机填料的改性及其在复合材料中的应用[J].化工新型材料,2001,12(9):15-17.
    [12]刘英俊,刘伯元主编.塑料填充改性[M].北京:中国轻工业出版社,1998.
    [13]尹荔枝,张进修.无机刚性粒子/聚合物复合材料的界面[J].材料导报,2002,16(3):44-46.
    [14]顾辉,孟令辉等.界面改性对GMT-PP复合材料力学性能的影响[J].材料科学与工艺,1999,7(2):50-54.
    [15]解孝林,李伯耿,潘祖仁.填充聚合物材料用无机填料表面处理的研究进展[J].材料科学与工程,1999,17(2):63-65.
    [16]郭广生,戴恒,薛春余.无机粉体表面处理技术及应用[J].化工新型材料,1997,(11):21-23.
    [17]徐伟平,黄锐等,大分子偶联剂对HDPE/纳米CaCO3复合材料性能的影响[J].中国塑料,1999,13(9):25-29.
    [18]Fekete.F.. Surface modification and characterization of particulate mineral fillers[J].J. colloid and interface science,1990,135 (1):200-217
    [19]吕彦梅,唐华杰等.刚性增韧材料[J].塑料科技,1999,129(1):33-36.
    [20]郭宝华.相容剂在PP/CaCO3中的应用[J].中国塑料,1994(4):44-47.
    [21]Monte. S. J.. Processing of Composites with Titanate Coupling agent Review[J]. J. polymer engineering and science,1984 (24):1369-1381.
    [22]Banhegyi G, et al. Studies of thermally stimulated current in polypropylene/calcium carbonate/surfactant systems. Polym. Eng. Sci., 1990(30):374.
    [23]Morales E. et al.. Dynamic mechanical analysis of polypropylene composites based on surface-treated sepiolite. Polym. Eng. Sci., 1992(32):769.
    [24]张云灿,潘恩黎,许慎等.CaCO3刚性粒子增韧HDPE的脆韧转变研究[J].高分子材料科学与工程,1998,14(6):64.
    [25]项素云,田春香,孙彩霞.滑石粉的表面改性及其对填充PP性能的影响[J].中国非金属矿工业导刊,2006(1):36-39.
    [26]王国建,屈泽华,郭建龙等.苯乙烯/马来酸酐共聚物修饰碳纳米管的研究[J].化学学报,2006,64(24):2505-2508.
    [27]Wu D. C., Tang N., Gu D. Z.. Intern. Polym. Processing,1990, (1): 47.
    [28]宫晓颐.成都科技大学博士论文[D],成都,1988.
    [29]Ziegel. K. D., Romanov. A.. Modulus Reinforcement in Elastomer Composites.1. Inorganic fillers. J. Applied Polymer Science,1973, (17): 1119-1131.
    [30]郑安呐,胡福增等.碳纤维表面处理及复合材料界面优化研究[J].华东理工大学学报,1994,20(4):451-499.
    [31]欧国荣,张德振主编.高分子科学与工程实验[M].上海,华东理工大学出版社,1998.
    [32]Wu. H. F., Claypool. C. M. An Analytical Approach of the Microbond Test Method Used in Charactering the Fiber/Matrix Interface. J. Material Science Letter,1991 (10):269-271.
    [33]陈祥宝.聚合物基复合材料手册[M].北京化学工业出版社,2004.
    [34]龚毅生.无机化学丛书(第二卷)[M].科学出版社,1998.
    [35]Boron, Metallo-Boron, Compounds and Boranes, edited by Adams, R.M.; New York:Interscience publishers,1964, p.233.
    [36]Boron, Metallo-Boron, Compounds and Boranes, edited by Adams, R.M.; New York:Interscience publishers,1964, p.233.
    [37]Diekts, W., Helmbereger, H. Boron, edited by Gaude, G.E.; New York:Plenum press,1965. p.301.
    [38]Atkinson, K. E., Kiely, C. The influence of fibre surface properties on the mode of failure in carbon-fibre/epoxy composites [J]. Composit. Sci.Technol.,1998,58:1917.
    [39]Brack, N., Rider, A.N., Halstead, B., Pigram, P. J.. Surface modification of boron fibers for improved strength in composite materials. J. Adhension Sci. Technol,2005,19:857-877.
    [40]庞维强,张教强,张琼方等.硼粉的包覆及含包覆硼推进剂燃烧残渣成分分析[J].固体火箭技术,2006,29(3):205~207.
    [41]庞维强,樊学忠,胥会祥等.球形团聚硼颗粒的强度研究[J].含能材料,2009,17(5):510-513.
    [42]42Berkovich, Y., Aserin, A. N., Garti, J. J. Dispersion Sci. Technol, 2004, (25):89-99.
    [43]刘然,薛向欣,刘欣.硼及其硼化物的应用现状与研究进展.材料导报[J].2006,20(6):1-4.
    [44]杨细平,邱祖民.硼及其硼化物的应用研究进展[J].化工技术与开发,2008,37(6):22-26
    [45]Tai-Kang Liu. Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants [J]. Journal of Propulsion and Power,1996,12 (1)
    [46]民杰,张军.聚烯烃接枝马来酸酐作为增容剂的应用[J].弹性体,2002,12(5):50-57.
    [47]卢家荣,吴水珠,曾钫等聚碳.酸酯/尼龙6共混体系动态流变性能研究[J].塑料科技,2008,36(6):22-26.
    [48]李福枝.聚碳酸酯/ABS-g-MAH塑料合金的研究[J].株洲工学院学报,2005,19(6):16-22.
    [49]Hill, D. J. T., O'Donnell, J. H., O'Sullivan, P. W. Analysis of the mechanism of copolymerization of styrene and maleic anhydride[J]. Macromolecules,1985,18:9-17.
    [50]Henry, S. M., El-Sayed, M. E. H., Pirie, C.M., Hoffman, A. S., Stayton, P. S. PH-Responsive Copolymers for Intracellular Drug Delivery[J]. Biomacromolecules,2006,7:2407-2414.
    [51]Zeng, W. P., Shirota, Y. Studies on alternating radical copolymerization-analysis of microstructures of styrene maleic anhydride [J]. Macromolecules,1989,22:4204-4208.
    [52]SEYMOUR R. B., GARNER D. P. Synthesis of random styrene-Maleic anhydride copolymer [J].J Cont Technol,1976,48(612):41.
    [53]沈一丁,李小瑞.苯乙烯-马来酸酐无规共聚物的制备及性能[J].高分子材料科学与工程,1997,13(3):32-35.
    [54]胥会祥,赵凤起,李晓宇.无定形硼粉的溶剂法提纯[J].火炸药学报,2007,30(2):8-12.
    [55]王进,李凤生,宋洪昌等.硼复合粒子的制备及表征[J].含能材料,2005,13(5):291-295.
    [56]于中振,欧玉春,刘列.尼龙6高岭土界面相互作用对其复合材料力学性能和流变行为的影响[J].高分子学报,1992(6):736-740.
    [57]杜磊,邓剑如,李洪旭.表界面化学原理在复合固体推进剂中的应用[J].推进技术,2000,21(1):64-66.
    [58]杨建文,曾兆华,陈用烈编著.光固化涂料及应用环氧树脂[M].北京,化学工业出版社,2004.
    [59]高东磊,张炜,朱慧,包覆及团聚对硼燃烧的影响[J].含能材料,2007,15(4).378-381.
    [60]冯钠.颗粒填充聚酰胺-6共混复合体系强韧化研究[D]。四川大学博士学位论文,2004.
    [61]何曼军,陈维孝,董西侠.高分子物理(修订版).上海:复旦大学出版社,1990.
    [62]Wu s. Impact Fracture Mechanisms in Polymer Blends: Rubber-Toughened Nylon [J]. J. Polym. Sci. Chem Ed,1983,21: 699-716.
    [63]Ramsteiner F, Heckmann w,. Structure-Property Relationship in Rubber Modified Amorphous Thermoplastic Polymers [J]. Polym Commun,1985,26:199-200
    [64]Ban L., Doyle M J, Disko M M, The effect of spherulie crystal on properties of tensile fracture of nylon 6 and nylon 6 alloy [J]. Polym Commun,1988,29:163-166
    [65]欧玉春.刚性粒子填充聚合物的增强增韧与界面相结构[J].高分子材料科学与工程,1998,14(2):12-15.
    [66]董文.硅烷偶联剂对ZnO/PA6复合材料力学性能的影响[J].胶体与聚合物,2009,27(2):16-19.
    [67]Y. P. Khanna, W. P. Kuhn,. Reliable measurements of the nylon 6 glass transition made possible by the new dynamic DSC. J. Polym. Sci, Part B, Polym. Phys.,1997,35:2219
    [68]赵丽娟,陈德祥.聚合物/粘土纳米复合材料的流变特性研究[J].材料导报,2003,(17):102-106.
    [69]T. Wan, M.J. Clifford, F. Gao et al., Strain amplitude response and the microstructure of PA/claynanocomposites [J]. Polymer,2005 (46): 6429-6436.
    [70]Socrates G Infrared and Raman characteristic group frequencies, vol.10.New York:Wiley,2001(Chapters 9,10 and 21).
    [71]Arimoto H, Ishibashi M, Hirai M, Chatani Y. J Polymer Sci. Pt A 1965,3(1):317-26.
    [72]李强,赵竹第,欧玉春等.尼龙6/蒙脱土纳米复合材料的结晶行为[J].高分子学报,1997,(2):188-193.
    [73]Illers KH, Haberkorn H. Structure and thermal behaviour of nylon 6 nanocomposites[J]. Macromol Chem.1971;142:31-67.
    [74]Gurato G, Fichera A, Grandi FZ, Zannetti R, Canal P. Crystallinity and Polymorphism of 6-Polyamide[J]. Macromol Chem 1974,175(3):95 3-975.
    [75]Kyotani M, Mitsuhashi S. Studies on crystalline forms of nylon 6. II. Crystallization from the melt[J]. J Polym Sci, Part A-2 1972,10(8): 1497-1508.
    [76]陈婉吟,林志勇,钱浩,等.MC尼龙6/TiO2原位纳米复合材料等温结晶动力学的研究[J].塑料工业,2005,33:142.
    [77]吴人洁.现代分析技术在高聚物中的应用[M].上海:上海科学技术出版社,1987.346
    [78]T. D. Fornes, D. R. Paul. Crystallization behavior of nylon 6 nanocomposites[J]. Polymer,2003,44:3945-3961
    [79]欧玉春,于忠振,方晓萍.界面改性剂对刚性粒子增韧尼龙6熔 体流变形为影响[J].高分子学报,1994(4):449-453.
    [80]王海靖.尼龙/蒙脱土纳米复合材料的制备、结构和性能的研究[D].南京理工大学,2004.
    [81]朱雅红,马晓燕,陈娜.聚合物基复合材料的界面及改性研究[J].玻璃钢/复合材料,2005,(3):44-48
    [82]曾幸荣,赵建青,庞 纯等.EPDM接枝马来酸酐增韧聚酰胺6的性能及冲击断面形态[J].橡胶工业,2002,(49):142-145
    [83]陈永东,杨桂生.工程塑料的发展方向[J].高分子通报,1999,(3):10~13.
    [84]钱知勉.聚碳酸酯的改性方向及其应用[J].广东塑料;2005,(8):37-38.
    [85]张志毅,赵宁,魏伟.核壳结构和层状结构改性剂的制备及其对PC性能的影响2005,33(3):5-8
    [86]卢家荣.聚碳酸酯/尼龙6共混体系动态流变性能研究[J].塑料科技,2008,36(6):22-26
    [87]马德柱,何平笙,徐种德等.高聚物的结构与性能[M],北京,科学出版社.2003.
    [88]肖利群,晏伟,别明智等.β成核剂/无机粒子/PP复合材料的结晶行为与力学性能研究[J].塑料科技,2007,35(8):50-53.
    [89]葛建芳,卢风纪.高性能无机填料在PP改性中的应用[J].合成树脂及塑料,2000,17(4):63-66.
    [90]薛颜彬,吴波震,夏琳等.无机纳米填料改性聚丙烯研究进展[J]. 塑料科技,2007,35(6):50-53.
    [91]何益艳,杜仕国,无机填料的改性及其在复合材料中的应用[J].化工新型材料,2001,12(9):15-17.
    [92]饶湘.塑料热变形温度测试影响因素的探讨[J].广东化工36(8):205-206
    [93]王珂,吴景深,曾汉民.刚性粒子增韧聚合物体系的研究发展[J].材料科学与工程2001,19(3):16-23.
    [94]万兆荣,乔志华,李玉平,吕志平等.铝系新型聚丙烯成核剂的制备及表征[J].太原理工大学学报,2009,40(5):476-478.
    [95]段国荣,杨绪杰,陆路德等.超微氧化铈粉体的表面改性及分散性能研究[J].材料科学与工艺,2007,15(5):682-684.
    [96]Perkins,W. G. Polymer toughness and impact resistance[J]. Polym. Eng. Sci.,1999, (39):2445
    [97]王少会,刘佩珍,徐卫兵等.超分散剂改性滑石粉填充PP复合材料的性能研究[J].塑料工业,2008,36(1):53-56.
    [98]Han, C. D.. Multiphase Flow in Polymer Processing. New York: Academic Press.1981,116-124.
    [99]王珂,吴景深,曾汉民.聚丙烯/硫酸钡复合体系的界面相互作用与流变性质和结晶行为的关系[J].高分子学报,2001,12(6):697-701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700