高分子材料微观结构及性质的积分方程理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,积分方程理论(IET)成为国际上研究高分子体系结构和热力学性质的主要理论方法之一,是物理学界、高分子学界和化工界的一个热门研究领域。本工作采用高分子参考作用点模型理论(PRISM理论)研究了高分子及高分子纳米复合材料的结构和热力学性质,填补了国内用积分方程理论研究高分子材料的空白,为今后国内研究高分子体系开辟了一个新的方向。主要成果为:
     详细介绍了高分子参考作用点模型理论的基本理论框架和模型构建,讨论了各种计算高分子链分子内结构因子的方法和PRISM理论中常用的几种闭合条件,并对这些方法和闭合条件进行了比较和评价。详细介绍了用离散Fourier变换和快速Fourier变换求解PRISM积分方程的两种数值计算方法。
     结合PRISM理论、MD分子模拟和变分法,得到了可以描述聚苯乙烯熔体的单点半柔性链模型,提出了一个研究实际聚合物体系的有效方法。该模型能够抓住复杂的无规聚苯乙烯熔体的主要结构信息,可以半定量的描述各种条件下无规聚苯乙烯熔体的分子间相关函数、分子内相关函数、溶解度参数和x-光散射强度等结构和热力学性质,并得到了MD数据和实验数据的支持。
     结合PRISM理论和MD模拟,提出了一个8-链节模型来研究无规聚苯乙烯熔体的各种性质,PRISM理论计算需要的分子内结构因子由MD模拟提供。用PRISM理论成功预测了无规聚苯乙烯熔体的各种微观的相关函数和结构因子,预测结果与MD模拟数据定量一致。此外,还用PRISM理论预测了无规聚苯乙烯熔体的溶解度参数和x-光散射强度等宏观性质,计算结果与实验数据定量一致。
     采用PRISM理论研究了链状高分子纳米复合材料的结构和等效相互作用。用MD模拟数据验证了PRISM理论描述高分子纳米复合材料的可靠性。首次用PRISM理论预测了在非零的纳米颗粒体积分率下链状高分子纳米复合材料的结构和等效相互作用,系统的考察了纳米颗粒的体积分率、链状高分子的聚合度以及纳米颗粒-单体粒径比对体系各种性质的影响。
     首次采用PRISM理论研究了星型高分子纳米复合材料的结构和等效相互作用。系统的研究了纳米颗粒-单体吸引力、纳米颗粒的体积分率、星型高分子的臂数、臂长以及纳米颗粒-单体粒径比等各种因素的影响。发现了星型高分子纳米复合材料的两种不同的凝聚方式:直接凝聚和桥接凝聚。详细讨论了高分子的整体构型和高分子-纳米颗粒的吸引力之间的相互作用对体系中纳米颗粒和星型高分子堆积状态的影响。
Integral equation theory (IET) has been employed recently to study the structure and thermodynamics properties of polymer systems. It is a very attractive field in physics, polymer science and chemical engineering. In this work, the polymer reference interaction site model theory (PRISM) is used to investigate the structure and thermodynamics properties in polymer and polymer nanocomposites, which is the first time in China to use integral equation theory to study the polymer systems. The main results obtained are:
     The PRISM theory is introduced in detail. Different kinds of computationally convenient methods for determining the intramolecular structure factors are discussed and evaluated extensively, together with the usual closure approximations used in PRISM theory. The two numerical methods to solve PRISM integral equations are introduced based on the Discrete Fourier Transformation and Fast Fourier Transformation.
     Combining PRISM theory, MD simulation and Variational method, a single-site semi flexible model is proposed to describe atactic polystyrene (aPS) melt. This is a reasonable method to investigate real polymer systems. The semiflexible model can capture the main features of aPS, and can semi-quantitatively describe the intermolecular correlation function, intramolecular correlation function, solubility parameters and x-ray scattering intensity for real aPS melt. Good agreement between theory and MD simulation is obtained.
     An eight-site model is proposed to further describe aPS melt, where the intramolecular structure factors needed in PRISM calculations are obtained from MD simulations. The PRISM theory successfully predicts various microscopic information such as correlation functions and structure factors, and macroscopic properties such as solubility parameters and x-ray scattering intensity of real aPS melt. Quantitative agreements among theory, MD simulation and experiments are obtained.
     The PRISM theory is used to study chain polymer nanocomposite melts. The theory is reliable to describe the structure and effective interactions in chain polymer nanocomposite melts which agree quantitatively with the MD simulations. Then the PRISM theory is firstly employed to predict the properties of the polymer nanocomposites where the particle volume fractions are nonzero. The roles of the particle volume fraction, degree of polymerization, and nanoparticle-monomer size ratio are systematically investigated.
     The PRISM theory is used to study the structure and effective interactions in star polymer nanocomposite melts. The influences of thenanoparticle-monomer attraction strength, particle volume fraction, arm number, arm length, and nanoparticle-monomer size ratio are systematically studied. Two types of aggregation are observed in star polymer nanocomposite melts: the contact aggregation and the bridging aggregation. The different stable states of organization between nanoparticles are extensively discussed according to the interplay between the star architecture and the nanoparticle-monomer attractive interactions.
引文
[1] 冯新德,张中岳,施良和.高分子辞典[M].北京:中国石化出版社,1998
    [2] 张礼和.化学学科进展[M].北京:化学工业出版社,2005
    [3] Krishnamoorthy R, Vaia R A. Polymer Nanocomposites:Synthesis, Characterization, and Modeling[M]. Washington, D C: American Chemical Society, 2002
    [4] 柯扬船,[美]斯壮 皮特.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003
    [5] Harth E, Horn B V, Lee V Y, et al. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse[J]. J. Am. Chem. Soc., 2002, 124:8653-8660
    [6] Mackay M E, Dao T T, Tuteja A, et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity[J]. Nat. Mater., 2003, 2:762-766
    [7] Glasel H J, Bauer F, Ernst H, et al. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles[J]. Macromol. Chem. Phys., 2000, 201:2765-2770
    [8] Dufresne A, Cavaille J Y, Helbert W. New nanocomposite materials: Microcrystalline starch reinforced thermoplastic[J]. Macromolecules, 1996, 29:7624-7626
    [9] Helbert W, Cavaille J Y, Dufresne A. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers Part Ⅰ: Processing and mechanical behavior[J]. Polym.Compos., 1996, 17:604-611
    [10] Bockstaller M R, Kolb R, Thomas E L. Metallodielectric photonic crystals based on diblock copolymers[J]. Adv. Mater., 2001, 13:1783-1786
    [11] Bockstaller M R, Thomas E L. Optical properties of polymer-based photonic nanocomposite materials[J]. J. Phys. Chem. B, 2003, 107:10017-10024
    [12] Niemeyer C M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science[J]. Angew. Chem. Int. Ed., 2001.40:4128-4158
    [13] Shou Z Y, Buxton G A, Balazs A C. Predicting the self-assembled morphology and mechanical properties of mixtures of diblocks and rod-like nanoparticles[J]. Compos. Interfaces., 2003, 10:343-368
    [14] Lin Y, Boker A, tie J, et al. Self-directed self-assembly of nanoparticle/copolymer mixtures[J]. Nature, 2005, 434:55-59
    [15] 胡英,刘国杰,徐英年等.应用统计力学-流体物性的研究基础[M].北京:化学工业出版社,1990
    [16] 李以圭,陆九芳.电解质溶液理论[M].北京:清华大学出版社,2005
    [17] Lebowitz J L, Percus J K. Mean spherical model for lattice gasses with extended hard cores and continuum fluid[J]. Phys. Rev., 1966, 144:251-258
    [18] Van Leeuwen J M J, Groeneveld J, De Boer J. New method for the calculation of the pair correlation function, I[J]. Physica, 1959. 25:792-808
    [19] Green M S. On the theory of the critical point of a simple fluid[J]. J. Chem. Phys., 1960, 33:1403-1409
    [20] Percus J K, Yevick G J. Analysis of classical statistical mechanics by means of collective coordinates[J]. Phys. Rev., 1958, 110:1-13
    [21] Grundke E. W, Henderson D. Distribution function of multi-component fluid mixtures of hard spheres[J]. Mol. Phys., 1972, 24:269-281
    [22] Henderson D, Chan K Y. Equation of state and correlation function contact values of a hard sphere mixture. Mol. Phys., 2000, 98:1005-1010
    [23] Lu J F, Yu Y X, Li Y-G. Modification and application of the mean spherical approximation method[J]. Fluid Phse Equilibria, 1993, 85:81-100
    [24] Lin Y Z, Li Y-G, Lu J F, et al. Study on the analytical solution of the MSA for a one-component two-Yukawa potential in bovine serum albumin-NaCl aqueous solution[J]. Mol. Phys., 2002, 100:3251-3257
    [25] Liu Z P, Li Y-G, Chan K Y. Equation of state for nonpolar, polar, chain, and associating fluids based on the dipolar Yukawa potential[J]. Ind. Eng. Chem. Res., 20O1. 40:973-979
    [26] Andersen H C, Chandler D. Optimized cluster expansions for classical fluids. Ⅰ. General theory and variational formulation of the mean spherical model and hard sphere Percus-Yevick equations[J]. J. Chem. Phys., 1972, 57:1918-1929
    [27] Chandler D, Andersen H C. Optimized cluster expansions for classical fluids. Ⅱ. Theory of molecular liquids[J]. J. Chem. Phys., 1972, 57:1930-1937
    [28] Lowden L J, Chandler D. Solution of a new integral equation for pair correlation functions in molecular liquids[J]. J. Chem. Phys., 1973, 59:6587-6595
    [29] Hsu C S, Chandler D. RISM calculation of the structure of liquid acetonitrile[J]. Mol. Phys., 1978,36:215-224
    [30] Lowden L J, Chandler D. Theory of intermolecular pair correlations for molecular liquids. Applications to the liquids carbon tetrachloride, carbon disulfide, carbon diselenide, and benzene[J]. J. Chem. Phys., 1974, 61:5228-5241
    [31] Chandler D, Hsu C S, Streett W B. Comparison of Monte Carlo and RISM calculations of pair correlation functions[J]. J. Chem. Phys., 1977, 66:5231-5234
    [32] Sandler S I, Narten A H. X-ray diffraction study of liquid carbon disulphide[Jl. Mol. Phys., 1976.32:1543-1558
    [33] Narten A H. X-ray diffraction pattern and model of liquid benzene[J]. J. Chem. Phys., 1977. 67:2102-2108
    [34] Chandler D, Pratt L R. Statistical mechanics of chemical equilibria and intramolecular structures of nonrigid molecules in condensed phases[J]. J. Chem. Phys., 1976. 65:2925-2940
    [35] Pratt L R, Chandler D. Interaction site cluster series for the Helmholtz free energy and variational principle for chemical equilibria and intramolecular structures[J]. J. Chem. Phys., 1977, 66:147-151
    [36] Pratt L R, Hsu C S, Chandler D. Statistical mechanics of small chain molecules in liquids, Ⅰ. Effects of liquid packing on conformational structures[J]. J. Chem. Phys.. 1978, 68:4202-4212
    [37] Hsu C S, Pratt L R, Chandler D. Statistical mechanics of small chain molecules in liquids, Ⅱ. Intermolecular pair correlations for liquid n-butane[J]. J. Chem. Phys., 1978, 68:4213-4217
    [38] Pratt L R, Chandler D. Theory ofthe hydrophobic effect[J]. J. Chem. Phys., 1977. 67:3683-3704
    [39] Chandler D, Singh J, Richardson D M. Excess electrons in simple fluids. Ⅰ. General equilibrium theory for classical hard sphere solvents[J]. J. Chem. Phys., 1984, 81 : 1975-1982
    [40] Laria D, Wu D, Chandler D. Reference interaction site model polaron theory of the hydrated electron[J]. J. Chem. Phys., 1991, 95:4444-4453
    [41] Chandler D, McCoy J D, Singer S J. Density functional theory of nonuniform polyatomic systems. Ⅰ. General formulation[J]. J. Chem. Phys., 1986, 85:5971-5976
    [42] Chandler D, McCoy J D, Singer S J. Density functional theory of nonuniform polyatomic systems. Ⅱ. Rotational closures for integral equations[J]. J. Chem. Phys., 1986, 85:5977-5982
    [43] Sullivan D E, Gray C G. Evaluation of angular correlation parameters and the dielectric constant in the RISM approximation [J]. Mol. Phys., 1981,42:443-454
    [44] Schweizer K S, Curro J G. Integral-equation theory of the structure of polymer melts[J]. Phys. Rev. Lett., 1987, 58:246-249
    [45] Curro J G, Schweizer K S. Theory of polymer melts: An integral equation approach[J]. Macromolecules, 1987, 20:1928-1934
    [46] Casassa E F. Some statistical properties of flexible ring polymers[J]. J. Polym. Sci. A, 1965, 3:605-614
    [47] Curro J G, Schweizer K S. Equilibrium theory of polymer liquids: Linear chains[J]. J. Chem. Phys., 1987, 87:1842-1846
    [48] Elliott J R, Kanetkar U S. Theory and simulation of chain-molecule fluid structure[J]. Mol. Phys..1990, 71:871-882
    [49] Elliott J R, Kanetkar U S, Vasudevan V J. Attractive-force effects in chain molecular fluids[J].Mol. Phys., 1990, 71:883-895[50] Flory PJ. The configuration of real polymer chains[J]. J. Chem. Phys. 1949, 17:303-310
    [51] Schweizer K S, Honnell K G, Curro J G. Reference interaction site model theory of polymeric liquids: Self-consistent formulation and nonideality effects in dense solutions and melts[J]. J. Chem. Phys., 1992, 96:3211-3225
    [52] Yethiraj A, Schweizer K S. Self-consistent polymer integral equation theory: Comparison with Monte Carlo simulation and alternative closure approximations[J]. J. Chem. Phys., 1992, 97:1455-1464
    [53] Schweizer K S, Curro J G PRISM theory of the structure, thermodynamics, and phase transitions of polymer liquids and alloys[J]. Adv. Polym. Sci., 1994, 116:321-377
    [54] Schweizer K S, Curro J G. Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids[J]. Adv. Chem. Phys., 1997, 98: 1-142
    [55] Schweizer K S, Curro J C. Integral equation theory of polymer melts: Intramolecular structure. local order, and the correlation hole[J]. Macromolecules, 1988, 21:3070-3081
    [56] Schweizer K S, Curro J G. Integral equation theory of polymer melts: density fluctuations, static structure factor, and comparison with incompressible and continuum limit models[J].Macromolecules, 1988, 21 : 3082-3087
    [57] Schweizer K S, Curro J G. RISM theory of polymer liquids: Analytical results for continuum models of melts and alloys[J]. Chem. Phys., 1990, 149:105-127
    [58] Schweizer K S, Curro J G Analytic reference interaction site model-mean spherical approximation theory of flexible polymer blends: Effects of spatial and fractal dimensions[J]. J. Chem. Phys., 1991, 94:3986-4000
    [59] Honnell K G, Curro J G, Schweizer K S. Local structure of Semiflexible polymer melts[J]. Macromolecules, 1990, 23:3496-3505[60] Koyama R. Light scattering of stiff chain polymers[J]. J. Phys. Soc. Jpn., 1973, 34:1029-1038
    [61] Curro J G, Schweizer K S, Grest G S, et al. A comparison between integral equation theory and molecular dynamics simulations of dense, flexible polymer liquids[J]. J. Chem. Phys., 1989, 91:1357-1364
    [62] McCoy J D, Honnell K G, Curro J G, et al. Single-chain structure in model polyethylene melts[J]. Macromolecules, 1992, 25:4905-4910
    [63] Honnell K G, McCoy J D, Curro J G,et al. Local structure of polyethylene melts[J]. J. Chem. Phys., 1991, 94:4659-4662
    [64] Narten A H, Habenschuss, Honnell K G, et al. Diffraction by macromolecular fluids[J]. J. Chem. Soc. Faraday Trans., 1992, 88:1791-1795
    [65] Yethiraj A, Curro J G, Schweizer K S, et al. Microscopic equations of state of polyethylene: Hard-chain contribution to the pressure[J]. J. Chem. Phys., 1993, 98:1635-1646
    [66] Curro J G, Yethiraj A, Schweizer K S, et al. Microscopic equations-of-state for hydrocarbon fluids: Effect of attractions and comparison with polyethylene experimeuts[J]. Macromolecules, 1993, 26:2655-2662
    [67] Yethiraj A. Effect of chain stiffness on the conformational properties, pair correlations, andequation of state of polymer melts[J]. J. Chem. Phys., 1994, 101:9104-9112
    [68] Schweizer K S, David E F, Singh C, et al. Structure-property correlations of atomistic andcoarse-grained models of polymer melts[J]. Macromolecules, 1995, 28: 1528-1540
    [69] Curro J G, Intermolecular structure and thermodynamics of vinyl polymer liquids: Freely-jointed chains[J]. Macromolecules, 1994, 27:4665-4672
    [70] Rajasekaran J J, Curro J G Intermolecular packing of freely jointed branched polyalkene melts: A microscopic approach[J]. J. Chem. Soc. Faraday Trans., 1995, 91:2427-2433
    [71] Yethiraj A, Curro J G. Rajasekaran J J. Thermodynamics and local structure of vinyl polymer melts[J]. J. Chem. Phys., 1995, 103:2229-2236
    [72] Curro J G, Weinhold J D, Rajasekaran J J, et al. Inter packing in stereoregular polypropylene liquids: Comparison between theory and x-ray scattering experiments[J]. Macromolecules. 1997.30:6264-6273
    [73] Curro J G, Webb ILl E B, Grest G S, et al. Comparisons between integral equation theory and molecular dynamics simulations for realistic models of polyethylene liquids[J]..J. Chem. Phys..1999, 111:9073-9081
    [74] Tsige M, Curro J G, Grest G S, et al. Molecular dynamics simulation and integral equation theory of alkane chains: Comparison of explicit and united atom models[J]. Macromolecules. 2003.36:2158-2164
    [75] Weinhold J D, Curro J G, Habenschuss A, et al. Self-consistent integral equation theory of polyolefins and comparison to x-ray scattering experiments[J]. Macromolecules, 1999, 32:7276-7288
    [76] Pütz M, Curro J G, Grest G S. Self-consistent integral equation theory for polyolefins: Comparison to molecular dynamics simulations and x-ray scattering[J]. J. Chem. Phys.. 2001, 114:2847-2860
    [77] Sides S W, Curro J G, Grest G S, et al. Structure of poly(dimethylsiloxane) melts: Theory, simulation, and experiment[J]. Macromolecules, 2002, 35:6455-6465
    178] Heine D R, Grest G S, Curro J G Structure of polymer melts and blends: Comparison of integral equation theory and computer simulations[J]. Adv. Polym. Sci., 2005, 173:209-251
    [79] Schweizer K S, Curro J G. Microscopic theory of the structure, thermodynamics, and apparent χ parameter of polymer blends[J]. Phys. Rev. Lett., 1988, 60:809-812
    [80] Schweizer K S, Curro J G. Integral equation theory of the structure and thermodynamics of polymer blends[J]. J. Chem. Phys., 1989, 91 : 5059-5081
    [81] Flory P J. Principles of Polymer Chemistry[M]. New York: Cornell University, 1953
    [82] Curro J G, Schweizer K S. An integral equation theory of polymer blends: Athermal mixtures[J]. Macromolecules, 1990, 23:1402-1411
    [83] Singh C, Schweizer K S. Conrrelation effects and entropy-driven phase separation in athermal polymer blends[J]. J. Chem. Phys., 1995, 103:5814-5832
    [84] Schweizer K S, Yethiraj A. Polymer reference interaction site model theory: New molecular closures for phase separating fluids and alloys[J]. J. Chem. Phys., 1993, 98:9053-9079
    [85] Yelhiraj A, Schweizer K S. Integral equation theory of polymer blends: Numerical investigation of molecular closure approximations[J]. J. Chem. Phys., 1993, 98:9080-9093
    [86] Stevenson C S, McCoy J D, Plimpton S J, et al. Molecular dynamics simulations of athermal polymer blends: Finite system size considerations[J]. J. Chem. Phys., 1995, 103:1200-1207
    [87] Stevenson C S, Curro J G, McCoy J D. Molecular dynamics simulations of athermal polymer blends: Comparison with integral equation theory[J]. J. Chem. Phys., 1995, 103:1208-1215
    [88] Tillman P A, Rottach D R, McCoy J D, et al. The effect of attractions on the structure and thermodynamics of model polymer blends[J]. J. Chem. Phys., 1997, 107:4024-4032
    [89] Tillman P A, Rottach D R, McCoy J D, et al. The structure and thermodynamics of energetically and structurally asymmetric polymer blends[J]. J. Chem. Phys., 1998, 109:806-814
    [90] Clancy T C, Pütz M, Weinhold J D, et al. Mixing of isotactic and syndiotactic polypropylenes in the melt[J ]. Macromolecules, 2000, 33:9452-9463
    [91] Heine D, Wu D T, Curro J G, et al. Role of intramolecular energy on polyolefin miscibility: lsotactic polypropylene/polyethylene blends[J]. J. Chem. Phys., 2003, 118:914-924
    [92] David E F, Schweizer K S. Integral equation theory of block copolymer liquids. Ⅰ. General formalism and analytic predictions for symmetric copolymers[J]. J. Chem. Phys.. 1994, 100:7767-7783
    [93] David E F, Schweizer K S. Integral equation theory of block copolymer liquids. Ⅱ. Numerical results for finite hard-core diameter chains[J]. J. Chem. Phys., 1994. 100: 7784-7795
    [94] David E F, Schweizer K S. Influence of conformational asymmetries on local packing and small-angle scattering in athermal diblock copolymer melts[J]. Macromolecules. 1995. 28:3980-3994
    195] Guenza M, Schweizer K S. Flucluations effects in diblock copolymer fluids: Comparison of theories and experiment[J]. J. Chem. Phys., 1997. 106:7391-7410
    [96] Kolbet K A, Schweizer K S. Microdomain scale organization and scattering patterns of associating polymer melts[J]. Macromolecules, 2000. 33:1425-1442
    [97] Kolbet K A, Schweizer K S. Real space structure of associating polymer melts[J]. Macromolecules, 2000, 33:1443-1455
    [98] Sung B J, Yethiraj A. Monte Carlo simulations and integral equation theory for the structure of telechelic polymers[J]. J. Chem. Phys., 2003, 119:6916-6923
    [99] Sung, B J, Yethiraj A. Integral equation theory of random copolymer melts: Self-consistent treatment of intramolecular and intermolecular correlations[J]. J. Chem. Phys., 2005, 122:234904
    [100] Sung B J, Yethiraj A. Integral equation theory of randomly coupled multiblock copolymer melts: Effect of block size on the phase behavior[J]. J. Chem. Phys., 2005, 123:214901
    [1O1] Melenkevitz J, Schweizer K S, Curro J G. Self-consistent integral equation theory for the equilibrium properties of polymer solutions[J]. Macromolecules, 1993, 26:6190-6196
    [102] Melenkevitz J. Curro J G, Schweizer K S. Variational approach to the conformation of flexible polymers in solution[J]. J Chem. Phys.. 1993, 99:5571-5580
    [103] Khalatur P G, Khokhlov A R. Hybrid MC/RISM technique for simulation of polymer solutions: Monte Carlo + RISM integral equations[J]. Mol. Phys., 1998, 93:555-572
    [104] Mendez S, Curro J G, Pütz M, et al. An integral equation theory for polymer solutions: Explicit inclusion of the solvent molecules[J]. J. Chem. Phys., 2001, 115:5669-5678
    [105] Mendez S, Curro J G. integral equation theory of polymer solutions: Application to polyethylene/benzene solutions[J]. Macromolecules, 2004, 37: 1980-1986
    [106] Yethiraj A, Shew C Y. Structure of polyelectrolyte solutions[J]. Phys. Rev. Lett., 1996, 77:3937-3940
    [107] Shew C Y, Yethiraj A. integral equation theory of solutions of rigid polyelectrolytes[J]. J. Chem.Phys., 1996, 106:5706-5719
    [108] Shew C Y, Yethiraj A. Computer simulations and integral equation theory for the structure of salt-free rigid rod polyelectrolyte solutions: Explicit incorporation of counterions[J]. J. Chem. Phys., 1999, 110:11599-11607
    [109] Yethiraj A. Conformational properties and static structure factor of polyelectrolyte solutions[J]. Phys. Rev. Lett., 1997, 78:3789-3792
    [110] Yethiraj A. Theory for chain conformations and static structure of dilute and semidilute polyelectrolyte solutions[J]. J. Chem. Phys., 1998, 108: 1184-1192
    [111] Harnau L, Reineker P. integral equation theory for polyelectrolyte solutions containing counterions and coions[J]. J. Chem. Phys., 2000, 112:437-441
    [112] Shew C Y, Yethiraj A. Integral equation theory for the structure of DNA solutions[J]. J. Chem. Phys., 2002, 116:5308-5314
    [113] Chatterjee A P, Schweizer K S. Microscopic theory of polymer-mediated interactions between spherical particles[J]. J. Chem. Phys., 1998. 109:10464-10476
    [114] Chatterjee A P, Schweizer K S. Correlation effects in dilute particle-polymer mixtures[J]. J. Chem. Phys., 1998, 109:10477-10485
    [115] Chen Y L, Schweizer K S. Depletion interactions in suspensions of spheres and rod-polymers[J]. J. Chem. Phys., 2002, 117:1351-1362
    [116] Chen Y L, Schweizer K S. Liquid-state theory of structure, thermodynamics, and phase separation in suspensions of rod polymers and hard spheres[J]. J. Phys. Chem. B, 2004. 108:6687-6696
    [117] Fuchs M, Schweizer K S. Structure and thermodynamics of colloid-polymer mixtures: A macromolecular approach[J]. Europhys. Lett., 2000, 51 : 621-627
    [118] Fuchs M, Schweizer K S. Macromolecular theory of solvation and structure in mixtures of colloids and polymers[J]. Phys. Rev. E, 2001,64:021514
    [119] Fuchs M, Schweizer K S. Structure of colloid-polymer suspensions[J]. J. Phys.: Condens. Matter.,2002, 14:R239-R269
    [120] Shah S A, Chen Y L, Ramakrishnan S, et al. Microstructure of dense colloid-polymer suspensions and gels[J]. J. Phys.: Condens. Matter., 2003, 15:4751-4778
    [121] Shah S A, Chen Y L, Schweizer K S, et al. Phase behavior and concentration fluctuations in suspensions of hard spheres and nearly ideal polymers[J]. J. Chem. Phys.. 2003. 118:3350-3361
    [122] Shah S A. Chen Y L, Schweizer K S, et al. Viscoelasticity and rheology of depletion flocculated gels and fluids[J]. J. Chem. Phys., 2003, 119:8747-8760
    [123] Chen Y L, Schweizer K S. Microscopic theory of gelation and elasticity in polymer-particle suspensions[J]. J. Chem. Phys., 2004, 120:7212-7222
    [124] Ramakrishnan S, Chen Y L, Schweizer K S, et al. Elasticity and clustering in concentrated depletion gels[J]. Phys. Rev. E, 2004, 70:040401
    [125] Chen Y L, Kohelev V, Schweizer K S. Barrier hopping, viscous flow, and kinetic gelation in particle-polymer suspensions[J]. Phys. Rev. E, 2005, 71:041405
    [126] Kobelev V, Schweizer K S. Dynamic. yielding, shear thinning, and stress rheology of polymer-particle suspensions and gels[J]. J. Chem. Phys., 2005, 123:164903
    [127] Hooper J B, Schweizer K S, Desai T G, et al. Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions[J]. J. Chem. Phys., 2004, 121:6986-6997
    [128] Hooper J B, Schweizer K S. Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures[J]. Macromolecules, 2005, 38:8858-8869
    [129] Hooper J B, Schweizer K S. Theory of phase separation in polymer nanocomposites[J]. Macromolecules, 2006, 39:5133-5142
    [130] Donley J P, Curro J G, McCoy J D. A density functional theory for pair correlation functions in molecular liquids[J]. J. Chem. Phys., 1994, 101: 3205-3215
    [131] Nath S K, McCoy J D, Curro J G, et al. The ordering of symmetric diblock copolymers: A comparison of self-consistent-field and density functional approaches[J]. J. Chem. Phys., 1997.106:1950-1960
    [132] Nath S K, Curro J G, McCoy J D. Density functional theory of realistic models of polyethylene liquids in slit pores: Comparison with Monte Carlo simulations[J]. J. Phys. Chem. B, 2005, 109:6620-6628
    [133] Nath S K, Frischknecht A L, Curro J G, et al. Density functional theory and molecular dynamics simulation of poly(dimethylsiloxane) melts near silica surfaces[J]. Macromolecules, 2005, 38:8562-8573
    [134] Patel N, Egorov S A. Interactions between colloidal particles in polymer solutions: A density functional theory study[J]. J. Chem. Phys., 2004, 121:4987-4997
    [135] Patel N, Egorov S A. Interactions between nanocolloidal particles in polymer solutions: Effect of attractive interactions[J]. J. Chem. Phys., 2005, 123: 144916
    [136] Yu Y X, Wu J Z. Structures of hard-sphere fluids from a modified fundamental-measure theory[J]. J. Chem. Phys., 2002. 117:10156-10164
    [137] Yu Y X, Wu J Z. Extended test-particle method for predicting the inter- and intramolecular correlation functions of polymeric fluids[J]. J. Chem. Phys., 2003, 118:3835-3842
    [138] Yu Y X, Wu J Z, You F Q, et al. A self-consistent theory for the inter- and intramolecular correlation functions of a hard-sphere-yukawa-chain fluids[J]. Chin. Phys. Lett., 2005, 22:246-249
    [139] Uneyama T, Doi M. Density functional theory for block copolymer melts and blends[J]. Macromolecules, 2005, 38:196-205
    [140] Cao D P, Jiang T, Wu J Z. A hybrid method for predicting the microstructure of polymers with complex architecture: Combination of single-drain simulation with density functional theory[J]. J.Chem. Phys., 2006, 124:164904
    [141] 叶贞成,蔡均,张书令等.方阱链流体在固液界面分布的密度泛函理论研究[J].物理学报,2005.54:4044-4052
    [142] Ye Z C, Cai J, Liu H L, et al. Density and chain conformation profiles of square-well chains confined in a slit by density functional theory[J]. J. Chem. Phys., 2005, 123:194902
    [143] Fraaije J G E M. Dynamic density functional theory for microphase separation kinetics of block copolymer melts [J]. J. Chem. Phys., 1993, 99:9202-9212
    [144] Fraaije J G E M, van Vlimmeren B A C, Maurits N M, et al. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts[J]. J. Chem. Phys., 1997, 106:42604269
    [145] Xia J F, Sun M Z, Qiu F, et al. Microphase ordering mechanisms in linear ABC triblock copolymers: A dynamic density functional study[J]. Macromolecules, 2005, 38:9324-9332
    [146] 徐辉,刘洪来,胡英.动态密度泛函理论在嵌段共聚物介观结构模拟中的应用[J].功能高分子学报,2005.18:173-179
    [147] 徐辉,黄永民,刘洪来.高分子表面活性剂自聚效应对溶液介观结构的影响[J].化工学报,2006.57:1848-1855
    [148] Fraaije J G E M, Sevink G J A. Model for pattern formation in polymer surfactant nanodroplets[J]. Macromolecules, 2003, 36:7891-7893
    [149] Ludwigs S, Krausch G, Magerle R,et al. Phase behavior of ABA triblock terpolymers in thin films: Mesoscale simulations[J]. Macromolecules, 2005, 35: 1859-1867
    [150] Lyakhova K S, Horvat A, Zvelindovsky A V, et al. Dynamics of terrace formation in a nanostructured thin block copolymer film[J]. Langmuir, 2006, 22:5848-5855
    [151] 徐辉.高分子熔体介观结构及其演化的动态密度泛函理论研究[D].上海:华东理工大学,2007
    [152] Kyrylyuk A V. Fraaije J G E M. Structure formation in films of weakly charged block polyelectrolyte solutions[J]. J. Chem. Phys., 2004, 121: 9166-9171
    [153] Maurits N M, Fraaije J G E M. Mesoscopic dynamics of copolymer melts: From density dynamics to external potential dynamics using nonlocal kinetic coupling[J]. J. Chem. Phys.. 1997, 107:5879-5889
    [154] Frenkel D.Smit B.分子模拟-从算法到应用(汪文川等译)[M].北京:化学工业出版社.2002
    [155] 杨小震.分子模拟与高分子材料[M].北京:科学出版社.2002
    [156] 杨玉良,张红东.高分子科学中的Monte Carlo方法[M].上海:复旦大学出版社.1993
    [157] 阳庆元.多孔材料中吸附与传递现象及可降解型聚合物材料溶蚀过程的分子模拟研究[D].北京:北京化工大学,2005
    [158] Fredrickson G H, Ganesan V, Drolet F. Field-theoretic computer simulation methods for polymers and complex fluids[J]. Macromolecules. 2002, 35:16-39
    [159] Hoogerbrugge P J, Koleman J M V A. Simulating microscopic hydrodynamic phenomen (?) with dissipative particle dynamics[J]. Europhys. Lett., 1992, 19:155-160
    [160] Koleman J M V A, Hoogerbrugge P J. Dynamics simulations of hard-sphere suspenisons under steady shear[J]. Europhys. Lett., 1993.21:363-368
    [161] Espanol P, Warren P. Statistical mechanics of dissipative particle dynamics[J]. Europhys. l.ett.,1995, 30:191-196
    [162] Groot R D. Warren P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation[J]. J. Chem. Phys., 1997, 107:4423-4435
    [163].刘大欢.复杂嵌段共聚物体系微相结构的耗散粒子动力学研究[D].北京:北京化工大学,2006
    [164] Liu D H. Zhong C L. Dissipative particle dynamics simulation of microphase separation and properties of linear-dendritic diblock copolymer melts under steady shear flow[J]. Macro. Rap. Comm., 2005, 26:1960-1964
    [165] Liu D H, Zhong C L. Cooperative self-assembly of nanoparticle mixtures in lamcllar diblock copolymers: A dissipative particle dynamics study[J]. Macro. Rap. Comm., 2006, 27:458-462
    [166] 徐毅,冯剑,刘洪来,胡英.星形共聚高分子微相分离的DPD模拟[J].华东理工大学学报(自然科学版),2006,32:133-139
    [167] Xu Y, Feng J, Liu H L, Hu Y. Microphase separation of star-diblock copolymer melts studied by dissipative particle dynamics simulation[J]. Moi. Simul., 2006, 32: 375-383.
    [168] Doi M, Edwards S F. Theory of polymer dynamics[M]. Oxford: Oxford Press, 1986
    [169] Flory P J. Statistical mechanics of chain molecules[M]. New York: Wiley, 1969
    [170] Porod G. X-ray and light scattering by chain molecules in solution[J]. J. Poly. Sci., 1953, 10:157-166
    [171] Rogers F J, Young D A. New, thermodynamically consistent, integral equation for simple fluids[J].Phys. Rev. A, 1984, 30:999-1007
    [172] Cooley T W, Tukey J W. An algorithm for the machine calculation of complex Fourier series[J]. Math. Comp., 1965, 19:297-301
    [173] Hansen J P, McDonald I R. Theory of simple liquids[M]. 2nd ed. London: Academic, 1986
    [174] Grayce C J, Schweizer K S. Solvation potentials for macromolecules[J]. J. Chem. Phys., 1994,100:6846-6856
    [175] Brandrup J, Immergut E H, Grulke E A. Polymer Handbook[M]. 4th ed. New York: Wiley, 1999
    [176] Khare R, Paulaitis M E, Lustig S R. Generation of glass structures for molecular simulations of polymers containing large monomer units: Application to polystyrene[J]. Macromolecules, 1993.26:7203-7209
    [177] Mondello M, Yang H J, Furuya H, et al. Molecular dynamics simulation of atactic polystyrene. I. Comparison with x-ray scattering data[J]. Macromolecules, 1994, 27:3566-3574
    [178] Han J, Boyd R H. Molecular packing and small-penetrant diffusion in polystyrene: A molecular dynamics simulation study[J]. Polymer, 1996, 37:1797-1804
    [179] Ayyagari C. Bedrov D, Smith G D. Structure of atactic polystyrene: A molecular dynamics simulation study[J]. Macromolecules, 2000, 33:6194-6199
    [180] Meyer H, Biermann O. Faller R, et al. Coarse graining of nonbonded inter-particle potentials using automatic simplex optimization to fit structural properties[J]. J. Chem. Phys., 2000, 113:6264-6275
    [181] Andersen H C, Weeks J D, Chandler D. Relationship between the hard-sphere fluid and fluids with realistic repulsive forces[J]. Phys. Rev. A, 1971, 4: 1597-1607
    [182] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-Overview with details on alkane and benzene compounds[J]. J. Phys. Chem. B, 1998, 102:7338-7364
    [183] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford: Oxford University Press,1987
    [184] Quach A, Simha R. Pressure-volume-temperature properties and transitions of amorphous polymers: Polystyrene and poly(orthomethylstyrene)[J]. J. Appl. Phys., 1971, 42:4592-4605
    [185] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C: The art of scientific computing[M]. Cambridge: Cambridge University Press, 1992
    [186] Faller R, Schmitz H, Biermann O, et al. Automatic parameterization of force fields for liquids by simplex optimization[J]. J. Comp. Chem., 1999, 20:1009-1017
    [187] Mitchell G R, Windle A H. Structure of polystyrene glasses[J]. Polymer, 1984, 2.5:906-920
    [188] Song HH, Roe R J. Structural change accompanying volume change in amorphous polystyrene as studied by small and intermediate angle x-ray scattering[J]. Macromolecules. 1987, 20:2723-2732
    [189] Hildebrand J, Scott R. The Solubility of Nonelectrolytes[M]. 3rd cd. New York: Reinhold, 1949
    [190] Barton A F M. CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters[M]. Boca Raton: CRC Press, 1990
    [191] Narten A H. X-ray diffraction study of liquid neopentane in the temperature range -17 to 150℃ [J]. J. Chem. Phys., 1979, 70:299-304
    [192] Smith J S, Bedrov D, Smith G D. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite[J]. Compos. Sci. Technol., 2003, 63:1599-1605
    [193] Bedrov D, Smith G D, Smith J S. Matrix-induced nanoparticle interactions in a polymer melt: A molecular dynamics simulation study[J]. J. Chem. Phys., 2003, 119:10438-10447
    [194] Doxastakis M, Chen Y L, Guzman O, et al. Polymer-particle mixtures: Depletion and packing effects[J]. J. Chem. Phys., 2004, 120:9335-9342
    [195] Doxastakis M, Chen Y L,Pablo J J de. Potential of mean force between two nanometer-scale particles in a polymer solution[J]. J. Chem. Phys., 2005, 123:034901
    [196] Yethiraj A, Hall C K. Integral equation theory for the adsorption of chain fluids in slitlike pores[J]. J. Chem. Phys., 1991, 95:3749-3755
    [197] Yethiraj A. Polymer melts at solid surfaces[J]. Adv. Chem. Phys.. 2002, 121 : 89-139
    [198] Kremer K, Grest G S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation[J]. J. Chem. Phys., 1990, 92:5057-5086
    [199] Koshy R, Desai T G, Keblinski P, et al. Density fluctuation correlation length in polymer fluids[J]. J. Chem. Phys., 2003, 119:7599-7603
    [200] McQuarrie D. Statistical mechanics[M]. New York: Harper & Row, 1976
    [201] Grest G S, Fetters L J, Huang J S, et al. Star polymer: Experiment. theory and simulation[J]. Adv. Chem. Phys., 1996, 94:67-163
    [202] Likos C N. Effective interactions in soft condensed matter physics[J]. Phys. Rep.. 2001. 348:267-439
    [203] Likos C N, Lowen H, Watzlawek M, et al. Star polymers viewed as ultrasoft colloidal particles[J]. Phys. Rev. Lett., 1998, 80:4450-4453
    [204] Jusufi A, Watzlawek M, Lowen H. Effective interaction between star polymers[J]. Macromolecules, 1999, 32:4470-4473
    [205] Grest G S, Kremer K, Witten T A. Structure of many-arm star polymers: A molecular dynamies simulation[J]. Macromolecules, 1987, 20: 1376-1383
    [206] Grest G S. Structure of many-arm star polymers in solvents of varying quality: A molecular dynamics simulation[J]. Macromolecules, 1994. 27:3493-3500
    [207] Yethiraj A, Hall C K. Equations of state for star polymers[J]. J. Chem. Phys., 1991, 94:3943-3948
    [208] Malijevsky, A, Bryk P, Sokolowski S. Density functional approach for inhomogeneous star polymer fluids[J]. Phys. Rev. E., 2005, 72:032801
    [209] Grayce C J, Schweizer K S. A liquid-state theory of dense star polymer fluids[J]. Macromolecules.1995, 28:7461-7478
    [210] Patil R, Schweizer K S, ChangT M. Stretching, packing, and thermodynamics in highly branched polymer melts[J]. Macromolecules, 2003, 36:2.544-2552
    [211] Jusufi A, Dzubiella J, Likos C N, et al. Effective interactions between star polymers and colloidal particles[J]. J. Phys.: Condens. Matter., 2001, 13:6177-6194
    [212] Dzubiella J, Likos C N, L(?)wen H. Phase behavior and structure of star-polymer-colloid mixtures[J]. J. Chem. Phys., 2002, 116:9518-9530

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700