量子秘密共享和控制的量子隐形传态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.量子秘密共享
     我们提出了一个用4个量子态实现的多方与多方之间的量子秘密共享方案,并证明此方案对用多光子信号的特洛伊马攻击,用Einstein-Podolsky-Rosen对的伪信号攻击,单光子攻击,以及不可见光子攻击是安全的。另外,给出了不忠实者使用任意两粒子纠缠态伪信号攻击方法窃听秘密信息平均成功概率的上界。
     接着,我们又提出了一个用6个量子态实现的多方(一组的m个成员)与多方(二组的n个成员)之间的量子秘密共享方案。在这个量子密钥共享协议中,一组的所有成员通过幺正操作将他们各自的秘密直接编码在单光子态上,然后最后一人(一组的第m个成员)把最后所得到的量子位平均分成n份,并将这n份分别发送给二组的n个成员。通过测量对应的量子位,由一组的m个成员共享的秘密信息也被二组的n个成员共享。此方案的特征是每个组的任何部分成员或一组的部分成员和二组的部分成员的联合都不能读出秘密,只有每个组的全体成员一起才可以得到秘密。此协议的效率近似100%。此方案使多光子信号的特洛伊马攻击, Einstein-Podolsky-Rosen对的伪信号攻击,单光子攻击,以及不可见光子攻击无效。此协议比用4个量子态实现的多方与多方之间的量子秘密共享方案优越。我们也给出了不忠实者使用任意两粒子纠缠态伪信号攻击方法窃听秘密信息平均成功概率的上界。
     我们还提出了仅用单光子和幺正操作在Alice组和Bob组之间实现秘密共享的另一个方案。在此方案中,Alice组的一个成员准备处于4个不同态的单光子序列,其他成员则在这个单光子序列上用幺正操作编码各自的量子信息。之后Alice组的最后一个成员将这组编码好的单光子序列发送给Bob组。Bob组除最后一个成员外,其他成员作同Alice组成员类似的工作,而Bob组的最后一个成员测量这些量子位。通过一些检验,如果通信者能确认量子通道是安全的,则Alice组的最后一个成员所送的量子位就是两组之间共享的秘密。
     2.控制的量子隐形传态
     我们研究了使用一般的三量子位态作为量子通道成功控制传输一个未知量子态的概率。给出了经由各种包括Greenberger-Horne-Zeilinger态和W态在内的三量子位态作为量子通道成功控制传输一个未知量子态的最大概率的解析表示。除此之外我们还确定了另一种局域纠缠。进一步地我们得到了通过测量一个量子位使三量子位态塌缩成Einstein-Podolsky-Rosen对的充分必要条件,并找出了能以单位概率和单位忠实度控制传输未知量子态的三量子位态量子通道的集合。
     3.一个正算子测量的实现
     我们给出了实现一个正算子测量的幺正变换的矩阵分解,从而使这一正算子测量能用基本的量子逻辑门,和对辅助量子位的测量来实现。应用这个正算子测量可实现一个未知两量子位态的概率隐形传输。
     4.通信中心和其他M个成员之间进行同时的量子安全直接通信的容量
     我们分析了使用M +1粒子Greenberger-Horne-Zeilinger态作为量子通道,采用交换纠缠方法,通信中心和其他M个成员之间进行同时的量子安全直接通信的容量。证明了如果其他M个成员想传输M + 1位经典信息给通信中心,则编码方案应该是秘密的。然而,我们证明当编码方案公开时,无论M多大,此同时的安全直接通信方案只能传送2位的经典信息。
1. Quantum secret sharing
     A protocol of quantum secret sharing between multiparty and multiparty with four states ispresented. We show that this protocol can make the Trojan horse attack with a multi-photonsignal, the fake-signal attack with Einstein-Podolsky-Rosen pairs, the attack with single photons,and the attack with invisible photons to be nullification. In addition, we also give the upperbounds of the average success probabilities for dishonest agent eavesdropping encryption usingthe fake-signal attack with any two-particle entangled states.
     We also propose a quantum secret sharing scheme between m-party and n-party using threeconjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in oneof the six states, is used directly to encode classical information in the quantum secret sharingprocess. In this scheme, each of all m members in group 1 choose randomly their own secret keyindividually and independently, and then directly encode their respective secret information onthe states of single photons via unitary operations, then the last one (the mth member of group1) sends 1/n of the resulting qubits to each of group 2. By measuring their respective qubits,all members in group 2 share the secret information shared by all members in group 1. Thesecret message shared by group 1 and group 2 in such a way that neither subset of each groupnor the union of a subset of group 1 and a subset of group 2 can extract the secret message, buteach whole group (all the members of each group) can. The scheme is asymptotically 100% ine?ciency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attackwith Einstein-Podolsky-Rosen pairs, the attack with single photons, and the attack with invisiblephotons to be nullification. We show that it is secure and has an advantage over the one basedon two conjugate bases. We also give the upper bounds of the average success probabilitiesfor dishonest agent eavesdropping encryption using the fake-signal attack with any two-particleentangled states. This protocol is feasible with present-day technique.
     Another scheme of quantum secret sharing between Alices’group and Bobs’group withsingle photons and unitary transformations has been put forward. In the protocol, one memberin Alices’group prepares a sequence of single photons in one of four di?erent states, whileother members directly encode their information on the sequence of single photons via unitaryoperations, after that the last member sends the sequence of single photons to Bobs’group. ThenBobs except for the last one do work similarly. Finally last member in Bobs’group measures the qubits. If Alices and Bobs guaranteed the security of quantum channel by some tests, thenthe qubit states sent by last member of Alices’group can be used as key bits for secret sharing.
     It is shown that this scheme is safe.
     2. Controlled teleportation
     The probability of successfully controlled teleporting an unknown qubit using a generalthree-particle state is investigated. We give the analytic expressions of maximal probabilitiesof successfully controlled teleporting an unknown qubit via every kinds of tripartite states in-cluding a tripartite Greenberger-Horne-Zeilinger state and a tripartite W-state, respectively.Besides, another kind of localizable entanglement is also determined. Furthermore, we obtainthe su?cient and necessary condition that a three-qubit state can be collapsed to an Einstein-Podolsky-Rosen pair by a measurement on one qubit, and characterize the three-qubit statesthat can be used as quantum channel for controlled teleporting a qubit of unknown informationwith unit probability 1 and with unit fidelity.
     3. An implementation of a positive operator valued measure
     An implementation of the positive operator valued measure (POVM) is given. In particular,we give a decomposition of the unitary operation which plays an important role in the imple-mentation of the positive operator valued measure. By using this POVM one can realize theprobabilistic teleportation of an unknown two-particle state.
     4. Capacity of a simultaneous quantum secure direct communication schemebetween the central party and other M parties
     We analyze the capacity of a simultaneous quantum secure direct communication schemebetween the central party and other M parties via M + 1-particle Greenberger-Horne-Zeilingerstates and swapping quantum entanglement. It is shown that the encoding scheme should besecret if other M parties wants to transmit M + 1 bit classical messages to the center partysecretly. However when the encoding scheme is announced publicly, we prove that the capacityof the scheme in transmitting the secret messages is 2 bits, no matter how M is.
引文
[1] Feynman R. Simulating physics with computers [J]. Int J Theor Phys, 1982, 21(6-7): 467-488.
    [2] Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedingsof the 35th Annual Symposium on Foundations of Computers Science, IEEE Press, Los Alamitos,CA, 1994, 124-133.
    [3] Grover L K. Quantum mechanics helps in searching for needle in a haystack [J]. Phys Rev Lett,1997, 79(2): 325-328.
    [4] Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Phys Rev Lett, 1995, 74(20):4091-4094.
    [5] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dualclassical and Einstein-Podolsky-Rosen channels [J]. Phys Rev Lett, 1993, 70(13): 1895-1899.
    [6] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. InProceedings of the IEEE International Conference on Computers, Systems and Signal Processing,Bangalore, India, IEEE, New York, 1984, 175-179.
    [7] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality beconsidered complete? [J]. Phys Rev, 1935, 47(10): 777-780.
    [8] Wiesner S. Conjugate coding [J]. Sigact News, 1983, 15(1): 77-88.
    [9] Ekert A K. Quantum cryptography based on Bell’s theorem [J]. Phys Rev Lett, 1991, 67(6): 661-663.
    [10] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem [J]. PhysRev Lett, 1992, 68(5): 557-559.
    [11] Bennett C H. Quantum cryptography using any two nonorthogonal states [J]. Phys Rev Lett, 1992,68(21): 3121-3124.
    [12] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys Rev Lett, 1992, 69(20): 2881-2884.
    [13] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J].Phys Rev Lett, 2000, 85(2): 441-444.
    [14] Bru? D. Optimal eavesdropping in quantum cryptography with six states [J]. Phys Rev Lett, 1998,81(14): 3018-3021.
    [15] Cabello A. Quantum key distribution in the Holevo limit [J]. Phys Rev Lett, 2000, 85(26): 5635-5638.
    [16] Cabello A. Quantum key distribution without alternative measurements [J]. Phys Rev A, 2000,61(5): 052312.
    [17] Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states [J]. Phys Rev Lett,1995, 75(7): 1239-1243.
    [18] Huttner B, Imoto N, Gisin N, et al. Quantum cryptography with coherent states [J]. Phys Rev A,1995, 51(3): 1863-1869.
    [19] Koashi M, Imoto N. Quantum cryptography based on split transmission of one-bit information intwo steps [J]. Phys Rev Lett, 1997, 79(12): 2383-2386.
    [20] Townsend P D. Quantum cryptography on multiuser optical fibre networks [J]. Nature, 1997,385(6611): 47-49.
    [21] Phoenix S J D, Barnett S M, Townsend P D, et al. Multi-user quantum cryptography on opticalnetworks [J]. J Modern Optics, 1995, 42(6): 1155-1163.
    [22] Song D. Secure key distribution by swapping quantum entanglement [J]. Phys Rev A, 2004, 69(3):034301.
    [23] Wang X B. Quantum key distribution with two-qubit quantum codes [J]. Phys Rev Lett, 2004,92(7): 077902.
    [24] Long G L, Liu X S. Theoretically e?cient high-capacity quantum-key-distribution scheme [J]. PhysRev A, 2002, 65(3): 032302.
    [25] Xue P, Li C F, Guo G C. Conditional e?cient multiuser quantum cryptography network [J]. PhysRev A, 2002, 65(2): 022317.
    [26] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography [J]. Rev Mod Phys, 2002, 74(1):145-195.
    [27] Wang X B, Hiroshima T, Tomita A, et al. Quantum information with Gaussian states [J]. PhysRep, 2007, 448(1-4): 1-111.
    [28] Hwang W Y, Koh I G, Han Y. D. Quantum cryptography without public announcement of bases[J]. Phys Lett A, 1998, 244(6): 489-494.
    [29] Biham E, Huttner B, Mor T. Quantum cryptographic network based on quantum memories [J].Phys Rev A, 1996, 54(4): 2651-2658.
    [30] Tokunaga Y, Okamoto T, Imoto N. Threshold quantum cryptography [J]. Phys Rev A, 2005, 71(1):012314.
    [31] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-levelsystems [J]. Phys Rev Lett, 2002, 88(12): 127902.
    [32] Inoue K, Waks E, Yamamoto Y. Di?erential phase shift quantum key distribution [J]. Phys RevLett, 2002, 89(3): 037902.
    [33] Waks E, Zeevi A, Yamamoto Y. Security of quantum key distribution with entangled photonsagainst individual attacks [J]. Phys Rev A, 2002, 65(5): 052310.
    [34] Shi B S, Guo G C. A quantum cryptography key distribution way using orthogonal states [J]. ChinPhys Lett, 1997, 14(7): 521-523.
    [35] Shi B S, Jiang Y K, Guo G C. Quantum key distribution using di?erent-frequency photons [J].Appl Phys B, 2000, 70(3): 415-417.
    [36] Murao M, Plenio M B, Vedral V. Quantum-information distribution via entanglement [J]. PhysRev A, 2000, 61(3): 032311.
    [37] Buttler W T, Torgerson J R, Lamoreaux S K. New, e?cient and robust, fiber-based quantum keydistribution schemes [J]. Phys Lett A, 2002, 299(1): 38-42.
    [38] Inamori H, Rallan L, Verdral V. Security of EPR-based quantum cryptography against incoherentsymmetric attacks [J]. J Phys A, 2001, 34(35): 6913-6918.
    [39] Deng F G, Liu X S, Ma Y J, et al. A theoretical scheme for multi-user quantum key distributionwith N Einstein-Podolsky-Rosen pairs on a passive optical network [J]. Chin Phys Lett, 2002,19(7): 893-896.
    [40] Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution [J].Phys Rev A, 2003, 68(4): 042315.
    [41] Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laserpulses [J]. Phys Rev A, 2004, 70(1): 012311.
    [42] Nielsen M A, Chuang I L. Quantum computation and quantum information, Cambridge: CambridgeUniversity Press, 2000.
    [43] Wootters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature, 1982, 299(5886):802-803.
    [44] Dieks D. Communication by EPR devices [J]. Phys Lett A, 1982, 92(6): 271-272.
    [45] Hillery M, Buˇzek V, Berthiaume A. Quantum secret sharing [J]. Phys Rev A, 1999, 59(3): 1829-1834.
    [46] Xiao L, Long G L, Deng F G, et al. E?cient multiparty quantum-secret-sharing schemes [J]. PhysRev A, 2004, 69(5): 052307.
    [47] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting [J].Phys Rev A, 1999, 59(1): 162-168.
    [48] Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing [J]. PhysRev A, 2001, 63(4): 042301.
    [49] Cleve R, Gottesman D, Lo H K. How to share a quantum secret [J]. Phys Rev Lett, 1999, 83(3):648-651.
    [50] Gottesman D. Theory of quantum secret sharing [J]. Phys Rev A, 2000, 61(4): 042311.
    [51] Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized cat statesand secret sharing [J]. Phys Rev A, 2002, 65(4): 042320.
    [52] Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing [J]. Phys Rev Lett, 2004,92(17): 177903.
    [53] Nascimento A C A, Quade J M, Imai H. Improving quantum secret-sharing schemes [J]. Phys RevA, 2001, 64(4), 042311.
    [54] Bandyopadhyay S. Teleportation and secret sharing with pure entangled states [J]. Phys Rev A,2000, 62(1): 012308.
    [55] Zhang Z J, Yang J, Man Z X, et al. Multiparty secret sharing of quantum information using andidentifying Bell states [J]. Eur Phys J D, 2005, 33(1): 133-136.
    [56] Zhang Z J, Man Z X. Multiparty quantum secret sharing of classical messages based on entangle-ment swapping [J]. Phys Rev A, 2005, 72(2): 022303.
    [57] Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing [J]. Phys Rev A, 2005, 71(4):044301.
    [58] Deng F G, Li X H, Zhou H Y, et al. Improving the security of multiparty quantum secret sharingagainst Trojan horse attack [J]. Phys Rev A, 2005, 72(4): 044302.
    [59] Deng F G, Li X H, Zhou H Y, et al. Erratum: Improving the security of multiparty quantum secretsharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] [J]. Phys Rev A, 2006, 73(4):049901.
    [60] Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particlestate with Einstein-Podolsky-Rosen pairs [J]. Phys Rev A, 2005, 72(4): 044301.
    [61] Deng F G, Long G L, Zhou H Y. An e?cient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs [J]. Phys Lett A, 2005, 340(1-4): 43-50.
    [62] Deng F G, Zhou H Y, Long G L. Bidirectional quantum secret sharing and secret splitting withpolarized single photons [J]. Phys Lett A, 2005, 337(4-6): 329-334.
    [63] Guo G P, Guo G C. Quantum secret sharing without entanglement [J]. Phys Lett A, 2003, 310(4):247-251.
    [64] Yan F L, Gao T. Quantum secret sharing between multiparty and multiparty without entanglement[J]. Phys Rev A, 2005, 72(1): 012304.
    [65] Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with fourstates [J]. Science in China Series G, 2007, 50 (5): 572-580.
    [66] Gao T, Yan F L. Li Y C. Quantum secret sharing between m-party and n-party with six states.arXiv: quant-ph/0601111.
    [67] Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with singlephotons and unitary transformation [J]. Chin Phys Lett, 2008, 25(4): 1187-1190.
    [68] Greenberger D, Horne M, Shimony A, Zeilinger A. Bell’s theorem without inequalities [J]. Am JPhys, 1990, 58(12): 1131-1143.
    [69] Bouwmeester D, Pan J W, Daniell M, et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J]. Phys Rev Lett, 1999, 82(7): 1345-1349.
    [70] Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglementand high-fidelity teleportation [J]. Phys Rev Lett, 2001, 86(20): 4435-4438.
    [71] Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministicsecure quantum communication [J]. Front Phys China, 2007, 2(3): 251-272.
    [72] Shimizu K, Imoto N. Communication channels secured from eavesdropping via transmission ofphotonic Bell states [J]. Phys Rev A, 1999, 60(1): 157-166.
    [73] Shimizu K, Imoto N. Single-photon-interference communication equivalent to Bell-state-basis cryp-tographic quantum communication [J]. Phys Rev A, 2000, 62(5): 054303.
    [74] Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key [J].Acta Phys Pol A, 2002, 101(3): 357-371.
    [75] Bostro¨m K, Felbinger T. Deterministic secure direct communication using entanglement [J]. PhysRev Lett, 2002, 89(18): 187902.
    [76] Wo′jcik A. Eavesdropping on the ”Ping-Pong” quantum communication protocol [J]. Phys RevLett, 2003, 90(15): 157901.
    [77] Cai Q Y. The ”Ping-Pong” protocol can be attacked without eavesdropping [J]. Phys Rev Lett,2003, 91(10): 109801.
    [78] Cai Q Y, Li B W. Deterministic secure communication without using entanglement [J]. Chin PhysLett, 2004, 21(4): 601-603.
    [79] Cai Q Y, Li B W. Improving the capacity of the Bostr¨om-Felbinger protocol [J]. Phys Rev A, 2004,69(5): 054301.
    [80] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block [J]. Phys Rev A, 2003, 68(4): 042317.
    [81] Deng F G, Long G L. Secure direct communication with a quantum one-time pad [J]. Phys Rev A,2004, 69(5): 052319.
    [82] Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimensionquantum superdense coding [J]. Phys Rev A, 2005, 71(4): 044305.
    [83] Zhang Z J, Man Z X, Li Y. Improving W′ojcik’s eavesdropping attack on the ping-pong protocol[J]. Phys Lett A, 2004, 333(1-2): 46-50.
    [84] Zhu A D, Xia Y, Fan Q B et al. Secure direct communication based on secret transmitting orderof particles [J]. Phys Rev A, 2006, 73(2): 022338.
    [85] Cao H J, Song H S. Quantum secure direct communication with W state [J]. Chin Phys Lett, 2006,23(2): 290-292.
    [86] Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantumentanglement and local unitary operations [J]. Chin Phys Lett, 2005, 22(1): 18-21.
    [87] Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation[J]. Eur Phys J B, 2004, 41(1): 75-78.
    [88] Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ states andswapping quantum entanglement [J]. J Phys A, 2005, 38(25): 5761-5770.
    [89] Gao T, Yan F L, Wang Z X. A simultaneous quantum secure direct communication scheme betweenthe centrl party and other M parties [J]. Chin Phys Lett, 2005, 22(10): 2473-2476.
    [90] Gao T, Yan F L, Wang Z X, Li Y C. Capacity of a simultaneous quantum secure direct commu-nication scheme between the centrl party and other M parties [J]. Chin Phys Lett, 2006, 23(10):2656-2657.
    [91] Gao T. Controlled and secure direct communication using GHZ state and teleportation [J]. ZNaturforsch, 2004, 59a(9): 597-601.
    [92] Gao T, Yan F L, Wang Z X. Controlled quantum teleportation and secure direct communication[J]. Chin Phys, 2005, 14(5): 893-897.
    [93] Gao T, Yan F L, Wang Z X. Quantum secure conditional direct communication via EPR pairs [J].Int J Mod Phys C, 2005, 16(8): 1293-1301.
    [94] Gao T, Yan F L, Wang Z X. Quantum secure direct communication by EPR pairs and entanglementswapping [J]. Nuovo Cimento B, 2004, 119(3): 313-318.
    [95] Wang M Y, Yan F L, Three-party simultaneous quantum secure direct communication scheme withEPR pairs [J]. Chin Phys Lett, 2007, 24(9): 2486-2488.
    [96] Vaidman L. Teleportation of quantum states [J]. Phys Rev A, 1994, 49(2): 1473-1476.
    [97] Son W, Lee J, Kim M S, et al. Conclusive teleportation of a d-dimensional unknown state [J]. PhysRev A, 2001, 64(6): 064304
    [98] Gordon G, Rigolin G. Generalized teleportation protocol [J]. Phys Rev A, 2006, 73(4): 042309.
    [99] Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartiteentanglement [J]. Phys Rev A, 2005, 71(3): 032303.
    [100] Yang C P, Chu S I, Han S. E?cient many-party controlled teleportation of multiqubit quantuminformation via entanglement [J]. Phys Rev A, 2004, 70(2): 022329.
    [101] Ikram M, Zhu S Y, Zubairy M S. Quantum teleportation of an entangled state [J]. Phys Rev A,2000, 62(2): 022307.
    [102] Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement [J]. PhysRev A, 1998, 58(6): 4394-4400.
    [103] Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrarytwo-particle entanglement [J]. Phys Rev A, 2005, 72(2): 022338.
    [104] Zhang Z J, Man Z X, Li Y. Many-agent controlled teleportation of multi-qubit quantum information[J]. Phys Lett A, 2005, 341(1-4): 55-59.
    [105] Agrawal P, Pati A K. Probabilistic quantum teleportation [J]. Phys Lett A, 2002, 305(1-2): 12-17.
    [106] Pati A K, Agrawal P. Probabilistic teleportation and quantum operation [J]. J Opt B: QuantumSemiclassical Opt, 2004, 6(8): S844-848.
    [107] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching [J]. Phys RevA, 2000, 61(3): 034301.
    [108] Liu J M, Guo G C. Quantum teleportation of a three-particle entangled state [J]. Chin Phys Lett,2002, 19(4): 456-459.
    [109] Lu H, Guo G C. Teleportation of a two-particle entangled state via entanglement swapping [J].Phys Lett A, 2000, 276(5-6): 209-212.
    [110] Shi B S, Jiang Y K, Guo G C. Probabilistic teleportation of two-particle entangled state [J]. PhysLett A, 2000, 268(3): 161-164.
    [111] Zeng B, Liu X S, Li Y S, et al. High-dimensional multi-particle cat-like state teleportation [J].Commun Theor Phys, 2002, 38(5): 537-540.
    [112] Gorbachev V N, Trubilko A I. Quantum teleportation of an Einstein-Podolsy-Rosen pair using anentangled three-particle state [J]. J Exp Theor Phys, 2000, 91(5): 894-898.
    [113] Cai X H. Quantum teleportation of entangled squeezed vacuum states [J]. Chin Phys, 2003, 12(10):1066-1069.
    [114] Liu J M, Zhang Y S, Guo G C. Quantum logic networks for probabilistic teleportation [J]. ChinPhys, 2003, 12(3): 251-258.
    [115] Fujii M. Continuous-variable quantum teleportation with a conventional laser [J]. Phys Rev A,2003, 68(5): 050302.
    [116] An N B. Teleportation of coherent-state superpositions within a network [J]. Phys Rev A, 2003,68(2): 022321.
    [117] Bowen W P, Treps N, Buchler B C, et al. Experimental investigation of continuous-variable quantumteleportation [J]. Phys Rev A, 2003, 67(3): 032302.
    [118] Johnson T J, Bartlett S D, Sanders B C. Continuous-variable quantum teleportation of entangle-ment [J]. Phys Rev A, 2002, 66(4): 042326.
    [119] Braunstein S L, Kimble H J. Teleportation of continuous quantum variables [J]. Phys Rev Lett,1998, 80(4): 869-872.
    [120] Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation [J]. Nature, 1997,390(6660): 575-579.
    [121] Furusawa A, S?rensen J L, Braunstein S L, et al. Unconditional quantum teleportation [J]. Science,1998, 282(5389): 706-709.
    [122] Boschi D, Branca S, DeMartini F, et al. Experimental realization of teleporting an unknown purequantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys Rev Lett, 1998,80(6): 1121-1125.
    [123] Nielsen M A, Knill E, La?amme R. Complete quantum teleportation using nuclear magnetic reso-nance [J]. Nature, 1998, 396(6706): 52-55.
    [124] Yan F L, Tan H G, Yang L G. Probabilistic teleportation of two-particle state of general formation[J]. Commun Theor Phys, 2002, 37(6): 649-654.
    [125] Gao T, Wang Z X, Yan F L. Quantum logical network for probabilistic teleportation of two-particlestate in a general form [J]. Chin Phys Lett, 2003, 20(12): 2094-2097.
    [126] Yan F L, Wang D. Probabilistic and controlled teleportation of unknown quantum states [J]. PhysLett A, 2003, 316(5): 297-303.
    [127] Gao T. Quantum logic network for probabilistic and controlled teleportation of unknown quantumstates [J]. Commun Theor Phys, 2004, 42(2): 223-228.
    [128] Gao T, Yan F L, Wang Z X. Quantum networks for probabilistic teleportation of many particlestate of general form [J]. Quant Info Comp, 2004, 4(3): 186-195.
    [129] Yan F L, Bai Y K. Probabilistic teleportation of one-particle state of S-level [J]. Commun TheorPhys, 2003, 40(3): 273-278.
    [130] Yan F L, Ding H W. Probabilistic teleportation of an unknown two-particle state with a four-particle entangled state and positive operator valued measure [J]. Chin Phys Lett, 2006, 23(1):17-20.
    [131] Yan F L, Gao T, Li Y C. An implement of a positive operator valued measure [J]. Chin Phys Lett,2007, 24(2): 322-325.
    [132] Wang M Y, Yan F L. Teleporting a quantum state from a subset of the whole Hilbert space [J].Phys Lett A, 2006, 355(2): 94-97.
    [133] Wang M Y, Yan F L, Gao T, et al. Simultaneous quantum state teleportation via the lockedentanglement channel [J]. Int J Quant Info, 2008, 6(1): 201-207.
    [134] Yan F L, Huo H R. A method for transferring an unknown quantum state and its application [J].Commun Theor Phys, 2007, 47(4): 629-632.
    [135] Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states[J]. Science in China Series G, accepted.
    [136] Gao T, Yan F L, Li Y C. Optimal controlled teleportation. arXiv: quant-ph/0701111.
    [137] Li C M, Chang C C, Hwang T. Comment on ”Quantum secret sharing between multiparty andmultiparty without entanglement” [J]. Phys Rev A, 2006, 73(1): 016301.
    [138] Deng F G, Yan F L, Li X H, et al. Addendum to ”Quantum secret sharing between multiparty andmultiparty without entanglement” . arXiv: quant-ph/0508171.
    [139] Cai Q Y, Eavesdropping on the two-way quantum communication protocols with invisible photons[J]. Phys. Lett. A, 2006, 351(1): 23-25.
    [140] Zhang S, Feng Y, Sun X, et al. Upper bound for the success probability of unambiguous discrimi-nation among quantum states [J]. Phys Rev A, 2001, 64(6): 062103.
    [141] Wang M Y, Yan F L. Conclusive quantum state classification. arXiv: quant-ph/0605127.
    [142] Lo H K. Proof of unconditional security of six-state quantum key distribution scheme [J]. QuantInfo Comp, 2001, 1 (2):81-94.
    [143] Verstraete F, Popp M, Cirac J I. Entanglement versus correlations in spin systems [J]. Phys RevLett, 2004, 92(2): 027901.
    [144] Ac′?n A, Andrianov A, Costa L, et al. Generalized Schmidt decomposition and classification ofthree-quantum-bit states [J]. Phys Rev Lett, 2000, 85(7): 1560-1563.
    [145] Mor T, Horodecki P. Teleportation via generalized measurements, and conclusive teleportation.arXiv: quant-ph/9906039.
    [146] Barenco A, Bennett C H, Cleve R, et al. Elementary gates for quantum computation [J]. Phys RevA, 1995, 52(5): 3457-3467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700