东部和中部型ENSO模态及其对中国降水影响的差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厄尔尼诺-南方涛动(ENSO)是热带太平洋大尺度海气耦合作用的主要模态,其对全球气候异常有着极其重要的影响。研究证据表明,热带太平洋存在两种不同类型且相对独立的ENSO事件,即以热带东太平洋海表面温度(SST)异常为主的东部(Eastern-Pacific, EP)型ENSO和以热带中太平洋SST异常增暖(变冷),热带西太平洋和热带东太平洋SST变冷(增暖)的中部(Central-Pacific, CP)型ENSO。本论文以EP和CP型ENSO为研究核心,从海洋和大气多个角度深入分析两类ENSO的海气耦合模态和周期变化等主要特征,重点探讨EP和CP型ENSO事件分别对热带大气响应和东亚气候异常的关联,并利用国际耦合模式比较计划5(CMIP5)发布的多情景下全球气候系统模式模拟结果,通过对EP型和CP型ENSO模拟能力的评估,试图揭示两种类型ENSO自然振荡属性及其未来对全球气候变化的可能响应。主要结论概括如下:
     (1)东部型和中部型ENSO事件分别表现出显著的年际尺度(2-7年)和年代际尺度(10-15年)周期变化特征,并以纬向偶极型和三极型模态于热带太平洋SST和次表层海温(SOT)场之间相互耦合。当CP型ENSO处于成熟位相时,暖SOT异常中心位于日界线(180°)以西地区,其可能导致Nino4区的SOT增温,同时引起热带中太平洋SST增暖。根据SVD分析结果中SOT场的第一和第三模态所对应的时间系数定义为东部型次表层指数和中部型次表层指数,该指标不仅与其它学者定义的两类ENSO指数具有较高的相关性,而且它们具备良好地描述和区分EP型和CP型的ENSO事件的能力。此外,20世纪80年代后SOT在年代际时间尺度上振幅明显增强这一事实说明,CP型ENSO事件的频率和强度均呈现出上升趋势,且在过去30年里CP型ENSO事件明显加强了对全球气候的影响。
     (2)EP型和CP型El Nino对热带纬向和垂直环流的响应存在显著差异,根据热带地区海气耦合关系重新定义EP型和CP型SO指数。EP-SO和CP-SO分别与EP型和CP型El Nino模态相互耦合,并呈现出年际(2-7年)和年代际(10-15年)的周期振荡特征。两种不同类型SO指数还将有效地描述热带地区不同的海气耦合作用:当EP-ElNino事件发生时,热带太平洋Walker环流异常表现为大尺度偶极型单圈环流结构;当CP-E1Nino事件发生时,Walker环流异常呈现出纬向三极型双圈环流结构。此外,EP型和CP型SO事件与中国冬春季节降水的关系在全国范围均呈现相反特征,而两类SO事件与中国夏秋季节的降水呈相反特征的地区却分别只集中于长江中下游地区和华南地区。以中国南方冬季降水为例,EP型ENSO往往造成我国南方冬季降水偏多,而CP型ENSO时,南方降水异常偏少,这种相反关系主要体现于年际变化尺度上,同时造成冬季降水异常显著差异的主要原因是西北太平洋异常反气旋环流差异。因此,进行预测东亚季风区季节性降水时必须考虑两类ENSO与我国降水之间关联的差异性。
     (3)通过评估CMIP5发布的20个气候模式在工业革命前(Pre-industrial)控制实验中模拟EP型和CP型ENSO耦合模态的能力发现,当前气候系统模式对热带太平洋SST年际变率的模拟能力强于年代际变率,且气候系统模式模拟EP-ENSO的能力相对强于CP-ENSO。所有CMIP5气候模式能够模拟出EP型ENSO的耦合模态,但仅12个模式能够真实反映CP型ENSO的耦合模态。基于这12个气候模式集合结果发现,EP型ENSO模态主要表现出显著的年际变率,而CP型ENSO模态主要表现为多年代际振荡。由于Pre-industrial控制实验仅仅考虑自然因子,因此,CP-ENSO的多年代际周期振荡和EP-ENSO的年际变化特征均属于气候系统中自然变率的结果。
     (4)CMIP5气候系统模式对两类ENSO的空间耦合模态和周期变化等主要特性具有较好的历史再现能力,即EP-ENSO呈现为纬向偶极型海气耦合模态,并以年际尺度振荡为主要特征,而CP-ENSO呈现为纬向三极型海气耦合模态分布,并主要以年代际尺度变化为特征,同时可以反映CP型El Nino事件发生频率增多和强度增强的趋势。21世纪在未来全球变暖背景下,热带太平洋EP型和CP型ENSO的空间耦合模态和周期变化等主要特性仍将维持,它们的模态强度较历史模拟结果有所增强,而且未来EP型和CP型El Nino事件亦呈现频率增多和强度增强的趋势。此外,造成热带太平洋SST长期趋势变化的主要原因是外源强迫因子的作用,CP型ENSO的年代际周期变化不仅是气候系统中的自然振荡,而且人为温室气体强迫对CP-ENSO年代际周期变化的影响并不显著。
The El Nino-Southern Oscillation (ENSO) is the dominant mode of air-sea coupled interaction in the tropical Pacific, manifesting important impacts on the global climate. It has been increasingly recognized that there are two distinct types of ENSO events prevailing in the tropical Pacific:one is the Eastern-Pacific (EP) type that has sea surface temperature (SST) anomalies centered over the eastern Pacific, while the other is the Central-Pacific (CP) type with the SST anomalies situated over the central Pacific. Based on the phenomena of the two types of ENSO events, the air-sea coupled modes and the periodic variation of atmosphere and ocean signals in different ENSO category are analyzed in this thesis. The key point is the different tropic atmosphere responses and East Asian climate anomaly associated with the two types of ENSO. Also the simulations of climate system models in multi-scenarios (i.e., the pre-industrial, historical, and future climate projection, namely Representative Concentration Pathways4.5, RCP4.5) released by the Coupled Model Intercomparison Project phase5(CMIP5) are used to evaluate the simulating capability of both EP-ENSO and CP-ENSO, with an attempt to reveal the natural oscillation of EP-and CP-ENSO and their possible responses to the global climate change in future. The major conclusions are summarized as follows:
     (1) The EP-and CP-ENSO events show the2-7and the10-15years oscillation in the tropical SST anomalous field, respectively. The coupling between subsurface ocean temperature (SOT) and SST anomalies is featured in a zonal dipole mode in the EP-ENSO group, while in a zonal tripole mode in the CP-ENSO category. During the mature phase of CP-ENSO, the warm center of SOT anomalies is located to the west of dateline to increase the SOT in the Nino4region, causing the CP-ENSO event simultaneously. The eastern and central Pacific subsurface indices are defined by the expansion coefficients of the first and third SVD mode for SOT. Such indices are not only highly correlated with those deduced by other researchers, but they can well describe and distinguish the EP and CP-ENSO events. In addition, the SOT amplitude on the interdecadal time scale has enhanced since the late1980s, indicating the increment of frequency and intensity of CP-ENSO events. This result suggests that the impact of CP-ENSO events on the global climate has been more significant in the past decades.
     (2) There are differences in the responses of EP-and CP-El Nino to the zonal and vertical circulation in the tropics. Accordingly, a new eastern and central Pacific southern oscillation index (i.e., EP-and CP-SOI) is defined based on the air-sea coupled relationship in the tropics, respectively. Results suggest that EP-SOI and CP-SOI is coupled with the EP-and CP-El Nino, respectively. The EP-SOI exhibits interannual variability (2-7yr), while decadal (10-15yr) variations in the CP-SOI are more dominant. During the EP-ENSO, the Walker circulation shows a dipole structure with a signal cell over the Pacific. However, the Walker circulation shows a tripole structure with double cells over the Pacific when CP-ENSO prevails. Furthermore, the correlation of seasonal precipitation across mainland China with EP-ENSO is opposite to that with CP-ENSO during winter and spring. But the differences in relationship between rainfall and the two types of ENSO is only restricted in the lower reaches of Yangtze River and Southern China (SC) during summer and fall, respectively. Such contrary relationship associated with the EP-and CP-ENSO events is primarily reflected on the interannual time scale. For example, EP-ENSO events generally lead to more rainfall over SC in winter, while the negative rainfall anomalies are observed in SC during the CP-ENSO events. And the distinct winter rainfall anomalies over SC responses to EP-and CP-ENSO can be attributed to the difference in both strength and location of the Northwestern Pacific anticyclone circulation. Therefore, the different response of Chinese rainfall to EP-and CP-ENSO should be taken into consideration when predicting the seasonal rainfall in East Asian monsoon regions.
     (3) The control runs of20climate models in the pre-industrial are examined to evaluate the capability of simulating air-sea coupling modes in EP-and CP-ENSO. The results point out that the current models have higher skills in simulating the interannual variances than the interdecadal variability of SST anomalies in the tropical Pacific. And the EP-ENSO can be better simulated than the CP-ENSO by the current climate models. All the20models can simulate the observed EP-ENSO modes, but only12in them exhibits good performance in simulating the CP-ENSO modes. The composite result of the12model outputs suggests that the model-simulated EP-and CP-ENSO exhibits an interannual and multi-decadal oscillation, respectively. Because there is no external forcing in the control runs during the pre-industrial, such results support that both the decadal oscillation of CP-ENSO mode and the interannual oscillation of EP-ENSO mode are due to the air-sea interaction in natural climate system.
     (4) The climate system models in CMIP5can well simulate the spatial distribution of coupling modes and their periodic changes associated with EP-and CP-ENSO in the historical runs. The historical simulated EP-ENSO shows an air-sea coupling mode in zonal dipole distribution and exhibits interannual variability, while the simulated air-sea coupling mode of CP-ENSO is a zonal tripole pattern with evident decadal oscillation. The frequency and intensity of CP-E1Nino events simulated by the CMIP5models have been enhanced as that in observation. Results of four global climate system models for the21st century assessment indicate that primary characteristics of air-sea coupling modes and periodic variation associated with the two types ENSO events will be still maintained under the background of global warming, and the their strengths would increase in the future. Moreover, the major reason for changes in the long-term trend of SST over the tropical Pacific is the external forcing factors. Although the decadal variation of CP-ENSO is a natural oscillation of air-sea interaction in climate system, it is little influenced by the anthropogenic greenhouse gas forcing.
引文
Adler, R. F., and Coauthors,2003:The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol,4,1147-1167, doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2.
    Allan, R., and T. Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2):1850-2004. J. Climate,19,5816-5842.
    An, S.-I., and F.-F. Jin,2001:Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate,14,3421-3432.
    An, S.-I., and F.-F. Jin,2004:Nonlinearity and asymmetry of ENSO. J. Climate,17(12), 2399-2412.
    Ashok, K., and T. Yamagata,2009:The El Nino with a difference. Nature,461,481-484.
    Ashok, K., C.-Y. Tam, and W.-J. Lee,2009:ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys. Res. Lett.,36, L12705, doi:10.1029/2009GL038847.
    Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata,2007:El Nino Modoki and its possible teleconnection. J. Geophys. Res.,112, C11007,doi:10.1029/2006JC003798.
    Bao, M., and R. Han,2009:Delayed impacts of the El Nifio episodes in the central Pacific on the summertime climate anomalies of eastern China in 2003 and 2007. Adv. Atmos. Sci., 26(3),553-563, doi:10.1007/s00376-009-0553-7.
    Battisti, D. S., and A. C. Hirst,1989:Interannual variability in a tropical atmosphere-ocean model:influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46(12),1687-1712, doi:10.1175/1520-0469(1989)046<1687:iviata>2.0.co;2.
    Bjerknes, J.,1966:A possible response of the atmospheric Hadley Circulation to equatorial anomalies of ocean Temperature. Tellus,18(4),820-829.
    Bjerknes, J.,1969:Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97,163-172.
    Cai, W., and T. Cowan,2009:La Nina Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett.,36, L12805, doi:10.1029/2009GL037885.
    Cai, W., P. van Rensch, T. Cowan, and A. Sullivan,2010:Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J. Climate,23,4944-4955.
    Cai, W., P. van Rensch, T. Cowan, and H. H. Hendon,2011:Teleconnection Pathways of ENSO and the IOD and the Mechanisms for Impacts on Australian Rainfall. J. Climate, 24,3910-3923, doi:10.1175/2011jc1i4129.1.
    Cane, M. A.,1983:Oceanographic events during El Nino. Science,222,1189-1195.
    Carton, J. A.,2005:Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res.,110, C09006, doi:10.1029/2004JC002817.
    Carton, J. A., and B. S. Giese,2008:A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev.,136,2999-3017.
    Carton, J. A., G Chepurin, X. Cao, and B. Giese,2000a:A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-95. Part I:methodology. J. Phys. Oceanogr.,30, 294-309.
    Carton, J. A., G Chepurin, and X. Cao,2000b:A Simple Ocean Data Assimilation analysis of the global upper ocean 1950-95. Part II:results. J. Phys. Oceanogr.,30,311-326.
    Chan, J. C. L.,1985:Tropical Cyclone Activity in the Northwest Pacific in Relation to the El Nino/Southern Oscillation Phenomenon. Mon. Wea. Rev,113,599-606, doi:10.1175/1520-0493(1985) 113<0599:TCAITN>2.0.CO;2.
    Chang, C., Y. Zhang, and T. Li,2000a:Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ⅰ:Roles of the subtropical ridge. J. Climate,13,4310-4325.
    Chang, C., Y. Zhang, and T. Li,2000b:Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ⅱ:Meridional structure of the monsoon. J. Climate,13,4326-4340.
    Chang, C., Z. Wang, J. Ju, and T. Li,2004:On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter. J. Climate,17,665-672.
    Charney, J., and J. Shukla,1981:Predictability of monsoons. Monsoon dynamics,99-109.
    Chen, G, and C.-T.Tam,2010:Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett,37, L01803, doi:10.1029/2009GL041708.
    Chen, L., M. Dong, and Y. Shao,1992:The characteristics of interannual variations on the East Asian monsoon. J. Meteor. Soc. Japan,70,397-421.
    Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin,2002:Global Land Precipitation:A 50-yr Monthly Analysis Based on Gauge Observations. J. Hydrometeorol,3(3),249-266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.
    Chen, W., S. Yang, and R.-H. Huang,2005:Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res.,110, D14110, doi:10.1029/2004JD005669.
    Chen, Y., Y. Zhao, F. Wang, J. Hao, and J. Feng,2010:Subsurface temperature anomalies in the North Pacific Ocean associated with the ENSO cycle. Chinese Journal of Oceanology and Limnology,28,1304-1315.
    Chhak, K. C., E. Di Lorenzo, N. Schneider, and P. F. Cummins,2009:Forcing of low-frequency ocean variability in the Northeast Pacific.J. Climate,22(5),1255-1276, doi:10.1175/2008jcli2639.1.
    Chiang, J. C. H., Y. Kushnir, and A.Giannini,2002:Deconstructing Atlantic Intertropical Convergence Zone variability:Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res.,107(D1),4004, doi:10.1029/2000JD000307.
    Choi, J., S.-I.An, and S.-W. Yeh,2012:Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn.,38(11-12),2631-2644, doi:10.1007/s00382-011-1186-y.
    Cummins, P. F., G S. E. Lagerloef, and G. Mitchum,2005:A regional index of northeast Pacific variability based on satellite altimeter data.Geophys. Res.Lett,32, L17607, doi:10.1029/2005GL023642.
    Dai, A., and T. L.Wigley,2000:Global patterns of ENSO-induced precipitation. Geophys. Res. Lett,21,1283-1286, doi:10.1029/1999GL011140.
    Di Lorenzo, E., and Coauthors,2008:NorthPacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett.,35, L08607, doi:10.1029/2007GL032838.
    Diaz, H. F., M. P. Hoerling, andJ. K. Eischeid,2001:ENSO variability, teleconnections and climate change. Int. J. Climatol.,21,1845-1862.
    Duan, W. S., and M. Mu,2006:Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res., 111,C07015,doi:10.1029/2005JC003458.
    Duan, W. S., H. Xu, and M. Mu,2008:Decisive role of nonlinear temperature advection in El Nino and La Nina amplitude asymmetry. Geophys. Res.,113, C01014, doi:10.1029/2006JC003974.
    Duan, W. S., M. Mu, and B. Wang,2004:Conditional nonlinear optimal perturbations as the optimal precursors of El Nino-Southern Oscillation events. J. Geophys. Res.,109, D23105, doi:10.1029/2004JD004756.
    Enfield, D. B., and D. A.Mayer,1997:Tropical Atlantic sea surface temperature variability and its relation to El Nino-Southern Oscillation. J. Geophys.Res.,102,929-945.
    Feng, J., and J. Li,2011:Influence of El Nino Modoki on spring rainfall over south China. J. Geophys. Res.,116, D13102, doi:10.1029/2010JD015160.
    Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong,2010a:Different impacts of two types of Pacific Ocean warming on the Southeast Asian rainfall during Boreal Winter. J. Geophys. Res.,115, D24122, doi:10.1029/2010JD014761.
    Feng, J., W. Chen, C.-Y.Tam, and W. Zhou,2010b:Different impacts of El Nino and El Nino Modoki on China rainfall in the decaying phases. Int. J. Climatol,31,2091-2101, doi:10.1002/joc.2217.
    Friedlingstein, P., and Coauthors,2006:Climate-carbon cycle feedback analysis:results from the C4MIP model intercomparison. J. Climate,19(14),3337-3353.
    Fu, C., H. Diaz, and J. Fletcher,1986:Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev.,114,1716-1739.
    Giese, B. S., and S. Ray,2011:El Nino variability in simple ocean data assimilation (SODA), 1871-2008 J. Geophys. Res.,116(C2), C02024, doi:10.1029/2010jc006695.
    Glantz, M. H., R. W. Katz, and N. Nicholls,1991:Teleconnections linking worldwide climate anomalies:scientific basis and societal impact. Cambridge University Press,534pp.
    Grinsted, A., J. C. Moore, and S. Jevrejeva,2004:Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys.,11, 561-566, doi:10.5194/npg-11-561-2004.
    Ham, Y.-G, and J.-S. Kug,2011:How well do current climate models simulate two types of El Nino? Climate Dyn.,39(1-2),383-398, doi:10.1007/s00382-011-1157-3.
    Hannachi, A., D. Stephenson, and K. Sperber,2003:Probability-based methods for quantifying nonlinearity in the ENSO. Climate Dyn.,20,241-256.
    Harrison, D. E.,1984:The appearance of sustained equatorial surface westerlies during the 1982 Pacific warm event. Science,224,1099-1102.
    Harrison, D. E., and N. K. Larkin,1996:The CO ADS sea level pressure signal:a near-global El Nino composite and time series view,1946-1993. J. Climate,9,3025-3055.
    Harrison, D. E., and N. K. Larkin,1998:El Nino-Southern Oscillation sea surface temperature and wind anomalies,1946-1993. Rev. Geophys.,36,353-399.
    Hastenrath, S.,2000:Upper air mechanisms of the Southern Oscillation in the tropical Atlantic sector. J. Geophys. Res.,105,14997-15009.
    Hendon, H., E. Lim, G. Wang, O. Alves, and D. Hudson,2009:Prospects for predicting two flavors of El Nino. Geophys. Res. Lett.,36, L19713, doi:10.1029/2009GL040100.
    Hoerling, M. P., and A. Kumar,2002:Atmospheric response patterns associated with tropical forcing. J. Climate,15,2184-2203.
    Hu, Z.-Z., A. Kumar, B. Jha, W. Wang, B. Huang, and B. Huang,2011:An analysis of warm pool and cold tongue El Ninos:air-sea coupling processes, global influences, and recent trends. Climate Dyn.,38(9-10),2017-2035, doi:10.1007/s00382-011-1224-9.
    Huffman,G. J., and Coauthors,1997:The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc.,78,5-20.
    Inoue, T., and J. Matsumoto,2004:A Comparison of Summer Sea Level Pressure over East Eurasia between NCEP-NCAR Reanalysis and ERA-40 for the Period 1960-99.J. Meteorol. Soc. Japan,82(3),951-958.
    IPCC,2007:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Reportof the Intergovernmental Panel on Climate Change, S.Solomon, D. Qin, M. Manning, et al. (Eds.), Cambridge UniversityPress, Cambridge, United Kingdom and New York, USA.
    Jacobs, S. S., and J. C. Comiso,1993:A recent sea-ice retreat west of the Antarctic Peninsula. Geophys. Res. Lett.,20(12),1171-1174, doi:10.1029/93GL01200.
    Jacobs, S. S., and J. C. Comiso,1997:Climate Variability in the Amundsen and Bellingshausen Seas. J. Climate,10,697-709.
    Jin, F.-F.,1997a:An equatorial ocean recharge paradigm for ENSO. Part Ⅰ:Conceptual model. J. Atmos. Sci.,54,811-829.
    Jin, F.-F.,1997b:An equatorial ocean recharge paradigm for ENSO. Part Ⅱ:A stripped-down coupled model. J. Atmos. Sci.,54,830-847.
    Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao,2003:Strong El Nino events and nonlinear dynamical heating. Geophys. Res. Lett,30(3),1120, doi:10.1029/2002GL016356.
    Kalnay, E., and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project. Bull. Amen Met. Soc.,77,437-471.
    Kao, H.-Y., and J.-Y. Yu,2009:Contrasting Eastern-Pacific and Central-Pacific types of El Nino. J. Climate,22,615-632, doi:10.1175/2008JCLI2309.1.
    Kim, J.-H., C.-H.Ho, and P.-S Chu,2010:Dipolar redistribution of summertime tropical cyclone genesis between the Philippine Sea and the northern South China Sea and its possible mechanisms. J. Geophys. Res.,115, D06104, doi:10.1029/2009JD012196.
    Kim, S. T., and J.-Y. Yu,2012:The two types of ENSO in CMIP5 models.Geophys. Res. Lett., 39(11), L11704, doi:10.1029/2012g1052006.
    Kim, S. T., J.-Y. Yu, A. Kumar, and H. Wang,2012:Examination of the two types of ENSO in the NCEP CFS Model and its extratropical associations. Mon. Wea. Rev., in press.
    Kug, J.-S., and I.-S.Kang,2006:Interactive Feedback between ENSO and the Indian Ocean. J. Climate,19(9),1784-1801.
    Kug, J.-S., B. P. Kirtman, and I.-S.Kang,2006:Interactive Feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. J. Climate,19(24),6371-6381.
    Kug, J.-S., F.-F.Jin, and S.-I.An,2009:Two types of El Nino events:Cold tongue El Nino and warm pool El Nino. J. Climate,22,1499-1515, doi:10.1175/2008JCLI2624.1.
    Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg,2010:Warm pool and cold tongue El Nino events as simulated by the GFDL 2.1 coupled GCM. J. Climate,23,1226-1239.
    Kug, J.-S., Y.-G. Ham, J.-Y. Lee, and F.-F. Jin,2012:Corrigendum:Improved simulation of two types of El Nino in CMIP5 models. Environ. Res. Lett.,7,039502.
    Kwok, R., and J. C. Comiso,2002:Southern ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate,15,487-501.
    Larkin, N. K., and D. E. Harrison,2005:On the definition of El Nino and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett.,32, L13705, doi:10.1029/2005GL022738.
    Latif, M., D. Anderson, T. Barnett, M. Cane, R. Kleeman, A. Leetmaa, J. O'Brien, A. Rosati, and E. Schneider,1998:A review of the predictability and prediction of ENSO.J. Geophys. Res.,103(C7),14375-14393, doi:10.1029/97jc03413.
    Lau, K. M.,1992:East Asian summer monsoon variability and climate teleconnection. J. Meteor. Soc. Japan,70,211-242.
    Lau, K. M., and P. H. Chan,1986:The 40-50 days oscillation and El Nino/Southern Oscillation:A new perspective. Bull. Amer. Meteor. Soc.,67(5),533-535.
    Lau, N. C., and M. J. Nath,1996:The role of the "atmospheric bridge" in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate,9,2036-2057.
    Lau, N. C., and M. J. Nath,2000:Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Climate,13,4287-4309.
    Lau, N. C., and M. J. Nath,2003:Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate,16,3-20.
    Lee, T., and M. J. McPhaden,2010:Increasing intensity of El Nino in the central-equatorial Pacific.Geophys. Res. Lett.,37, L14603 doi:10.1029/2010g1044007.
    Li, C. Y.,1990:Interaction between anomalous winter monsoon in East Asia and El Nino events. Adv. Atmos. Sci.,7,36-46.
    Li, G, B. Ren, C. Yang, and J. Zheng,2010:Indices of El Nino and El Nino Modoki:An improved El Nino Modoki index. Adv. Atmos. Sci.,27(5),1210-1220.
    Livezey, R. E., and W. Y. Chen,1983:Statistical field significance and its determination by Monte Carlo techniques. Mon. Wea. Rev., 111,46-59.
    Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Met. Soc., 78(6),1069-1079.
    McPhaden, M. J., T. Lee, and D. McClurg,2011:El Nino and its relationship to changing background conditions in the tropical Pacific Ocean.Geophys. Res. Lett.,38, L15709, doi:10.1029/2011g1048275.
    Mo, K. C.,2010:Interdecadal Modulation of the Impact of ENSO on Precipitation and Temperature over the United States. J. Climate,23,3639-3656.
    Monahan, A. H.,2001:Nonlinear principal component analysis:Tropical Indo-Pacific seasurface temperature and sea level pressure. J. Climate,14,219-233.
    Moss, R. H., and Coauthors,2010:The next generation of scenarios for climate change research and assessment. Nature,463,747-756.
    Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998:ENSO theory. J. Geophys. Res.,103(C7),14261-14290.
    Nicholls, N.,1985:Predictability of interannual variations of Australian seasonal tropical cyclone activity. Mon. Wea. Rev.,113,1144-1149.
    Peng, J., Q. Zhang, and L. Chen,2011:Connections between different types of El Nino and Southern/Northern Oscillation. Acta.Meteor.Sinica.,25(4),506-516.
    Philander, S. G H.,1985:El Nino and La Nina. J. Atmos. Sci.,42(23),2652-2662.
    Philander, S. G. H.,1990:El Nino, La Nina, and the Southern Oscillations. Academic Press, 293pp.
    Philander, S., R. Pacanowski, and T., Yamagata,1984:Unstable air-sea interactions in the tropics. J. Atmos. Sci.,41,604-613.
    Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta,1999:Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn.,15(5),319-324.
    Qian, W., J. Zhu, Y. Wang, and J. Fu,2009:Regional relationship between the Jiang-Huai Meiyu and the equatorial surface-subsurface temperature anomalies. Chin. Sci. Bull, 54(1),113-119, doi:10.1007/s11434-008-0410-6.
    Rasmusson, E. M., and T. H. Carpenter,1982:Variation in tropical sea surface temperature and surface wind fields associated with Southern Oscillation/El Nino. Mon. Wea. Rev., 110,354-384.
    Ratnam, J. V., S. K. Behera, Y. Masumoto, K. Takahashi, and T. Yamagata,2010:Pacific Ocean origin for the 2009 Indian summer monsoon failure. Geophys. Res. Lett.,37, L07807, doi:10.1029/2010g1042798.
    Rayner, N. A., N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan,2003:Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.,108(D14), 4407, doi:10.1029/2002jd002670.
    Ren, H.-L., and F.-F.Jin,2011:Nino indices for two types of ENSO. Geophys. Res. Let.,38, L04704, doi:10.1029/2010GL046031.
    Rogers, J.,1981:The North Pacific Oscillation.J. Climatol,1,39-57.
    Rogers, K. B., P. Friederiches, and M. Latif,2004:Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate,17,3761-3774.
    Ropelewski, C. F., and M. S. Halpert,1987:Global and Regional Scale Precipitation Patterns Associated with the El Nino/Southern Oscillation. Mon. Wea. Rev.,115(8),1606-1626, doi:10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2.
    Ropelewski, C. F., and M. S. Halpert,1989:Precipitation Patterns Associated with the High Index Phase of the Southern Oscillation.J. Climate,2(3),268-284.
    Ropelewski, C. F., and P. D. Jones,1987:An extension of the Tahiti-Darwin Southern Oscillation Index. Mon. Wea. Rev.,115(9),2161-2165.
    Schonher, T., and S.Nicholson,1989:The relationship between California rainfall and ENSO events. J. Climate,2,1258-1269.
    Schopf, P. S., and M. J. Suarez,1988:Vacillations in a Coupled Ocean-Atmosphere Model. J. Atmos.Sci.,45,549-568.
    Simmonds, I., and T. H. Jacka,1995:Relationships between the Interannual Variability of Antarctic Sea Ice and the Southern Oscillation. J. Climate,8(3),637-647, doi:10.1175/1520-0442(1995)008<0637:RBTIVO>2.0.co;2.
    Straus, D. M., and J.Shukla,2002:Does ENSO force the PNA?J. Climate,15,2340-2358.
    Su, J., R. Zhang, and C. Z,2013:The ECHAM5-simulated impacts of two type El Ninos on the winter precipitation anomalies in South China. Atmos. Oce. Sci. Lett.,accepted.
    Sun, F., and J.-Y. Yu,2009:A 10-15-yr modulation cycle of ENSO intensity. J. Climate,22(7), 1718-1735, doi:10.1175/2008jcli2285.1.
    Tanaka, H. L., N. Ishizaki, and A. Kitoh,2004:Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus A,56,250-269, doi:10.1111/j.1600-0870.2004.00049.x.
    Taschetto, A. S., and M. H. England,2009:El Nino Modoki Impacts on Australian Rainfall. J. Climate,22(11),3167-3174,doi:10.1175/2008jcli2589.1.
    Taylor, K. E., R. J. Stouffer, and G. A. Meehl,2012:An Overview of CMIP5 and the Experiment Design. Bull. Amer. Met. Soc.,93(4),485-498.
    Torrence, C., and G. P. Compo,1998:A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc.,79,61-78.
    Torrence, C., and P. J. Webster,1999:Decadal changes in the ENSO-monsoon system. J. Climate,12,2679-2690.
    Trenberth, K. E.,1976:Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soc.,102,639-653, doi:10.1002/qj.49710243310.
    Trenberth, K. E.,1984:Signal versus noise in the Southern Oscillation. Mon. Wea. Rev.,112, 326-332.
    Trenberth, K. E., and D. P. Stepaniak,2001:Indices of El Nino evolution. J. Climate,14, 1697-1701.
    Trenberth, K. E., and T. J. Hoar,1996:The 1990-1995 El Nino-Southern Oscillation Event: longest on record.Geophys. Res. Lett.,23,57-60.
    Trenberth, K., and J. Hurrell,1995:Decadal climate variations in the Pacific, National Research Council, Natural Climate Variability on Decade-to-Century Time Scales. Washington DC:National Academy Press,472-481.
    Trenberth, K., and L. Smith,2009:Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Nino. J. Climate,22,2978-2991.
    Van Loon, H., and D. J. Shea,1985:The Southern Oscillation. Part IV:The Precursors South of 15°S to the Extremes of the Oscillation. Mon. Wea. Rev.,113,2063-2074, doi:10.1175/1520-0493(1985)113<2063:TSOPIT>2.0.CO;2.
    Van Loon, H., and D. J. Shea,1987:The Southern Oscillation. Part VI:Anomalies of Sea Level Pressure on the Southern Hemisphere and of Pacific Sea Surface Temperature during the Development of a Warm Event. Mon. Wea. Rev,115(2),370-379, doi:10.1175/1520-0493(1987)115<0370:TSOPVA>2.0.CO;2.
    Walker, G, and E. Bliss,1932:World Weather V.Mem. R. Meteorol. Soc.,4,53-84.
    Wang, B., and Q. Ding,2006:Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett.,33, L06711, doi:10.1029/2005GL025347.
    Wang, B., and Q. Ding,2008:Global monsoon:Dominant mode of annual variation in the tropics. Dyn.Atmos. Oceans,44,165-183, doi:10.1016/j.dynatm oce.2007.05.002.
    Wang, B., and Q. Zhang,2002:Pacific-East Asian teleconnection. Part II:How the Philippine Sea anomalous anticyclone is established during E1 Nino development. J. Climate,15, 3252-3265.
    Wang, B., and S.-I. An,2002:A mechanism for decadal changes of ENSO behavior:roles of background wind changes. Climate Dyn.,18,475-486.
    Wang, B., R. Wu, and X. Fu,2000:Pacific-East Asian teleconnection:How does ENSO affect East Asian climate? J. Climate,13,1517-1536.
    Wang, B., Z. Wu, J. Li, J. Liu, C.-P. Chang, Y. Ding, and G. Wu,2008:How to Measure the Strength of the East Asian Summer Monsoon? J. Climate,21,4449-4463.
    Wang, C., and X. Wang,2013a:El Nino Modoki Ⅰ and Ⅱ classifying by different impacts on rainfall in southern China and typhoon tracks. J. Climate,26,1322-1338, doi:10.1175/jcli-d-12-00107.1.
    Wang, G., and H. H. Hendon,2007:Sensitivity of Australian rainfall to inter-El Nino variations. J. Climate,20,4211-4226.
    Wang, J., J. He, X. Liu, and B. Wu,2009:Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal. Chin. Sci. Bull,54(4),687-695, doi:10.1007/s11434-008-0534-8.
    Wang, X., and C. Wang,2013b:Different impacts of various El Nino events on the Indian Ocean Dipole. Clim. Dyn., doi:10.1007/s00382-013-1711-2, in press.
    Weng, H., G. Wu, Y. Liu, S. K. Behera, and T. Yamagata,2011:Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Climate Dyn.,36,769-782, doi:10.1007/s00382-009-0658-9.
    Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata,2007:Impacts of recent El Nino Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn.,29,113-129, doi:10.1007/s00382-007-0234-0.
    Weng, H., K. Lau, and Y. Xue,1999:Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan,77, 845-857.
    Weng, H., S. Behera, and T. Yamagata,2009:Anomalous winter climateconditions in the Pacific Rim during recent El Nino Modoki and El Nino events. Climate Dyn.,32, 663-674, doi:10.1007/s00382-008-0394-6.
    Wu, B., and J. Wang,2002:Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon-Geophys. Res. Lett.,29(19),1897, doi:10.1029/2002g1015373.
    Wu, R., and B. Wang,2000:Interannual variability of summer monsoon onset over the Western North Pacific and the underlying processes. J. Climate,13,2483-2501, doi:10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2..
    Wu, R., J. L. Kinter, and B. P. Kirtman,2005:Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis, objective analyses, and observations. J. Climate,18,3048-3067, doi:10.1175/jcli3465.1.
    Wu, Z., and J. Li,2008:Prediction of the Asian-Australian monsoon interannual variations with the Grid-Point atmospheric model of IAP LASG (GAMIL). Adv. Atmos. Sci.,25, 387-394.
    Wyrtki, K.,1975:El Nino---The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr.,5,572-584.
    Xiang, B., B. Wang, andT. Li,2012:A new paradigm for the predominance of standing Central Pacific warming after the late 1990s. Climate Dyn., doi:10.1007/s00382-012-1427-8
    Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G Huang, and T. Sampe,2009:Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino. J. Climate,22,730-747.
    Xu, K., C. Zhu, and J. He,2012:Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events.Chim. Sci. Bull,57(26),3491-3496, doi:10.1007/s11434-012-5173-4.
    Xu, K., C. Zhu, and J. He,2013:Two types of El Nino-related Southern Oscillations and their different impacts on the global land precipitation. Adv. Atmos. Sci., accepted, doi: 10.1007/s00376-013-2272-3.
    Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu,2007:Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett.,34, L02708, doi:10.1029/2006gl028571.
    Yang, S., K. M. Lau, and K. M. Kim,2002:Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate,15(3),306-325, doi:10.1175/1520-0442(2002)015<0306:voteaj>2.0.co;2.
    Yeh, S.-W., J.-S.Kug, B. Dewitte, M.-H.Kwon, B. P. Kirtman, and F.-F. Jin,2009:El Nino in a changing climate. Nature,461,511-514, doi:10.1038/nature08316.
    Yu, B., and F. Zwiers,2007:The impact of combined ENSO and PDO on the PNA climate:a 1000-year climate modeling study. Climate Dyn.,29,837-851.
    Yu, J.-Y, and H.-Y. Kao,2007:Decadal changes of ENSO persistence barrier in SST and ocean heat content indices:1958-2001. J. Geophys. Res.,112, D13106, doi:10.1029/2006JD007654.
    Yu, J.-Y., and S.T. Kim,2010a:Three evolution patterns of Central-Pacific El Nino.Geophys. Res. Lett.,37, L08706, doi:10.1029/2010g1042810.
    Yu, J.-Y., and S. T. Kim,2010b:Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett.,37, L15705, doi:10.1029/2010GL04408.
    Yu, J.-Y., and S.T. Kim,2011:Relationships between extratropical Sea Level Pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J. Climate,24(3), 708-720, doi:10.1175/2010jcli3688.1.
    Yu, J.-Y., and S. T. Kim,2012:Identifying the types of major El Nino events since 1870. Int. J. Climatol, doi:10.1002/joc.3575.
    Yu, J.-Y., F. Sun, and H.-Y.Kao,2009:Contributions of Indian Ocean and monsoon biases to the excessive biennial ENSO in CCSM3. J. Climate,22,1850-1858.
    Yu, J.-Y., H.-Y.Kao, and T. Lee,2010:Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate,23,2869-2884.
    Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim,2011:Subsurface ocean temperature indices for central-Pacific and eastern-Pacific types of El Nino and La Nina events. Theor. Appl. Climatol.,103,337-344, doi:10.1007/s00704-010-0307-6.
    Yu, J.-Y., M.-M. Lu, and S. T. Kim,2012:A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ. Res. Lett.,7,034025, doi:10.1088/1748-9326/7/3/034025.
    Yu, J.-Y., Y Zou, S. T. Kim, and T. Lee,2012:The changing impact of El Nino on US winter temperatures. Geophys. Res. Lett.,39, L15702, doi:10.1029/2012GL052483.
    Yuan, Y., S. Yang, and Z. Zhang,2012:Different evolutions of the PhilippineSea anticyclone between eastern and central Pacific El Nino:Possible effect of Indian Ocean SST. J. Climate, accepted.
    Yuan, Y., W. Zhou, H. Yang, and C. Li,2008:Warming in the Northwestern Indian Ocean associated with the El Nino Event. Adv. Atmos. Sci.,25(2),246-252.
    Zhang, R., A. Sumi, and M. Kimoto,1996:Impact of El Nino on the East Asian monsoon:A diagnostic study of the 86-87 and 91-92 events. J. Meteor. Res. Japan,74,49-62.
    Zhang, W., F.-F.Jin, J. Li, and H.-L. Ren,2011:Contrasting impacts of two-type El Nino over the Western North Pacific during Boreal. J. Meteor. Res. Japan,89(5),563-569, doi:10.2151/jmsj.2011-510.
    Zhang, Y., J. M. Wallace, and D. S. Battisti,1997:ENSO-like interdecadal variability: 1900-93. J. Climate,10,1004-1020.
    Zhou, L., C.-Y.Tam, W. Zhou, and J. C. L. Chan,2009:Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv. Atmos. Sci.,27,832-844.
    Zhou, W., and J. C. L. Chan,2007:ENSO and the South China Sea summer monsoon onset. Int. J. Climatol.,27,157-167.
    Zhu, C., B. Wang, W. Qian, and B. Zhang,2012:Recent weakening of northern East Asian summer monsoon:A possible response to global warming. Geophys. Res. Lett.,39, L09701, doi:10.1029/2012GL051155.
    巢纪平,1993:厄尔尼诺和南方涛动动力学.北京,气象出版社,2-3.
    巢纪平.2001:对“厄尔尼诺”、“拉尼娜”发展的新认识.中国科学院院刊,6,412-417.
    陈烈庭,吴仁广,1998:太平洋各区海温异常对中国东部夏季雨带类型的共同影响.大气科学,22(5),43-51.
    陈敏鹏,林而达,2010:代表型浓度路径情景下的全球温室气体减排和对中国的挑战.气候变化研究进展,6(6),436-442.
    陈永利,赵永平,张勐宁,王凡,吴爱明,2005:赤道太平洋次表层海温异常年际和年代际变率特征与ENSO循环.海洋学报,27(2),39-45.
    冯娟,2008:热带太平洋三极型和偶极型海温异常对中国夏季气候的影响及其机制研究.南京信息工程大学硕士学位论文.
    冯娟,2011:不同的热带太平洋增暖事件对东亚冬、夏季风循环的影响及其机理.中国科学院大气物理研究所博士学位论文.
    冯娟,管兆勇,王黎娟,于波,2010:夏季热带中太平洋SST异常型与中国东部夏季气候异常的关系.大气群学学报,33(5):547-554.
    符淙斌,J.弗莱彻,1985:“埃尔尼诺”(E1 Nino)时期赤道增暖的两种类型.科学通报,30(8),596-599.
    龚道溢,王绍武,1998:ENSO对中国四季降水的影响.自然灾害学报,7,44-52.
    黄荣辉,陈文,丁一汇,李崇银,2003:关于季风动力学以及季风与ENSO循环相互作用的研究.大气科学,27(4),484-502.
    黄荣辉,付云飞,藏晓云,1996:亚洲季风与ENSO循环相互作用.气候与环境研究,1(1),38-54.
    黄荣辉,顾雷,陈际龙,黄刚.2008:东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展.大气科学,32(4),691-719.
    黄荣辉,徐予红,周连童,1999:我国夏季降水的年代际变化及华北干旱化趋势.高原气象,18(4),465-476.
    江志红,陈威霖,宋洁,王冀,2009:7个IPCCAR4模式对中国地区极端降水指数模拟能 力的评估及其未来情景预估.大气科学,33,109-120.
    况雪源,张耀存,刘健,2008:对流层上层副热带西风急流与东亚冬季风的关系.高原气象27(4),701-712.
    李崇银,1988:频繁强东亚大槽活动与El Nino的发生.中国科学(B),18(6),667-674.
    李崇银,2002:关于ENSO本质的进一步研究.气候与环境研究,7(2),160-173.
    李崇银,廖清海,1998:热带大气季节内振荡激发El Nino的机制.热带气象学报,14(2),97-105.
    李崇银,周亚萍,1994:热带大气季节内振荡与ENSO的相互关系.地球物理学报,37(1),17-26.
    孟文,吴国雄,2000:赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件Ⅱ——数值模拟.大气科学,24(1),15-25
    穆明权,李崇银,2000:西太平洋暖池次表层海温异常与ENSO循环的相互作用.大气群学,24(4),447-460.
    任福民,袁媛,孙丞虎,曹璐,2012:近30年ENSO研究进展回顾.气象科技进展,2(3),17-24.
    陶诗言,张庆云,1998:亚洲冬夏季风对ENSO事件的响应.大气群学,22,399-407.
    王绍武,朱宏,1985:东亚的夏季低温与厄尔尼诺.群学通报,17,1323-1325.
    韦道明,李崇银,2009:东亚冬季风的区域差异和突变特征.高原气象,28(5),1149-1157.
    吴国雄,孟文,1998:赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件Ⅰ——资料分析.天气群学,22(4),470-480.
    徐建军,朱乾根,周铁汉,1999:近百年东亚冬季风的突变性和周期性.应用气象学报,10(1),1-8.
    严邦良,黄荣辉,张人禾,2001:El Nino事件发生和消亡中热带太平洋纬向风应力的动力作用Ⅱ——模式结果分析.大气科学,25(2),160-172.
    严邦良,张人禾,2002:热带西太平洋风应力异常在ENSO循环中作用的数值试验.大气科学,26(3),316-329.
    袁媛,杨辉,李崇银,2012:不同分布型厄尔尼诺事件及对中国次年夏季降水的可能影响.气象学报,70,467-478.
    张人禾,黄荣辉.1988:El Nino事件发生和消亡中热带太平洋纬向风应力的动力作用Ⅰ.资料诊断和理论分析.大气群学,22,597-609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700