量子光学系统的纠缠及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为量子通信不可替代的资源,纠缠系统在量子信息处理中发挥着重要的作用。纠缠光子系统和纠缠相干态是两种可实现量子比特,可进行量子通信的重要载体。相对其他实现量子信息处理的载体,它们易于制备,并可在自由空间传播的特点,使得它们在量子信息处理中受到极大的关注。
     纠缠的产生与测量是量子信息处理的基础,是实现量子密钥分配、量子隐形传态、量子机密共享的关键。利用克尔介质产生纠缠相干态是实现纠缠的重要方式。耗散及退相干会影响产生的纠缠态的保真度,降低产生效率和成功率。利用线性光学无法进行完全光子纠缠态分析,但利用超纠缠态可以解决这个难题。本博士论文主要研究纠缠相干态的产生和光子纠缠态分析,研究结果如下:
     第一,本文提出了利用单光子或纠缠光子辅助多模相干态通过非线性克尔介质、分束器和偏振分束器等光学器件产生多模纠缠相干态的方案。利用这一模型分别产生了贝尔型纠缠相干态、GHZ型纠缠相干态和W型纠缠相干态,并考虑存在光子耗散、探测器效率低下和相干态能量损失情况时,它们带来的退相干效应对三种纠缠相干态产生的影响。系统地计算和讨论了贝尔纠缠态的保真度、振幅等随退相干效应和输入态振幅的变化关系,并利用Concurrence和Negativity对产生的贝尔纠缠相干态进行纠缠度量,给出了纠缠度随输入态振幅的变化关系。
     第二,本文提出了一类新的多模纠缠相干态,即:χ型纠缠相干态,并给出了产生方案。另外讨论了这类态的Bell型不等式的违背情况,给出了最大违背随纠缠相干态振幅的关系曲线图。χ型纠缠相干态在小振幅区域出现很好的违背,显示出极强的纠缠特性。
     第三,本文利用超纠缠对光子GHZ态进行了纠缠态分析。首先利用光子动量自由度辅助实现三光子偏振GHZ态分析。偏振-动量超纠缠光子依次经过偏振分束器的CNOT操作、半波片的Hadamard操作和偏振态分析器,根据探测器的响应情况可以100%地区分所有的多光子GHZ偏振纠缠态。另外利用偏振自由度实现了三光子动量自由度GHZ纠缠态分析。最后给出了分析方案的多光子推广。
As an irreplaceable source for quantum communication, entangled system play ansignificant role in quantum information processing. Entangled photons and entangledcoherentstates(ECS)aretwocrucialwaysinrealizationofquantumqubitsandimportantinformation carriers. In contrast to other systems of quantum information processing,they are easy to be prepared, and can travel in free space as flying qubits, which makesthem prominent in quantum information processing.
     Generation and measurement of entanglement are the bases of quantum informa-tion processing and the key points of quantum key distribution, quantum teleportation,quantum secret sharing, etc. Generation of ECSs by using Kerr nonlinearity is a crucialway in entanglement generation. Dissipation and decoherence will decrease the fideli-ty of entanglement, affect the production efficiency and the success probability. Usinglinear optical elements is unable to completely analyze photonic entanglement, but thisproblem can be solved through hyper-entanglement. The main point of this article ishow to generate ECSs and analyze photon entangled states, the results are as follows:
     First, this paper propose a protocol of generating multi-mode ECSs by nonlinearKerr medium, beam splitter and polarizing beam splitter assisted by single photon orentangled photons. And Bell-type, GHZ-type and W-type ECSs are generated. The pro-tocols are investigated with considering the decoherence caused by the dissipation ofphotons, low efficiency of detector and energy loss of coherent state. The entanglementfidelity, amplitude and others with the decoherence and the amplitude of input state aresystematically calculated and discussed. The entanglement of generated ECS are quan-tified through Concurrence and Negativity, and the results are plotted with the amplitudeof input state.
     Second, this paper presents a new type of multi-mode ECS, namely, χ-type ECS,and propose a protocol of generation with Kerr nonlinearity. And Bell-type inequalitywith respect to χ-type ECS is investigated, the optimal violation against with the am-plitude of χ-type ECS is calculated. The results show strong violation occurs in smallamplitude region.
     Third, multi-photon GHZ state analysis using hyperentangled states is proposed.Firstly the polarization three-photon GHZ states are analyzed assisted by the degree of freedom of momentum. The photons are transformed by polarization beam splitters andhalf-wave plates which make CNOT and Hadamard operations, then go to the polariza-tion analyzers. According to the response of the detector, the polarization GHZ statescanbe100%distinguished. Theschemeisimplementableusingpresent-daytechnology.Further analysis of three-photon GHZ states in degree of freedom of momentum is in-vestigated, which results the states can be distinguished clearly with ancillary degree offreedomofpolarization. Finally, theprotocolisprovedtobegeneralizedtomulti-photonsituation.
引文
[1]张永德.量子信息物理原理.北京:科学出版社,2005.
    [2] Nielsen M A, Chuang I L. Quantum computation and quantum information. Cambridge Univ.Press,2000.
    [3] Alber G, Beth T, Horodecki M, et al. Quantum information-An introduction to basic theoret-ical concepts and experiments. Springer-Verlag,2001.
    [4] Shannon C E. A mathematical theory of communication. The Bell System Technical Journal,1948,27:623.
    [5] Singh S. The code book: The Science of Secrecy from Ancient Egypt to Quantum Cryptog-raphy. Anchor Books,1999.
    [6] Diffie W, Hellman M. New directions in Cryptography. IEEE Trans. Inf. Theory,1976,22:644–654.
    [7] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and publickeycryptosystems. Communications of the ACM,1978,21:120–126.
    [8] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing.Proc. IEEE Int.Conf. on Computers, Systems and Signal Processing, Bangalore, India (IEEE,New York),1984.175–179.
    [9] Ekert A K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.,1991,67:661–663.
    [10] Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett.,1992,68:3121–3124.
    [11] Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states. Phys. Rev.Lett.,1995,75:1239–1243.
    [12] Huttner B, Imoto N, Gisin N, et al. Quantum cryptography with coherent states. Phys. Rev.A,1995,51:1863–1869.
    [13] Biham E, Huttner B, Mor T. Quantum cryptography network based on quantum memories.Phys. Rev. A,1996,54:2651–2657.
    [14] Bru D. Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett.,1998,81:3018–3021.
    [15] KoashiM,ImotoN. Quantumcryptographybasedonsplittransmissionofone-bitinformationin two steps. Phys. Rev. Lett.,1997,79:2383–2386.
    [16] Hwang W Y, Koh I G, Han Y D. Quantum cryptography without public announcement ofbases. Phys. Lett. A,1998,244:489–494.
    [17] Shi B S, Jiang Y K, Guo G C. Quantum key distribution using different-frequency photon.Appl. Phys. B,2000,70:415–417.
    [18] Cabello A. Quantum key distribution in the Holevo limit. Phys. Rev. Lett.,2000,85:5635–5638.
    [19] Zhang Y S, Li C F, Guo G C. Quantum key distribution via quantum encryption. Phys. Rev.A,2001,64:024302.
    [20] XueP,LiCF,GuoGC. Conditionalefficientmultiuserquantumcryptographynetwork. Phys.Rev. A,2002,65:022317.
    [21] Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution schemes.Phys. Rev. A,2002,65:032302.
    [22] Han C, Xue P, Guo G C. A controlled quantum key distribution scheme with threeparticleentanglement. Chin. Phys. Lett.,2003,20:183–185.
    [23] Yang L, Wu L A, Liu S H. Dual-velocity protocol of hybrid QKD system and its securityanalysis. Acta Phys. Sin.,2002,51(11):2446–2451.
    [24] Bechmann P H, Peres A. Quantum cryptography with3-state systems. Phys. Rev. Lett.,2000,85:3313–3316.
    [25] Cabello A. Quantum key distribution without alternative measurements. Phys. Rev. A,2000,61:052312.
    [26] Guo G P, Li C F, Shi B S, et al. Quantum key distribution scheme with orthogonal productstates. Phys. Rev. A,2001,64:042301.
    [27] Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomicensembles and linear optics. Nature,2001,414:413–418.
    [28] Shi B S, Li J, Liu J M, et al. Quantum key distribution and quantum authentication based onentangled state. Phys. Lett. A,2001,281:83–87.
    [29] DengFG,LongGL. Controlledorderrearrangementencryptionforquantumkeydistribution.Phys. Rev. A,2003,68(4):042315.
    [30] Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faintlaser pulse. Phys. Rev. A,2004,70:012311.
    [31] Boyer M, Kenigsberg D, Mor T. Quantum key distribution with classical bob. Phys. Rev.Lett.,2007,99:140501.
    [32] Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell statesand local unitary operations. Chin. Phys. Lett.,2005,22:1049–1052.
    [33] Fu-Guo D, Xiao-Shu L, Ying-Jun M, et al. A theoretical scheme for multi-user quantum keydistribution with N Einstein-Podolsky-Rosen pairs on a passive optical network. Chin. Phys.Lett.,2002,19:893–896.
    [34] Townsend P D. Quantum cryptography on multi-user optical fibre networks. Nature,1997,385:47–49.
    [35] Bennett C H, Brassard G. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett.,1992,68:557–559.
    [36] Mu Y, Seberry J, Zheng Y. Shared cryptographic bits via quantized quadrature phase ampli-tudes of light. Optics Communications,1996,123:344–352.
    [37] Christophe M, Townsend P D. Quantum key distribution over distances as long as30km.Opt. Lett.,1995,20(16):1695.
    [38] Muller A, Herzog T, Huttner B, et al.“plug and play”systems for quantum cryptography.Appl. Phys. Lett.,1997,70:793.
    [39] Stucki D, Ginsin N, Guinnard O, et al. Quantum key distribution over67km with a plug andplay system. New. J. Phys.,2002,4:41.
    [40] GrosshansF,AsscheGV,WengerJ,etal. QuantumkeydistributionusingGaussianmodulatedcoherent states. Nature,2003,421:238–241.
    [41] Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography. Opt.Lett.,2005,30:2632–2634.
    [42] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglement-based quantum com-munication over144km. Nature Physics,2007,421:481–486.
    [43] Rosenberg D, Harrington J W, Rice P R, et al. Long-Distance Decoy-State Quantum KeyDistribution in Optical Fiber. Phys. Rev. Lett.,2007,98:010503.
    [44] Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key dis-tribution based on polarization encoding. Phys. Rev. Lett.,2007,98:010505.
    [45] Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with asub-poissionian heralded single-photon source. Phys. Rev. Lett.,2008,100:090501.
    [46] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dualclassical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.,1993,70:1895–1899.
    [47] Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Phys.Rev. A,1998,58:4394–4400.
    [48] Delre E, Crosignani B, Porto P D. Scheme for total quantum teleportation. Phys. Rev. Lett.,2000,84:2989–2992.
    [49] Bartlett S D, Munro W J. Quantum teleportation of optical quantum gates. Phys. Rev. Lett.,2003,90:117901.
    [50] Fattal D, Diamanti E, Inoue K, et al. Quantum teleportation with a quantum dot single photonsource. Phys. Rev. Lett.,2004,92:037904.
    [51] ZengJY,ZhuHB,PeiSY. Multiparticlereduceddensitymatrixandausefulkindofentangledstate for quantum teleportation. Phys. Rev. A,2002,65:052307.
    [52] Gao T, Yan F L, Wang Z X. Controlled quantum teleportation and secure direct communica-tion. Chin. Phys.,2005,14:893–897.
    [53] Zhang J, Peng K C. Quantum teleportation and dense coding by means of bright amplitudesqueezed light and direct measurement of a Bell state. Phys. Rev. A,2000,62:064302.
    [54] Jing J T, Zhang J, Yan Y, et al. Experimental demonstration of tripartite entanglement andcontrolled dense coding for continuous variables. Phys. Rev. Lett.,2003,90:167903.
    [55] Zhang J, Xie C D, Peng K C. Controlled dense coding for continuous variables using threeparticle entangled states. Phys. Rev. A,2002,66:032318.
    [56] Hillery M, Bu ek V, Berthiaume A. Quantum secret sharing. Phys. Rev. A,1999,59:1829–1834.
    [57] KarlssonA,KoashiM,ImotoN. Quantumentanglementforsecretsharingandsecretsplitting.Phys. Rev. A,1999,59:162–168.
    [58] Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys. Rev. Lett.,1999,83:648–651.
    [59] Gottesman D. Theory of quantum secret sharing. Phys. Rev. A,2000,61:042311.
    [60] Bandyopadhyay S. Teleportation and secret sharing with pure entangled states. Phys. Rev. A,2000,62:012308.
    [61] Nascimento A C A, Mueller-Quade J, Imai H. Improving quantum secret-sharing schemes.Phys. Rev. A,2001,64:042311.
    [62] Yang C P, Gea-Banacloche J. Teleportation of rotations and receiver-encoded secret sharing.J. Opt. B: Quant. Semi. Opt.,2001,3:407–411.
    [63] Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized catstates and secret sharing. Phys. Rev. A,2002,65:042320.
    [64] Bagherinezhad S, Karimipour V. Quantum secret sharing based on reusable GHZ states assecure carriers. Phys. Rev. A,2003,67:044302.
    [65] De A S, Sen U, Zukowski M. Unified criterion for security of secret sharing in terms ofviolation of Bell inequality. Phys. Rev. A,2003,68:032309.
    [66] Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes.Phys. Rev. A,2004,69:052307.
    [67] Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splittingwith polarized single photons. Phys. Lett. A,2005,337:329–334.
    [68] DengFG,LiXH,LiCY,etal. Multipartyquantumsecretsplittingandquantumstatesharing.Phys. Lett. A,2006,354:190–195.
    [69] Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entan-glement. Phys. Rev. A,2005,72:012304.
    [70] Yan F L, Gao T, Li Y C. Quantum secret sharing protocol between multiparty and multipartywith single photons and unitary transformations. Chin. Phys. Lett,2008,25:1187–1190.
    [71] ZhangZJ,LiY,ManZX. Multipartyquantumsecretsharing. Phys.Rev.A,2005,71:044301.
    [72] Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based onentanglement swapping. Phys. Rev. A,2005,72:022303.
    [73] Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particlestate with Einstein-Podolsky-Rosen pairs. Phys. Rev. A,2005,72:044301.
    [74] Li Y M, Zhang K S, Peng K C. Multiparty secret sharing of quantum information based onentanglement swapping. Phys. Lett. A,2004,324:420–424.
    [75] Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing. Phys.Rev. A,2001,63:042301.
    [76] Inoue K, Ohashi T, Kukita T, et al. Differential-phase-shift quantum secret sharing. Opt.Express,2008,16:15469–15476.
    [77] Bogdanski J, Ahrens J, Bourennane M. Sagnac secret sharing over telecom fiber networks.Opt. Express,2009,17:1055–1063.
    [78] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using theEinstein-Podolsky-Rosen pair block. Phys. Rev. A,2003,68:042317.
    [79] Deng F G, Long G L. Secure direct communication protocol with a quantum one-time pad.Phys. Rev. A,2004,69:052319.
    [80] Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangledstates. Phys. Rev. A,2008,78:064304.
    [81] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high dimensionquantum superdense coding. Phys. Rev. A,2005,71:044305.
    [82] Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin.Phys. Lett.,2004,21:601–603.
    [83] Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and tele-portation. Eur. Phys. J. B,2004,41:75–78.
    [84] Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ states andswapping quantum entanglement. J. Phys. A: Math. Gen.,2005,38:5761–5770.
    [85] Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication basedon the secret transmitting order of particles. Phys. Rev. Lett.,2006,74:054302.
    [86] Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmittingorder of particles. Phys. Rev. A,2006,73:022338.
    [87] Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swappingquantum entanglement and local unitary operations. Chin. Phys. Lett.,2005,22:18–21.
    [88] Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrange-ment of single photons. Phys. Lett. A,2006,358:256–258.
    [89] Long G L, Wang C, Li X H, et al. Quantum secure direct communication and deterministicsecure quantum communication. Front. Phys. China.,2007,2:251–272.
    [90] Knill E, Laflamme R, Miburn G. A scheme for efficient quantum computation with linearoptics. Nature,2001,409:46–52.
    [91] Sleator J, Weinfurter H. Quantum teleportation and quantum computation based on cavityQED. Phys. Rev. Lett.,1995,74:408–411.
    [92] Van E S J, Cirac J I, Zoller P. Purifying two-bit quantum gates and joint measurements incavity QED. Phys. Rev. Lett.,1997,79:5178–5181.
    [93] Hollenberg L C L, Salgueiro A N, Nemes M C. Cavity QED Deutsch quantum computer.Phys. Rev. A,2001,64:042309.
    [94] Feng M. Quantum computing in cavity QED with cold trapped ions by bichromatic radiation.Phys. Rev. A,2002,65:064301.
    [95] Yi X X, Su X H, You L. Conditional quantum phase gate between two3-state atoms. Phys.Rev. Lett.,2003,90:097902.
    [96] Feng M, D’Amico I, Zanardi P, et al. Spin-based quantum-information processing with semi-conductor quantum dots and cavity QED. Phys. Rev. A,2003,67:014306.
    [97] Duan L M, Kuzmich A, Kimble H J. Cavity QED and quantum-information processing with“hot”trapped atoms. Phys. Rev. A,2003,67:032305.
    [98] Yang C P, Chu S I, Han S Y. Quantum information transfer and entanglement with SQUIDqubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter.Phys. Rev. Lett.,2004,92:117902.
    [99] Gershenfeld N A, Chuang I L. Bulk spin resonance quantum computation. Science,1997,275:350–356.
    [100] Chuang I L, Gersehenfeld N, Kubinec M. Experimental implementation of fast quantumsearching. Phys. Rev. Lett.,1998,80:3408–3411.
    [101] Marx R, Fahmy A F, Myers J M, et al. Approaching five-bit NMR quantum computing. Phys.Rev. A,2000,62:012310.
    [102] Vandersypen L M K, Steffen M, Breyta G, et al. Experimental realization of Shor’s quantumfactoring algorithm using nuclear magnetic resonance. Nature,2001,414:883–887.
    [103] Weinstein Y S, Pravia M A, Fortunato E M, et al. Implementation of the Quantum FourierTransform. Phys. Rev. Lett.,2001,86:1889–1891.
    [104] Long G, Yan H, Li Y, et al. Experimental NMR realization of a generalized quantum searchalgorithm. Physics Letters A,2001,286(2–3):121–126.
    [105] Long G L, Xiao L. Experimental realization of a fetching algorithm in a7-qubit NMR spinLiouville space computer. J. Chem. Phys.,2003,119:8473–8481.
    [106] Cirac J I, Zoller P. Quantum computations with cold trapped ions. Phys. Rev. Lett.,1995,74:4091–4094.
    [107] Riebe M, Kim K, Schindler P, et al. Process tomography of ion trap quantum gates. Phys.Rev. Lett.,2006,97:220407.
    [108] Gulde S, Riebe M, Lancaster G P, et al. Implementation of the Deutsch-Jozsa algorithm onan ion-trap quantum computer. Nature,2003,421:48–50.
    [109] Leibfried D, Barrett M D, Schaetz T, et al. Toward Heisenberg-limited spectroscopy withmultiparticle entangled states. Science,2004,304:1476–1478.
    [110] H ffner H, H nsel W, Roos C F, et al. Scalable multiparticle entanglement of trapped ions.Nature,2005,438:643–646.
    [111] Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum com-puter. Nature,2002,417:709–711.
    [112] Cirac J I, Zoller P. A scalable quantum computer with ions in an array of microtraps. Nature,2000,404:579–581.
    [113] Elzerman J M, Hanson R, Beveren L H, et al. Single-shot read-out of an individual electronspin in a quantum dot. Nature,2004,430:431–435.
    [114] Xiao M, Martin I, Yablonovitch E, et al. Electrical detection of the spin resonance of a singleelectron in a silicon field-effect transistor. Nature,2004,430:435–439.
    [115] Wendin G, Shumeiko V S. Quantum bits with Josephson junctions. Low. Temp. Phys,2007,33:724–744.
    [116] Benioff P. The computer as a physical system: A microscopic quantum mechanical hamiltoni-an model of computers as represented by Turing machines. J. Stat. Phys.,1980,22:563–591.
    [117] Feynman R. Quantum mechanical computer. Optics News,1985,11:11–20.
    [118] Deutsch D. Quantum computational networks. Proceedings Royal Society of London A,1989,425:73–90.
    [119] Berthiaume A, Brassard G. The quantum challenge to structural complexity theory.7th IEEEConference on Structure in Complexity Theory,1992,199:181–182.
    [120] Berthiaume A, Brassard G. Oracle quantum computation. Proceedings of the Workshop onPhysics and Computation: PhysComp,1992,92:195–199.
    [121] Shor P. Algorithms for quantum computation: discrete logarithm and factoring. Proc. of the35thAnnualSymposiumonFoundationsofComputerScience,IEEEComputerSocietyPress,1994,124–134.
    [122] Grover L K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.Lett.,1997,79:325–328.
    [123] Grover L K. Quantum computers can search arbitrarily large databases by a single query.Phys. Rev. A,1997,79:4709–4712.
    [124] Einstein A, Podolsky B, Rosen N. Can quantummechanical description of physical reality beconsidered complete. Phys. Rev.,1935,47:777–780.
    [125] Bell J S. On the Einstein Podolsky Rosen Paradox. Physics,1964,1:195–200.
    [126] ClauserJF, HorneM A,SimonyA, etal. Proposed Experiment toTestLocalHidden-VariableTheories. Phys. Rev. Lett.,1969,23:880–884.
    [127] Freedman S J, Clauser J F. Experimental Test of Local Hidden-Variable Theories. Phys. Rev.Lett.,1972,28:938–941.
    [128] Shih Y H, Alley C O. New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairsof Light Quanta Produced by Optical Parametric Down Conversion. Phys. Rev. Lett.,1988,61:2921–2924.
    [129] Matsukevich D N, Maunz P, Moehring D L, et al. Bell inequality violation with two remoteatomic qubits. Phys. Rev. Lett.,2008,100:150404.
    [130] Greenberger D M, Horne M A, Shimony A, et al. Bell’s theorem without inequalities. Am. J.Phys.,1990,58:1131–1143.
    [131] Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett.,1992,69:2881–2884.
    [132] Mattle K, Weinfurter H, Kwiat P G, et al. Dense Coding in Experimental Quantum Commu-nication. Phys. Rev. Lett.,1996,76:4656–4659.
    [133] Sanders B C. Entangled coherent states. Phys. Rev. A,1992,45:6811–6815.
    [134] Munhoz P P, Roversi J A, Vidiella-Barranco A, et al. Bipartite quantum channels using mul-tipartite cluster-type entangled coherent states. Phys. Rev. A,2010,81:042305.
    [135] Enk S J, Hirota O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A,2001,64:022313.
    [136] Wang X G. Quantum teleportation of entangled coherent states. Phys. Rev. A,2001,64:022302.
    [137] Prakash H, Chandra N, Prakash R, et al. Improving the teleportation of entangled coherentstates. Phys. Rev. A,2007,75:044305.
    [138] An N B. Teleportation of coherent-state superpositions within a network. Phys. Rev. A,2003,68:022321.
    [139] An N B. Optimal processing of quantum information via W-type entangled coherent states.Phys. Rev. A,2004,69:022315.
    [140] Cochrane P T, Milburn G J, Munro W J. Macroscopically distinct quantum-superpositionstates as a bosonic code for amplitude damping. Phys. Rev. A,1999,59:2631.
    [141] Jeong H, Kim M S. Efficient quantum computation using coherent states. Phys. Rev. A,2002,65:042305.
    [142] Jeong H, An N B. Greenberger-Horne-Zeilinger–type and W-type entangled coherent states:Generation and Bell-type inequality tests without photon counting. Phys. Rev. A,2006,74:022104.
    [143] ClausenJ,Kn llL,WelschDG. Lossypurificationanddetectionofentangledcoherentstates.Phys. Rev. A,2002,66:062303.
    [144] Glancy S, Vasconcelos H M. Transmission of optical coherent-state qubits. Phys. Rev. A,2004,70:022317.
    [145] Schr dinger E. Der stetige übergang von der Mikro-zur Makromechanik. Naturwis-senschaften,1926,14:664–666.
    [146] MehtaCL. Sudarshandiagonalcoherentstaterepresentation:Developmentsandapplications.J. Phys.: Conf. Ser.,2009,196:012014.
    [147] Milburn G J. Quantum and classical Liouville dynamics of the anharmonic oscillator. Phys.Rev. A,1986,33:674–685.
    [148] Milburn G J, Holmes C A. Dissipative Quantum and Classical Liouville Mechanics of theAnharmonic Oscillator. Phys. Rev. Lett.,1986,56:2237–2240.
    [149] Yurke B, Stoler D. Generating quantum mechanical superpositions of macroscopically dis-tinguishable states via amplitude dispersion. Phys. Rev. Lett.,1986,57:13–16.
    [150] Yurke B, Stoler D. Quantum behavior of a four-wave mixer operated in a nonlinear regime.Phys. Rev. A,1987,35:4846–4849.
    [151] Glancy S, Vasconcelos H M. Methods for producing optical coherent state superpositions. J.Opt. Soc. Am.,2008,25:712–733.
    [152] Titulaer U M, Glauber R J. Density Operators for Coherent Fields. Phys. Rev.,1966,145:1041–1050.
    [153] Bialynicka Birula Z. Properties of the Generalized Coherent State. Phys. Rev.,1968,173:1207–1209.
    [154] Stoler D. Generalized Coherent States. Phys. Rev. D,1971,4:2309–2312.
    [155] Barut A O, Girardello L. New “Coherent”States associated with non-compact groups.Commun. Math. Phys.,1971,21:41–55.
    [156] Arecchi F T, Courtens E, Gilmore R, et al. Atomic Coherent States in Quantum Optics. Phys.Rev. A,1972,6:2211–2237.
    [157] Gilmore R. Geometry of symmetrized states. Ann. Phys.,1972,74:391–463.
    [158] Perelomov A M. Coherent states for arbitrary Lie group. Commun. Math. Phys.,1972,26:222–236.
    [159] Bu ekV,KnightPL. I:QuantumInterference,SuperpositionStatesofLight,andNonclassicalEffects. Prog. Opt.,1995,34:1–158.
    [160] Aharonov Y, Susskind L. Charge Superselection Rule. Phys. Rev.,1967,155:1428.
    [161] Mecozzi A, TombesiP. Distinguishable quantum states generated via nonlinear birefringence.Phys. Rev. Lett.,1987,58:1055–1058.
    [162] Tombesi P, Mecozzi A. Generation of macroscopically distinguishable quantum states anddetection by the squeezed-vacuum technique. Phys. Rev. A,1987,4:1700–1709.
    [163] WangX,SandersBC. Multipartiteentangledcoherentstates. Phys.Rev.A,2001,65:012303.
    [164] Guo Y, Kuang L M. Near-deterministic generation of four-mode W-type entangled coherentstates. Journal of Physics B: Atomic, Molecular and Optical Physics,2007,40:3309.
    [165] Li H M, Yuan H C, Fan H Y. Single-Mode Excited GHZ-type Entangled Coherent State. Int.J. Theor. Phys.,2009,48:2849–2864.
    [166] An N B, Kim J. Cluster-type entangled coherent states: Generation and application. Phys.Rev. A,2009,80:042316.
    [167] Becerra-Castro E M, Cardoso W B, Avelar A T, et al. Generation of a4-qubit cluster ofentangled coherent states in bimodal QED cavities. Journal of Physics B: Atomic, Molecularand Optical Physics,2008,41(8):085505.
    [168] Wen-Feng W, Xin-Yuan S, Xiao-Bing L. Generation of Cluster-Type Entangled CoherentStates via Cross-Kerr Nonlinearity. Chinese Physics Letters,2008,25(3):839.
    [169] Raussendorf R, Briegel H J. A One-Way Quantum Computer. Phys. Rev. Lett.,2001,86:5188–5191.
    [170] Pan J W, Zeilinger A. Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A,1998,57:2208.
    [171] Jozsa R. Fidelity for Mixed Quantum States. J. Mod. Opt.,1994,41:2315.
    [172] Cover T M, Thomas J A. Elements of Information Theory. John Wiley and Sons Inc.,1991.
    [173] Jozsa R, Schumacher B. A new proof of the quantum noiseless coding theorem. J. Mod. Opt.,1994,41:2343.
    [174] Schumacher B. Quantum coding. Phys. Rev. A,1995,51:2738–2747.
    [175] BarencoA,DeutschD,EkertA,etal. ConditionalQuantumDynamicsandLogicGates. Phys.Rev. Lett.,1995,74:4083–4086.
    [176] Zeilinger A. General properties of lossless beam splitters in interferometry. Am. J. Phys.,1981,49:882.
    [177] Fearn H, Loudon R. Quantum theory of the lossless beam splitter. Opt. Commun.,1987,64:485–490.
    [178] Barnett S M, Jeffers J, Gatti A, et al. Quantum optics of lossy beam splitters. Phys. Rev. A,1998,57:2134–2145.
    [179] Englert B G, Kurtsiefer C, Weinfurter H. Universal unitary gate for single-photon two-qubitstates. Phys. Rev. A,2001,63:032303.
    [180] Virmani P M. Ordering states with entanglement measures. Phys. Lett. A,2000,268:31–34.
    [181] Vedral V, Plenio M B, Rippin M A, et al. Quantifying Entanglement. Phys. Rev. Lett.,1997,78:2275–2279.
    [182] Cao J, Cui X, Qi Z, et al. Partial entropy in finite-temperature phase transitions. Phys. Rev.B,2007,75:172401.
    [183] Bennett C H, DiVincenzo D P, Smolin J A, et al. Mixed-state entanglement and quantum errorcorrection. Phys. Rev. A,1996,54:3824–3851.
    [184] Wootters W K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev.Lett.,1998,80:2245.
    [185] Hill S, Wootters W K. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett.,1997,78:5022.
    [186] Peres A. Separability Criterion for Density Matrices. Phys. Rev. Lett.,1996,77:1413–1415.
    [187] Vedral V, Plenio M B. Entanglement measures and purification procedures. Phys. Rev. A,1998,57:1619–1633.
    [188] yczkowski K, Horodecki P, Sanpera A, et al. Volume of the set of separable states. Phys.Rev. A,1998,58:883–892.
    [189] Plenio M B. Logarithmic Negativity: A Full Entanglement Monotone That is not Convex.Phys. Rev. Lett.,2005,95:090503.
    [190] Munro W J, Milburn G J, Sanders B C. Entangled coherent-state qubits in an ion trap. Phys.Rev. A,2000,62:052108.
    [191] Armour A D, Blencowe M P, Schwab K C. Entanglement and Decoherence of a Microme-chanical Resonator via Coupling to a Cooper-Pair Box. Phys. Rev. A,2002,88:148301.
    [192] Wang X G, Feng M, Sanders B C. Multipartite entangled states in coupled quantum dots andcavity QED. Phys. Rev. A,2003,67:022302.
    [193] Solano E, Agarwal G S, Walther H. Strong-Driving-Assisted Multipartite Entanglement inCavity QED. Phys. Rev. Lett.,2003,90:027903.
    [194] Kuang L M, Zhou L. Generation of atom-photon entangled states in atomic Bose-Einsteincondensate via electromagnetically induced transparency. Phys. Rev. A,2003,68:043606.
    [195] Kuang L M, Chen Z B, Pan J W. Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency. Phys. Rev. A,2007,76:052324.
    [196] Chen M Y, Matisse W Y T, Zhang W M. Entangling two superconducting LC coherent modesvia a superconducting flux qubit. Phys. Rev. B,2009,80:214538.
    [197] Ourjoumtsev A, Tualle-Brouri R, Laurat J, et al. Generating Optical Schr dinger Kittens forQuantum Information Processing. Science,2006,312(5770):83–86.
    [198] Yuen H P. Two-photon coherent states of the radiation field. Phys. Rev. A,1976,13:2226–2243.
    [199] GerryCC. GenerationofopticalmacroscopicquantumsuperpositionstatesviastatereductionwithaMach-ZehnderinterferometercontainingaKerrmedium. Phys.Rev.A,1999,59:4095.
    [200] He B, Nadeem M, Bergou J A. Scheme for generating coherent-state superpositions withrealistic cross-Kerr nonlinearity. Phys. Rev. A,2009,79:035802.
    [201] GerryCC,GrobeR. Nonlocalentanglementofcoherentstates,complementarity,andquantumerasure. Phys. Rev. A,2007,75:034303.
    [202] Aharonov Y, Susskind L. Charge Superselection Rule. Phys. Rev.,1967,155:1428–1431.
    [203] Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry. Rev. Mod.Phys.,2012,84:777–838.
    [204] Vaidman L, Yoran N. Methods for reliable teleportation. Phys. Rev. A,1999,59:116.
    [205] Lütkenhaus N, Calsamiglia J, Suominen K A. Bell measurements for teleportation. Phys.Rev. A,1999,59:3295.
    [206] Calsamiglia J, Lütkenhaus N. Maximum efficiency of a linear-optical Bell-state analyzer.Appl. Phys. B: Lasers Opt.,2001,72:67.
    [207] CalsamigliaJ. Generalizedmeasurementsbylinearelements. Phys.Rev.A,2002,65:030301.
    [208] Mattle K, Weinfurter H, Kwiat P G, et al. Dense coding in experimental quantum communi-cation. Phys. Rev. Lett.,1996,76:4656.
    [209] Houwelingen J A W, Brunner N, Beveratos A, et al. Quantum Teleportation with a Three-Bell-State Analyzer. Phys. Rev. Lett.,2006,96:130502.
    [210] Ursin R, Jennewein T, Aspelmeyer M, et al. Quantum teleportation with a three-Bell-stateanalyzer. Nature,2004,430:849.
    [211] Kwiat P, Weinfurter H. Embedded Bell-state analysis. Phys. Rev. A,1998,58:R2623.
    [212] Walborn S P, Pádua S, Monken C H. Hyperentanglement-assisted Bell-state analysis. Phys.Rev. A,2003,68:042313.
    [213] Walborn S P, Nogueira W A T, Pádua S, et al. Optical Bell-state analysis in the coincidencebasis. Europhys. Lett.,2003,62:161.
    [214] Ren X F, Guo G P, Guo G C. Complete Bell-states analysis using hyper-entanglement. Phys.Lett. A,2005,343:8.
    [215] Barreiro J T, Langford N K, Peters N A, et al. Generation of hyperentangled photon pairs.Phys. Rev. Lett.,2005,95:260501.
    [216] Sheng Y B, Deng F G. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A,2010,81:032307.
    [217] Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantumcommunication. Phys. Rev. A,2010,82:032318.
    [218] Wang C, Sheng Y B, Li X H, et al. Efficient entanglement purification for doubly entangledphoton state. Sci. China Ser. E-Tech. Sci.,2009,52:3464.
    [219] SchuckC,HuberG,KurtsieferC,etal. Completedeterministiclinearopticsbellstateanalysis.Phys. Rev. Lett.,2006,96:190501.
    [220] Barbieri M, Vallone G, Mataloni P, et al. Complete and deterministic discrimination of polar-ization Bell states assisted by momentum entanglement. Phys. Rev. A,2007,75:042317.
    [221] Barreiro J T, Wei T C, Kwiat P G. Remote preparation of single-photon hybrid entangled andvector-polarization states. Phys. Rev. Lett.,2010,105:030407.
    [222] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental Entanglement Swapping: Entan-gling Photons That Never Interacted. Phys. Rev. Lett.,1998,80:3891–3894.
    [223] HirotaO,EnkSJ,NakamuraK,etal. EntangledNonorthogonalStatesandTheirDecoherenceProperties. arXiv:quant-ph,2001.0101096.
    [224] Jeong H, Kim M S, Lee J. Quantum-information processing for a coherent superposition statevia a mixedentangled coherent channel. Phys. Rev. A,2001,64:052308.
    [225] Jeong H. Using weak nonlinearity under decoherence for macroscopic entanglement genera-tion and quantum computation. Phys. Rev. A,2005,72:034305.
    [226] Jeong H, Kim M S, Ralph T C, et al. Generation of macroscopic superposition states withsmall nonlinearity. Phys. Rev. A,2004,70:061801(R).
    [227] Nemoto K, Munro W J. Nearly Deterministic Linear Optical Controlled-NOT Gate. Phys.Rev. Lett.,2004,93:250502.
    [228] MunroWJ,NemotoK,BeausoleilRG,etal. High-efficiencyquantum-nondemolitionsingle-photon-number-resolving detector. Phys. Rev. A,2005,71:033819.
    [229] Lund A P, Jeong H, Ralph T C, et al. Conditional production of superpositions of coherentstates with inefficient photon detection. Phys. Rev. A,2004,70:020101(R).
    [230] Wang B, Duan L M. Engineering superpositions of coherent states in coherent optical pulsesthrough cavity-assisted interaction. Phys. Rev. A,2005,72:022320.
    [231] Enk S J. Entanglement Capabilities in Infinite Dimensions: Multidimensional Entangled Co-herent States. Phys. Rev. Lett.,2003,91:017902.
    [232] He B, Nadeem M, Bergou J A. Creation of high-quality long-distance entanglement withflexible resources. Phys. Rev. A,2009,79:052323.
    [233] He B, Ren Y H, Bergou J A. Universal entangler with photon pairs in arbitrary states. Journalof Physics B: Atomic, Molecular and Optical Physics,2010,43:025502.
    [234] Lin Q, Li J. Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A,2009,79:022301.
    [235] Lin Q, He B. Single-photon logic gates using minimal resources. Phys. Rev. A,2009,80:042310.
    [236] Barrett S D, Kok P, Nemoto K, et al. Symmetry analyzer for nondestructive Bell-state detec-tion using weak nonlinearities. Phys. Rev. A,2005,71:060302.
    [237] Sheng Y B, Deng F G, Zhou H Y. Efficient polarization-entanglement purification basedon parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A,2008,77:042308.
    [238] Deng F G. Efficient multipartite entanglement purification with the entanglement link from asubspace. Phys. Rev. A,2011,84:052312.
    [239] An N B. Teleportation of a general two-mode coherent-state superposition via attenuatedquantum channels with ideal and/or threshold detectors. Phys. Lett. A,2009,373:1701.
    [240] Phoenix S J D. Wave-packet evolution in the damped oscillator. Phys. Rev. A,1990,41:5132.
    [241] Louisell W. Quantum statistical properties of radiation. Wiley series in pure and appliedoptics, Wiley,1973.
    [242] Barnett S M, Knight P L. Dissipation in a fundamental model of quantum optical resonance.Phys. Rev. A,1986,33:2444–2448.
    [243] Barnett S M. Ph.D. thesis, University of London,1985.
    [244] Mermin N D. Extreme quantum entanglement in a superposition of macroscopically distinctstates. Phys. Rev. Lett.,1990,65:1838–1840.
    [245] Wiseman H M, Milburn G J. Quantum theory of optical feedback via homodyne detection.Phys. Rev. Lett.,1993,70:548–551.
    [246] Banaszek K, Wódkiewicz K. Direct Probing of Quantum Phase Space by Photon Counting.Phys. Rev. Lett.,1996,76:4344–4347.
    [247] GerryCC,MimihJ,BenmoussaA. Maximallyentangledcoherentstatesandstrongviolationsof Bell-type inequalities. Phys. Rev. A,2009,80:022111.
    [248] Terhal B M. Bell inequalities and the separability criterion. Physics Letters A,2000,271(5-6):319–326.
    [249] Banaszek K, Wódkiewicz K. Nonlocality of the Einstein-Podolsky-Rosen state in the Wignerrepresentation. Phys. Rev. A,1998,58:4345–4347.
    [250] LoockP,BraunsteinSL. Greenberger-Horne-Zeilingernonlocalityinphasespace. Phys.Rev.A,2001,63:022106.
    [251] Royer A. Wigner function as the expectation value of a parity operator. Phys. Rev. A,1977,15:449–450.
    [252] Fitch M J, Jacobs B C, Pittman T B, et al. Photon-number resolution using time-multiplexedsingle-photon detectors. Phys. Rev. A,2003,68:043814.
    [253] Banaszek K, Walmsley I A. Photon counting with a loop detector. Opt. Lett.,2003,28(1):52–54.
    [254] Gerry C C, Benmoussa A, Campos R A. Quantum nondemolition measurement of parity andgeneration of parity eigenstates in optical fields. Phys. Rev. A,2005,72:053818.
    [255] Gerry C C, Bui T. Quantum non-demolition measurement of photon number using weaknonlinearities. Physics Letters A,2008,372(48):7101–7104.
    [256] Qian J, Feng X L, Gong S Q. Universal Greenberger–Horne–Zeilinger-state analyzer basedon two-photon polarization parity detection. Phys. Rev. A,2005,72:052308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700