原子介质中激光诱导量子相干效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光场与原子相互作用时,激光诱导的原子相干和量子干涉将改变原子介质的色散和吸收性质,这些改变会在基础物理学研究和实际应用中导致很多有意义的现象,比如相干布居囚禁(CPT)、电磁诱导透明(EIT)、无反转激光(LWI)、光脉冲群速度的慢光速及超光速传播、光存储、弱光相干非线性光学和量子信息处理。本篇博士论文从实验和理论上研究了原子介质中激光诱导的量子相干效应,整个工作可概括为四个部分:
     1.搭建了一套新的磁光阱(MOT)装置,优化了真空系统、光学设计和磁场线圈,实现了计算机时序控制。在磁光阱中得到了4×108个冷原子,冷原子云团的直径约为3mm。整个磁光阱装置性能稳定,布局简单紧凑,为研究冷原子中的原子相干和量子干涉效应提供了一个好的实验平台。
     2.研究了交叉耦合效应,即一个强的激光场同时耦合两个或三个能级跃迁。在冷原子级联型系统中实验观察到了激光场交叉耦合导致的多窗口电磁诱导透明现象。提出了在四能级Λ型系统中利用交叉耦合增强三阶克尔非线性效应的新方案,指出该模型可被用来形成超慢光速传播的暗光孤子。
     3.实验研究了被两个强激光场驱动的多能级87Rb原子在室温下所表现出的亚多普勒效应。窄的吸收、透明和增益谱线出现在多普勒增宽的吸收谱中。基于四能级N型模型,通过解析和数值计算理论分析和解释了实验观察到的现象。在无多普勒增宽的冷原子中,我们提出四能级N型系统能够完全消除线性和非线性吸收损失,而同时得到大的三阶非线性折射率。
     4.在新实验系统上进行了双色电磁诱导透明实验,利用频率调制谱的方法测量了双色EIT的色散曲线。在双色场耦合基础上,设计实验在冷原子中观察到非共振耦合情况下的弱光四波混频信号,测到的转换效率为18%。
When an atomic medium is driven by laser fields, the induced atomic coherence and quantum interference may modify the dispersive and absorptive properties of the atomic medium and leads to a variety of interesting phenomena for fundamental studies and practical applications, such as coherent population trapping (CPT), electromagnetically induced transparency (EIT), lasing without population inversion (LWI), subluminal or superluminal light propagation, light storage, coherent nonlinear optics at low light levels and quantum information processing. This thesis presents the experimental and theoretical studies of laser induced quantum coherence effects in rubidium atoms, and the whole work can be summarized to the following three parts:
     1. We have set up a new magneto-optical trap (MOT) apparatus with the vacuum system, optical design and magnetic coils being optimized, the number of the trapped cold atoms is about 4×108, the diameter of the cold atom cloud is about 3mm. The time sequence of the experimental process is controlled by computer programming. This new MOT apparatus is very compact and stable. It’s a good experimental platform for the study of laser induced quantum coherence effects in cold atoms.
     2. We studied the cross coupling effect via two or three transitions coupled simultaneously by one strong laser field. We experimentally demonstrated that this multi-coupling could cause multi-window EIT in a cascade system. We proposed applying cross talk among optical transitions to enhance the third Kerr nonlinearity in a four-levelΛsystem, and we found this system could be used to form slow dark optical solitons.
     3. Sub-Doppler spectral resolution has been studied in Doppler-broadened multi-level 87Rb atoms coherently coupled by two strong laser fields. Narrow spectral features of absorption or gain were observed in the center or sides of the Doppler-broadened absorption profile. Analytical and numerical calculations based on a four-level N type model were presented to explain the experimental results. We found this four-level N-type system could obtain large third nonlinear index of refraction with vanishing linear and nonlinear absorption in cold atoms.
     4. We studied the bichromatic electromagnetically induced transparency in our new MOT system. The dispersive curve of bichromatic EIT was measured by frequency-modulation spectroscopy. Based on the coupling of the bichromatic field, we observed a large four-wave mixing signal in cold atoms under non-resonance condition, the measured maximum conversion efficiency was about 18%.
引文
[1] Alzetta, G., A. Gozzini, L. Moi, and G. Orriols, “Experimental-Method for Observation of Rf Transitions and Laser Beat Resonances in Oriented Na Vapor,” Nuovo Cimento B. 36, 5 (1976).
    [2] E. Arimondo and G. Orriols, “Non-Absorbing Atomic Coherences by Coherent 2-Photon Transitions in a 3-Level Optical-Pumping,” Lett. Nuovo Cim. 17, 333-338 (1976).
    [3] H.R.Gray, R.M.Whyitley and C.R.Stround, “Coherent trapping of atomic populations,” Opt.Lett. 3, 218 (1978).
    [4] D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent Population Trapping - Sensitivity of an Atomic System to the Relative Phase of Exciting Fields,” Opt. Commun. 85, 209 (1991).
    [5] W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of Phase-Dependent Coherent Population Trapping in Optically Closed Atomic Systems,” Europhys. Lett. 31, 189 (1995).
    [6] E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257 (1996).
    [7] F. Renzoni, W. maichen, L. Windholz, and E. Arimondo, “Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line,” Phys. Rev. A 25,3710 (1997).
    [8] M. Stahler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal Rb-85 vapor: D-1 versus D-2 line excitation,” Opt. Lett. 27, 1472 (2002).
    [9] S.E.Harris “Lasers without inversion: interference of lifetime -broadened resonances,” Phys.Rev.Lett. 62, 1033 (1989).
    [10] A.S.Zibrov,M.D.Lukin. et al “ Experimental demonstration of enchanced index of refraction via quantum coherence in Rb,” Phys.Rev.Lett. 76, 3935 (1996).
    [11] S.E.Harris “Electromagnetically induced transparency,” Physics Today 7, 36 (1997).
    [12] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency,” Rev. Mod. Phys. 77, 633 (2005).
    [13] A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732 (1999).
    [14] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
    [15] S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107 (1990).
    [16] Surya P. Tewari and G. S. Agarwal, “Vacuum-ultraviolet generation using electromagnetic-field-induced transparency,” Phys. Rev. Lett. 66, 1797 (1991).
    [17] S. E. Harris and Lene Vestergaard Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999).
    [18] L. Deng, M. G. Payne, and W. R. Garrett, “Electromagnetically induced transparency enhanced Kerr nonlinearity: Beyond steady-state treatment,” Phys. Rev. A 64, 023807 (2001).
    [19] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, “Nonlinear Optics with Less Than One Photon,” Phys. Rev. Lett. 87, 123603 (2001).
    [20] Ying Wu, Joseph Saldana, and Yifu Zhu, “Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency,” Phys. Rev. A 67, 013811 (2003).
    [21] Danielle A. Braje, Vlatko Balic, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801(R) (2003).
    [22] S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic Interferometers - phase dependence in multilevel atomic transitions,” Opt. Act. 33, 1129 (1986).
    [23] J. Kitching, S. Knappe, N. Vukicevic, L. Hollberg, R. Wynands, and W. Weidmann, “A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor,” IEEE Trans. Instrum. Meas. 49, 1313 (2000).
    [24] Y. Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer,“Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92, 110801 (2004).
    [25] S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460 (2004).
    [26] P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “Chip-scale atomic magnetometer,” Appl. Phys. Lett. 85, 6409 (2004).
    [27] T. Zanon, S. Guerandel, E. de Clercq, D. Holleville, N. Dimarcq, and A. Clairon, “High contrast Ramsey fringes with coherent-population-trapping pulses in a double lambda atomic system,” Phys. Rev. Lett. 94, 193002 (2005).
    [28] J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421 (2005).
    [29] Kasapi A. Jain , M Xiao , G. Y. Y et al, “Electromagnetically induced transparency : Propagation dynamics,” Phys.Rev.Lett. 74, 2447 (1995).
    [30] Michael M. Kash ,M. O. Scully et al, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys.Rev.Lett. 82, 5229 (1999).
    [31] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594 (1999).
    [32] C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
    [33] Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004).
    [34] M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
    [35] B. Lu, W.H. Burkett, and M. Xiao, “Nondegenerate four-wavemixing in a double-L system under the influence of coherentpopulation trapping,” Opt. Lett. 23, 804 (1998).
    [36] Danielle A. Braje, Vlatko Balic, Sunil Goda, G.Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
    [37] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804 (2004).
    [38] H. Kang, G. Hernandez, Y. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601(2004).
    [39] Hoonsoo Kang, Gessler Hernandez, Yifu Zhu, “Nonlinear wave mixing with electromagnetically induced transparency in cold atoms,” J. Mod. Opt. 52, 2391 (2005).
    [40] H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [41] Hai Wang, David Goorskey, Min Xiao, “Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System,” Phys. Rev. Lett. 87, 073601 (2001).
    [42] Min Yan ,Edward ,G.Rickey and Yifu Zhu, “Observation of absorptive photon switching by quantum interference,” Phys.Rev.A 64, 041801(R) (2003).
    [43] C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301, 196 (2003).
    [44] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006).
    [45] C Cohen-Tannoudji, J Dupont-Roc and G Grynberg, Atom-photon interactions, John Wiley & Sons (New York,1992).
    [46] 彭金生,李高翔,近代量子光学导论,科学出版社(1996)。
    [47] Marlan O. Scully, M. Shuail Zubairy, Quantum Optics, Cambridge University Press (1997).
    [48] Leonard Mandel, Emil Wolf, Optical Coherence and Quantum Optics, Cambridge University Press (1995).
    [49] Walls, D. F., Milburn, G. J., Quantum optics, Springer-Verlag, (1994).
    [50] Barnett, S. M., Radmore, P. M., Methods in theoretical quantum optics, Clarendon Press, (1997).
    [51] Mandel, Leonard., Wolf, Emil., Optical coherence and quantum optics,Cambridge University Press, (1995).
    [52] M. Sargent III, M. O. Scully, W. E. Lamb, Laser Physics, Addison - Wesley, NY, (1987).
    [53] K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
    [54] S. E. Harris, “ Normal modes for electromagnetically induced trans- parency,” Phys. Rev. Lett. 72, 52 (1994).
    [55] Yong-qing Li and Min Xiao, “Observation of quantum interference between dressed states in electromagnetically induced transparency,” Phys. Rev. A 51, 4959 (1995).
    [56] Julio Gea-Banacloche, Yong-qing Li, Shao-zheng Jin, and Min Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
    [57] David J. Fulton, Sara Shepherd, Richard R. Moseley, Bruce D. Sinclair, and Malcolm H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302 (1995).
    [58] Yifu Zhu and T. N. Wasserlauf, “Sub-Doppler linewidth with electromagnetically induced transparency in rubidium atoms,” Phys. Rev. A 54, 3653 (1996).
    [59] S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394 (1996).
    [60] J. R. Boon, E. Zekou, D. J. Fulton, and M. H. Dunn, “Experimental observation of a coherently induced transparency on a blue probe in a Doppler-broadened mismatched V-type system,” Phys. Rev. A 57, 1323 (1998).
    [61] J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675 (1999).
    [62] Jason J. Clarke, William A. van Wijngaarden, and Hongxin Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001).
    [63] Ying Wu and Xiaoxue Yang, “Electromagnetically induced transparency in V -, Λ -, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [64] Philips D. E., Fleischhauer A., M. D. Lukin et al, “Storage of light in atomic Vapor,” Phys. Rev. Lett. 86, 783 (2001).
    [65] M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer1, A. S. Zibrov & M. D. Lukin,“Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438,837(2005).
    [66] T. Chaneliere D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy & A. Kuzmich., “Storage and retrieval of single photons transmittedbetween remote quantum memories,” Nature 438, 833 (2005).
    [67] H. Schmidt, A. Imamoglu, “Giant Kerr nonlinearities using electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996).
    [1] DL 100 Diode Laser System Manual, TOPTICA Photonics.
    [2] TA 100 Tapered Amplifier System Manual, TOPTICA Photonics.
    [3] USER’S GUIDE, 6000 VortexTM Series Tunable Diode Laser, NEW FOCUS.
    [4] V. S. Letokov and V. P. Chebotayev, Nonlinear Laser Spectroscopy. Springer Series in Optics Sciences (Springer-Verlag,Berlin) 4 (1977).
    [5] Wolfang Demtr?der, Laser Spectroscopy – Basic Concepts and Instrumentation, Springer-Verlag Berlin Heidelberg, Germany, 459 (1996).
    [6] MacAdam K B, Steintach A, Wieman C. “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am.J. Phys. 60, 1098 (1992).
    [7] 王谨,Rb 原子的激光冷却与囚禁,中科院安徽光机所,博士学位论文,1999。
    [8] 王谨,柳晓军,李交美,赵宏太,江开军,詹明生,用于激光原子囚禁的二极管激光器的稳频和移频,量子电子学报,17, 43, 2000
    [9] 江开军, 李可, 王谨,詹明生,利用 Doppler 展宽的 Zeeman 光谱实现钛宝石激光器的稳频,量子电子学报,22,177,2005
    [10] 江开军,王谨,李可,何明,涂鲜花,詹明生,利用原子的塞曼光谱对半导体激光器进行稳频,光谱学与光谱分析,24, 659, 2004
    [11]JIANG Kai-jun, WANG Jin, TU Xian-hua, HE Ming and ZHAN Ming-sheng, “Polarization Spectra of Rb Atoms and Their Application in Laser Frequency Stabilization,” CHINESE OPTICS LETTERS, 1, 377, 2003.
    [12] 涂鲜花,85Rb 原子 D2线电磁诱导透明及冷原子光谱实验研究,中科院安徽光机所,博士学位论文, 2002。
    [13] B. L. Lu and W. A. van Wijngaarden, “Bose–Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81 (2004).
    [14] 江开军,铷原子玻色-爱因斯坦凝聚的实验研究,中科院武汉物理与数学研究所,博士学位论文,2005。
    [15] S.Chu et al,“Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure,” Phys.Rev.Lett., 55 48 (1985).
    [16] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631 (1987).
    [17] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169 (1988).
    [18] B. Sheehy, S-Q. Shang, et al, “Magnetic-field-induced laser cooling below the Doppler limit,” Phys.Rev.Lett. 64, 858 (1990).
    [19] C. Monroe,W. Swann, H. Robinson et al, “Very cold trapped atoms in a vapor cell,” Phys.Rev.Lett. 65, 1571 (1990).
    [20] J H Gan, Y M Li, X Z Chen et al. “Magneto-optical trap of cesium atoms,” Chin Phys. Lett. 13, 821 (1996).
    [21] 王育竹,刘勋铭,林岳明等, 一种新型的钠原子磁光阱(MOT), 中国激光, 23, 448 (1996)。
    [22]王谨,柳晓军,李交美,赵宏太,江开军,詹明生,“Rb 原子的激光囚禁,” 光学学报,20, 862 (2000)。
    [1] H. Xia, S.J. Sharpe, A.J. Merriam, S.E. Harris, “Electromagnetically induced transparency in atoms with hyperfine structure,” Phys. Rev. A 56, 3362 (1997).
    [2] H. Xia, A.J. Merriam, S.J. Sharpe, G.Y. Yin, S.E. Harris, “Electromagnetically induced transparency with spectator momenta,” Phys. Rev. A 59, 3190 (1999).
    [3] R.R. Moseley, S. Shepherd, D.J. Fulton, B.D. Sinclair, M.H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61 (1995).
    [4] S. Jin, Y. Li, M. Xiao, “Hyperfine Spectroscopy of Highly-Excited Atomic States Based on Atomic Coherence,” Opt. Commun. 119, 90 (1995).
    [5] S.D. Badger, I.G. Hughes, C.S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B: At. Mol. Opt. Phys. 34, 749 (2001).
    [6] L. Deng, M.G. Payne, E.W. Hagley, “Propagation of light pulses in an ultra-cold atomic vapor: mechanism for the loss of the probe field,” Opt. Commun. 198, 129 (2001).
    [7] H. M. Concannon, W.J. Brown, J. R. Gardner, D. J. Gauthier, “Observation of large continuous-wave two-photon optical amplification,” Phys. Rev. A 56, 1519 (1997).
    [8] Sunish Menon, G. S. Agarwal, “Gain from cross talk among optical transitions,” Phys. Rev. A 59, 740 (1998).
    [9] G. P. Agrawal, “Lasers with three-level absorbers,” Phys. Rev. A 24, 1399 (1981).
    [10] D. F. Walls, P. Zoller, “A coherent nonlinear mechanism for optical bistability from three level atoms,” Opt. Commun. 34, 260 (1990).
    [11] M. T. Johnsson, E. Korsunsky, M. Fleischhauer, “Eliminating nonlinear phase mismatch in resonantly enhanced four-wave mixing,” Opt. Commun. 212, 335 (2002).
    [12] Julio Gea-Banacloche, Yong-qing Li, Shao-zheng Jin, and Min Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576 (1995).
    [13] David J. Fulton, Sara Shepherd, Richard R. Moseley, Bruce D. Sinclair, and Malcolm H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302 (1995).
    [14] S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394 (1996).
    [15] J. R. Boon, E. Zekou, D. McGloin, and M. H. Dunn, “Comparison of wavelength dependence in cascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency,” Phys. Rev. A 59, 4675 (1999).
    [16] J. Clarke, H.X. Chen, W.A. van Wijngaarden, “Electromagnetically induced transparency and optical switching in a rubidium cascade system,” Appl. Opt. 40, 2047 (2001).
    [17] Ying Wu and Xiaoxue Yang, “Electromagnetically induced transparency in V -, Λ -, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [18] F. Nez, F. Biraben, R. Felder, Y.Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2? 5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102 432, (1993).
    [19] J. Wang, X. J. Liu, J. M. Li, H. T. Zhao, K. J. Jiang, M. S. Zhan, “Laser Trapping of Rubidium Atoms,” Acta Opt. Sinica 20, 862 (2000) (in Chinese).
    [20] H. Schmidt, A. Imamoglu, “Giant Kerr nonlinearities using electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996).
    [21] H. Kang, Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [22] Hai Wang, David Goorskey, Min Xiao, “Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System,” Phys. Rev. Lett. 87, 073601 (2001).
    [23] Maneesh Jain, Hui Xia, G. Y. Yin, A. J. Merriam, S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326 (1996).
    [24] S. Babin, U. Hinze, E. Tiemann, B. Wellegehausen, “Continuous resonantfour-wave mixing in double- Lambda level configurations of Na2,” Opt.Lett. 21, 1186 (1996).
    [25] B. Lu, W. H. Burkett, M. Xiao, “Nondegenerate four-wavemixing in a double-Λ system under the influence of coherentpopulation trapping,” Opt. Lett. 23, 804 (1998).
    [26] A. S. Zibrov, A. B. Matsko, M.O. Scully, “Four-Wave Mixing of Optical and Microwave Fields,” Phys. Rev. Lett. 89, 103601 (2002).
    [27] Danielle A. Braje, Vlatko Balic, Sunil Goda, G. Y. Yin, S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
    [28] Ying Wu and Xiaoxue Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [29] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A, 70, 061804(R) (2004).
    [30] L. Deng, M. Kozuma, E. W. Hagley, M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys.Rev. Lett. 88, 143902 (2002).
    [31] L. Deng, M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91, 243902 (2003).
    [32] H. Kang, G. Hernandez, Y. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601(2004).
    [33] Ying Wu, L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [34] Ying Wu, L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064 (2004).
    [35] Richard L. Sutherland, Handbook of Nonlinear Optics, Marcel Dekker, Inc., New York, 2003.
    [1] G. Vemuri, G. S. Agarwal and B. D. Nageswara Rao, “Sub-Doppler resolution in inhomogeneously broadened media using intense control fields,” Phys. Rev. A 53, 2842 (1996).
    [2]Y. Zhu and T. N. Wasserlauf, “Sub-Doppler linewidth with electromagnetically induced transparency in rubidium atoms,” Phys. Rev. A. 54, 3653 (1996).
    [3] G. S. Agarwal and W. Harshawardhan, “Inhibition and Enhancement of Two Photon Absorption,” Phys. Rev. Lett. 77, 1039 (1996).
    [4] Y. Zhu and J. Lin, “Sub-Doppler light amplification in a coherently pumped atomic system,” Phys. Rev. A 53, 1767 (1996).
    [5] G. Vemuri, G. S. Agarwal and B. D. Nageswara Rao, “Analysis of sub-Doppler linewidths in inversionless amplification,” Phys. Rev. A 54, 3695 (1996).
    [6] A. K. Popov and V.M. Shalaev, “Elimination of Doppler broadening at coherently driven quantum transitions,” Phys. Rev. A 59, 946 (1999).
    [7] A. K. Popov, A. S. Bayev, “Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transitions with control fields,” Phys. Rev. A 62, 025801 (2000).
    [8] Po Dong, A. K. Popov, Sing Hai Tang and Jin-Yue Gao, “Sub-Doppler resolution controlled by two coherent driving fields,” Opt. Commun. 188, 99 (2001).
    [9] C. Y. Ye, A. S. Zibrov, Y. V. Rostovtsev, and M. O. Scully, “Unexpected Doppler-free resonance in generalized double dark states,” Phys. Rev. A 65, 043805 (2002).
    [10] S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A. 68, 063801 (2003).
    [11] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A. 69, 063802 (2004).
    [12] A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegeneratelevels in Rb vapor,” Phys. Rev. A 57, 2996 (1998).
    [13] A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732 (1999).
    [14] A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802(R) (1999).
    [15] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of coherence and to transfer of population,” Phys. Rev. A 67, 033807 (2003).
    [16] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Atomic four-level N systems,” Phys. Rev. A 69, 053818 (2004).
    [17] C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Electromagnetically induced absorption due to transfer of population in degenerate two-level systems,” Phys. Rev. A 70, 043814 (2004).
    [18] A. S. Zibrov, and A. B. Matsko, “Induced absorption resonance on the open Fg = 1 → Fe = 2 transition of the D1 line of the 87Rb atom,” JETP Lett. 82, 472 (2005).
    [19] E. A. Wilson, N. B. Manson, and C. Wei, “Perturbing an electromagnetic induced transparency within an inhomogeneously broadened transition,” Phys. Rev. A 67, 023812 (2003).
    [20] Hoonsoo Kang, Lingling Wen, and Yifu Zhu, “Normal or anomalous dispersion and gain in a resonant coherent medium,” Phys. Rev. A 68, 063806 (2003).
    [21] C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002).
    [22] G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. San Diego: Academic Press, 1995.
    [23] Maneesh Jain, Hui Xia, G. Y. Yin, A. J. Merriam, S. E. Harris, “Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence,” Phys. Rev. Lett. 77, 4326 (1996).
    [24] S. Babin, U. Hinze, E. Tiemann, B. Wellegehausen, “Continuous resonant four-wave mixing in double- Lambda level configurations of Na2,” Opt.Lett. 21, 1186 (1996).
    [25] B. Lu, W. H. Burkett, M. Xiao, “Nondegenerate four-wavemixing in a double-Λsystem under the influence of coherentpopulation trapping,” Opt. Lett. 23, 804 (1998).
    [26] A. S. Zibrov, A. B. Matsko, M.O. Scully, “Four-Wave Mixing of Optical and Microwave Fields,” Phys. Rev. Lett. 89, 103601 (2002).
    [27] Danielle A. Braje, Vlatko Balic, Sunil Goda, G. Y. Yin, S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
    [28] Ying Wu and Xiaoxue Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [29] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A, 70, 061804(R) (2004).
    [30] L. Deng, M. Kozuma, E. W. Hagley, M. G. Payne, “Opening Optical Four-Wave Mixing Channels with Giant Enhancement Using Ultraslow Pump Waves,” Phys.Rev. Lett. 88, 143902 (2002).
    [31] L. Deng, M. G. Payne, “Inhibiting the Onset of the Three-Photon Destructive Interference in Ultraslow Propagation-Enhanced Four-Wave Mixing with Dual Induced Transparency,” Phys. Rev. Lett. 91, 243902 (2003).
    [32] H. Kang, G. Hernandez, Y. Zhu, “Slow-Light Six-Wave Mixing at Low Light Intensities,” Phys. Rev. Lett. 93, 073601(2004).
    [33] L.V. Hau , S. E. Harris, Zachary Dutton, and Cyrus H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594 (1999).
    [34] H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities using electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996).
    [35] H. Kang and Y. Zhu, “Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [36] A. B. Matsko, I. Novikova, G. R. Welch, and M. S. Zubairy, “Enhancement of Kerr nonlinearity by multiphoton coherence ,” Opt. Lett. 28, 96 (2003).
    [37] S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum Interference,” Phys. Rev. Lett. 81, 3611 (1998).
    [38] M. D. Lukin and A. Imamoglu, “Nonlinear optics and quantum entanglement ofultra - slow single photons,” Phys. Rev. Lett. 84, 1419 (2000).
    [39] David Petrosyan and Gershon Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 33833 (2002).
    [40] C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003).
    [41] M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime,” Phys. Rev. A 67, 023811 (2003).
    [42] S. Rebi?, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
    [43] H. Wang, D. Goorskey, and M. Xiao, “Controlling the cavity field with enhanced Kerr nonlinearity in three-level atoms,” Phys. Rev. A 65, 051802 (2002).
    [44] A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
    [45] A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904 (2003).
    [46] Tao Hong, “Spatial Weak-light Solitons in an Electromagnetically Induced Nonlinear Waveguide,” Phys. Rev. Lett. 90, 183901 (2003).
    [47] Ying Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [48] Ying Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064 (2004).
    [1] Yifu Zhu, Qilin Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A 41 6574 (1990).
    [2] H. Freedhoff and Z. Chen, “Resonance fluorescence of a two-level atom in a strong bichromatic field,” Phys. Rev. A 41 6013 (1990).
    [3] G. S. Agarwal, Y. Zhu, D. J. Gauthier, and T. W. Mossberg, “Spectrum of radiation from two-level atoms under intense bichromatic excitation,” J. Opt. Soc. Am. B 8 1163 (1991).
    [4] Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A 48 3092 (1993).
    [5] Xiang-ming Hu, Guang-ling Cheng, Jin-hua Zou, Xing Li, and Dan Du, “Double switching from normal to anomalous dispersion via trichromatic phase manipulation of electromagnetically induced transparency,” Phys. Rev. A 72, 023803 (2005).
    [6] M. D. Lukin and A. Imamoglu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).
    [7] D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2003).
    [8] J. Wang, Yifu Zhu, K. J. Jiang, and M. S. Zhan, “Bichromatic electromagnetically induced transparency in cold rubidium atoms,” Phys. Rev. A 68 063810 (2003).
    [9] G.C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15 (1980).
    [10] Hoonsoo Kang and Yifu Zhu,”Observation of Large Kerr Nonlinearity at Low Light Intensities,” Phys. Rev. Lett. 91, 093601 (2003).
    [11] K. Hakuta, L. Marmet, and B. P. Stoicheff, “Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen,” Phys. Rev. Lett. 66, 596 (1991).
    [12] M. Fleischhauer and T. Richter, “Pulse matching and correlation of phase fluctuations in Λ systems,” Phys. Rev. A 51, 2430 (1995).
    [13] P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shariar, and P. Kumar, “Distortion-free gain and noise correlation in sodium vapor with four-wave mixing and coherent population trapping,” Opt. Lett. 20, 769 (1995).
    [14] B. Lu, W.H. Burkett, and M. Xiao, “Nondegenerate four-wavemixing in a double-L system under the influence of coherentpopulation trapping,” Opt. Lett. 23, 804 (1998).
    [15] C. H. Keitel, “Exponential gain in resonant four-wave mixing via dressed inversions,” Phys. Rev. A 57, 1412 (1998).
    [16] W Harshawardhan and G. S. Agarwal, “Enhancement of nonlinear-optical signals under coherent-population-trapping conditions,” Phys. Rev. A 58, 598 (1998).
    [17] M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, “Quantum Noise and Correlations in Resonantly Enhanced Wave Mixing Based on Atomic Coherence,” Phys. Rev. Lett. 82, 1847 (1999).
    [18] A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate Parametric self-Oscillation via Multiwave Mixing in Coherent Atomic Media,” Phys. Rev. Lett. 83, 4049 (1999).
    [19] A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient Nonlinear Frequency Conversion in an All-Resonant Double- Λ System,” Phys. Rev. Lett. 84, 5308 (2000).
    [20] M. D. Lukin, P. R. Hemmer, and M. O. Scully, “Resonant nonlinear optics in phase-coherent media,” Adv. At., Mol., Opt. Phys. 42, 347 (2000).
    [21] C. Dorman, I. Kucukkara, J. P. Marangos, “Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency,” Phys. Rev. A 61, 013802 (2000).
    [22] A. K. Popov and A. S. Bayev, “Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transitions with control fields,” Phys. Rev. A 62, 025801 (2000).
    [23] L. Deng, M.G. Payne, “Inhibiting the three-photon destructive interference in ultra-slow propagation enhanced four-wave mixing,” Phys. Rev. Lett. 91, 243902 (2003).
    [24] S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Weltch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68, 063801 (2003).
    [25] Ying Wu and Xiaoxue Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [26] Danielle A. Braje, Vlatko Balic, Sunil Goda, G.Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Phys. Rev. Lett. 93, 183601 (2004).
    [27] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, “Resonant four-wave mixing with slow light,” Phys. Rev. A 70, 061804 (2004).
    [28] Hoonsoo Kang, Gessler Hernandez, Yifu Zhu, “Nonlinear wave mixing with electromagnetically induced transparency in cold atoms,” J. Mod. Opt. 52, 2391 (2005).
    [29] Yanpeng Zhang, Andy W. Brown, and Min Xiao, “Matched ultraslow propagation of highly efficient four-wave mixing in a closely cycled double-ladder system,” Phys. Rev. A 74, 053813 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700