量子噪声通道中的信息传送
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息科学在改善人类的生活质量和推动社会文明发展中发挥着无可比拟和令人惊叹的作用。但是随着人们对信息需求的日益增加,现有的信息系统在传送信息的容量、速度、保密性和安全性等方面越来越不能满足人们的需求。于是一门新兴的信息科学——量子信息学便应运而生。它是量子力学和信息理论交叉产生的新兴学科,主要包括量子通信和量子计算等。量子信息的载体是量子态。量子态的制备、加工、传输以及存储的过程叫做量子信息过程。
     如何有效地通过量子噪声通道传送信息是量子信息理论中的一个重要内容。本文应用量子信息理论研究了量子噪声通道中的信息传送。主要创新成果如下:
     1、研究了通过振幅阻尼通道和广义振幅阻尼通道传送一个经典比特的问题。当允许通过通道进行两次传送时,研究了通道参数和输入态参数对出错率的影响。证明在一定的条件下,两次纠缠传送比两次直积态传送能增强接收者正确判断信息的能力。对于广义振幅阻尼通道而言,在一特定的条件下,纠缠态编码任何时候都比直积态编码能传递更多的信息。
     2、运用量子通道经典容量的量子相对熵的表示公式,用数值方法研究了广义振幅阻尼通道的经典容量。结果表明经典容量依赖于表示耗散和周围环境温度的两个通道参数。特别地,在一定的条件下,广义振幅阻尼通道的经典容量可以用一个解析表达式表示。
     3、利用量子互信息的部分对称性和凸性,研究了广义振幅阻尼通道的纠缠辅助经典容量。得到了在一定条件下,纠缠辅助经典容量的解析和数值结果。结果表明纠缠辅助经典容量与表示耗散和周围环境温度的两个通道参数有关,而且发现发送者和接收者之间的先验纠缠可以使广义振幅阻尼通道的经典容量增加近一倍。
     4、研究了有记忆量子噪声通道经典信息的传送问题,首次得到具有相关噪声的泡利通道的互信息的一般公式。结果证明互信息依赖于通道收缩因子,输入态参数和通道记忆系数.通过对互信息公式的分析,发现:对于比特翻转通道和比特位相翻转通道等一些泡利通道,纠缠是一种有用的源,始终能增强其互信息。然而,对于位相翻转通道和位相阻尼通道等另一些泡利通道,纠缠态编码在任何情况下都不利于经典信息的有效传送。
Information science acts the great important part in improving the quality of people and promoting the development of the civilization of the society. However, with the people increasing desire for the capacity, speed, privacy and security of information transmission, and so on, the existing information system can not satisfy the requirement of people now. Therefore, a new subject——Quantum Information Theory—has been developed as the combination ofquantum mechanics and information theory. Quantum state is the carrier of quantum information. The process of preparation, operation, transmission andstorage of the quantum state are called quantum information process.
     How to reliably transmit the information through the quantum noisy channel is one of the important questions in quantum information theory. In this thesis, the information transmission through the quantum noisy channel is investigated by the quantum information theory. Our mainly work is as follows:
     1. The problem of sending a single classical bit through an amplitude-damping channel and a generalized amplitude damping channel is considered. When two transmissions through the channel are available as a resource, we find that two entangled transmissions can enhance the capability of receiver's judging information correctly under certain conditions compared with two product- state transmissions. In addition, for the generalized amplitude damping channel, we find a special case in which the two entangled transmissions can always make a classical bit more effectively disable the noise influence.
     2. The classical capacity of a generalized amplitude-damping channel is investigated by using a numerical method. It is shown that the classical capacity depends on the channel parameters representing the ambient temperature and dissipation. In particular, under a special condition, the classical capacity of the generalized amplitude-damping channel can be written as an analytical expression.
     3. The entanglement-assisted classical capacity of the generalized amplitude damping channel is investigated by using the properties of partial symmetry and concavity of mutual information. The numerical and analytical results of the entanglement-assisted classical capacity are obtained under some certain conditions. It is shown that, the entanglement-assisted classical capacity depends on the channel parameters representing the ambient temperature and dissipation, and the prior entanglement between sender and receiver can approximately double the classical capacity of the generalized amplitude damping channel.
     4. The problem of the classical information transmission through the Pauli channel with memory is investigated. A general formula for the mutual information of the Pauli channels with memory modeled by correlated noise is derived. It is shown that the mutual information depends on the channel shrinking factor, the input state parameter and the channel memory coefficient. The analyses based on the general formula reveal that the entanglement is always a useful resource to enhance the mutual information of some Pauli channels, such as the bit flip channel and the bit-phase flip channel. Our analyses also show that the entanglement is not advantageous to the reliable transmission of classical information for some Pauli channels at any time, such as the phase flip channel and the phase damping channel.
引文
[1]C.E.Shannon,A Mathematical Theory of Communication,Bell System Tech.J.,1948,27:378
    [2]A.Einstein,B.Podolsky,N.Rosen,Can quantum-mechanical description of physical reality be considered complete?,Phys.Rev.A,1935,47(15):777
    [3]A.M.Turing,On computable numbers,with an application to the Entscheidungscproblem,Proc.Lond.Math.Soc.2,1936,42:230
    [4]R.P.Feymann,Simulating physics with computers,Int.J.Theor.Phys.,1982,21:467
    [5]D.Deutsch,Quantum computational networks,Proc.R.Soc.London A,1989,425:73
    [6]D.Deutsch and R.Jozsa,Rapid solution of problems by quantum computation,Proc.R.Soc.London A,1992,439:553
    [7]李承祖,黄明球,陈平形等.量子通信和量子计算,长沙:国防科技大学出版社,2000:118
    [8]H.Barnum,M.A.Nielsen and B.Schumacher,Information transmission through a noisy quantum channel,Phys.Rev.A,1998,57(6):4153
    [9]H.P.Yuen and M.Ozawa,Ultimate information carrying limit of quantum systems,Phys.Rev.Left.,1993,70(4):363
    [10]C.A.Fuch and C.M.Caves,Ensemble Dependent bounds for accessible in quantum mechanics,Phys.Rev.Lett.,1994,73(5):3047
    [11]R.Jozsa and B.Schumacher,Quantum coding,J.of Mod.Opt.,1994,41(12):2343
    [12]B.Schumacher,Quantum coding,Phys.Rev.A,1995,51(4):2738
    [13]P.Hausladen,R.Jozsa,B.Schumacher,M.Westmoreland and W.K.Wootters,Classical information capacity of a quantum channel,Phys.Rev.A,1996,54(3):1869
    [14]B.Schumacher and M.A.Nielsen,Quantum data processing and error correction,Phys.Rev.A,1996,54(4):2629
    [15]B.Schumacher,Sending entanglement through noisy quantum channels,Phys.Rev.A,1996,54(4):2614
    [16]C.H.Bennett and P.W.Shot,Quantum Information Theory,IEEE Trans.Inf.Theory,1998,44(6):2724
    [17]T.K.Liu,J.S.Wang,J.Feng and M.S.Zhan,Entropy evolution properties in a system of two entangled atoms interacting with light field,Chin.Phys.,2005,14(3):0536
    [18]T.Gao,F.L.Yan and Z.X.Wang,Controlled quantum teleportation and secure direct communication,Chin.Phys.,2005,14(5):0893
    [19]J.S.Wang,J.Feng,T.K.Liu and M.S.Zhan,Quantum statistical properties of orthonormalized eigenstates of the operator,J.Phys.B,2002,35:2411
    [20]Y.Z.Zheng,Y.J.Gu,G.C.Wu and G.C.Guo,Teleportation of a multiqubit state by an entangled qudit channel,Chin.Phys.,2003,12(10):1070
    [21]F.H.Willeboordse,A.Gopinathan and D.Kaszlikowski,Quantum channel capacity by simulated annealing,Phys.Rev.A,2005,71(4):042310
    [22]G.Bowen,I.Devetak and S.Mancini,Bounds on classical information capacities for a class of quantum memory channels,Phys.Rev.A,2005,71(3):034310
    [23]S.Lloyd,Capacity of the noisy quantum channel,Phys.Rev.A,1997,55(3):1613
    [24]C.Adami and N.J.Cerf,yon Neumann capacity of noisy quantum channels,Phys.Rev.A,1997,56(5):3470
    [25]N.J.Cerf,Entropic bounds on coding for noisy quantum channels,Phys.Rev.A,1998,57(5):3330
    [26]D.P.Divincenzo,P.W.Shot and J.A.Smolin,Quantum channel capacity of very noisy channels,Phys.Rev.A,1998,57(2):830
    [27]C.H.Bennett and S.J.Wiesner,Communication via one-particle operators on Einstein-Podolsky- Rosen states,Phys.Rev.Lett.,1992,69(20):2881
    [28]A.R.Calderbank and P.W.Shot,Good quantum error-correcting codes exist,Phys.Rev.A,1996,54(2):1098
    [29]C.H.Bennett,C.A.Fuchs and J.A.Smolin,Entanglement-Enhanced Classical Communication on a Noisy Quantum Channel,Quantum Communication,Computing,and Measurement,New York:Plenum,1997,p 79,see also quantph/9611006
    [30]C.H.Bennett,P.W.Shot,J.A.Smolin and A.V.Thapliyal,Entanglementassisted classical capacity of noisy quantum channels,Phys.Rev.Lett.,1999,83(15):3081
    [31]G.Bowen and S.Mancini,Noise enhancing the classical information capacity of a quantum channel,Phys.Lett.A,2004,321:1
    [32]G.Bowen,Classical information capacity of superdense coding,Phys.Rev.A,2001,63(2):022302
    [33]D.G.Fischer,H.Mack,M.A.Cirone and M.Freyberger,Enhanced estimation of a noisy quantum channel using entanglement,Phys.Rev.A,2001,64(2):022309
    [34]M.Sohma and O.Hirota,Capacity of a channel assisted by two-mode squeezed states,Phys.Rev.A,2003,65(2):022303
    [35]Y.Yeo and A.Skeen,Time-correlated quantum amplitude-damping channel,Phys.Rev.A,2003,67(6):064301
    [36]M.F.Sacchi,Optimal discrimination of quantum operations,Phys.Rev.A,2005,71(6):062340
    [37]M.Huang,Y.D.Zhang and G.Hou,Classical capacity of a quantum multipleaccess channel,Phys.Rev.A,2000,62(5):052106
    [38]X.Y.Chen and P.L.Qiu,Quantum Binary Symmetric Channels,Chin.Phys.Lett.,2001,18(6):721
    [39]C.H.Bennett,D.P.Divincenzo and J.A.Smolin,Capacities of Quantum Erasure Channels,Phys.Rev.Lett.,1997,78(16):3217
    [40]A.Uhlmann,On 1-qubit channels,J.Phys.A:Math.Gen.,2001,34:7047
    [41]G.Bowen and S.Bose,Teleportation as a Depolarizing Quantum Channel,Relative Entropy,and Classical Capacity,Phys.Rev.Lett.,2001,87(26):267901
    [42]J.Harrington and J preskill,Achievable rates for the Gaussian quantum channel,Phys.Rev.A,2001,64(6):062301
    [43]G.Hou,M.X.Hang and Y.D.Zhang,Quantum Multiple Access Channel,Chin.Phys.Lett.,2002,19(1):4
    [44]P.W.Shor,The Adaptive Classical Capacity of a Quantum Channel,or Information Capacities of Three Symmetric Pure States in Three Dimensions,2002,Preprint quant-ph/0206058
    [45]S.Dafter,K.Wodldewiez and J.K.Melver,Quantum Markov channels for qubits,Phys.Rev.A,2003,67(6):062312
    [46]X.T.Liang,Entanglement-assisted classical information capacity of the amplitude damping channel,Mod.Phys.Lett.B,2003,17(29):1547
    [47]J.C.Cortese,Holevo-Schumacher- Westmoreland channel capacity for a class of qudit unital channels,Phys.Rev.A,2004,69(2):022302
    [48]D.W.Berry and B.C.Sanders,Numerical analysis of capacities for two-qubit unitary operations,Phys.Rev.A,2005,71(2):022304
    [49]T.Qin,M.S.Zhao and Y.D.Zhang,The classical capacity for continuous variable teleportation channel,2006,Preprint quant-ph:0605171
    [50]R.Srikanth and S.Banerjee,The squeezed generalized amplitude damping channel,2007,Preprint quant-ph:0707.0059v1
    [51]M.M.Wolf and D.P.Garcia,Quantum capacities of channels with small environment,Phys.Rev.A,2007,75(1):012303
    [52]M.M.Wolf,G.Giedke,and J.I.Garcia,Extremality of Gaussian states,Phys.Rev.Lett.,2006,98(8):080502
    [53]M.M.Wolf,D.P.Garcia and G.Giedke,Quantum capacities of Bosonic channel,Phys.Rev.Lett.,2007,98(13):130501
    [54]C.A.Fuchs,Nonorthogonal Quantum States Maximize Classical Information Capacity,Phys.Rev.Lett.,1997,79(6):1162
    [55]B.Schumacher and M.D.Westmoreland,Sending classical information via noisy quantum channels,Phys.Rev.A,1997,56(1):131
    [56]B.Schumacher and M.D.Westmoreland,Optimal signal ensembles,Phys.Rev.A,2001,63(2):022308
    [57]J.Cortese,Relative Entropy and Single Qubit Holevo-SchumacherWestmoreland Channel Capacity,2002,Preprint quant-ph/0207128
    [58]C.King and M.Nathanson,Qubit Channels Can Require More Than Two Inputs to Achieve Capacity,Phys.Rev.Lett.,2002,88(5):057901
    [59]M.Ziman and V.Buzek,Correlation-assisted quantum communication,Phys.Rev.A,2003,67(4):042321
    [60]V.Giovannetti,S.Lloyd,L.Maccone and P.W.Shot,Entanglement Assisted Capacity of the Broadband Lossy Channel,Phys.Rev.Lett.,2003,91(4):047901
    [61]A.S.Holevo,On entanglement-assisted classical capacity,2001,Preprint quant-ph/0106075
    [62]C.H.Bennett,P.W.Shor,J.A.Smolin and A.V.Thapliyal,Entanglementassisted capacity of a quantum channel and the.reverse Shannon theorem,IEEE Trans.Inf.Theory,2002,48(10):2637;see also Preprint quantph/0106052
    [63]C.H.Bennett,I.Devetak,P.W.Shot and J.A.Smolin,Inequalities and Separations Among Assisted Capacities of Quantum Channels,Phys.Rev.Lett.,2006,96(15):150502
    [64]M.Horodecki,P.Horodecki and R.Horodecki,Unified approach to quantum capacities:Towards quantum noisy coding theorem,Phys.Rev.Lett.,2000,85(2):433
    [65]M.Fujiwara,M.Takeoka,J.Mizuno and M.Sasaki,Exceeding the classical capacity limit in a quantum optical channel,Phys.Rev.Lett.,2003,90(16):167906
    [66]C.Macchiavello and G.M.Palma,Entanglement-enhanced information transmission over a quantum channel with correlated noise,Phys.Rev.A,2002,65(5):050301(R)
    [67]Y.Yeo,Quantum channels with correlated noise and entanglement teleportation,Phys.Rev.A,2003,67(5):054304
    [68]J.Ball,A.Dragan and K.Banaszek,Exploiting entanglement in communication channels with correlated noise,Phys.Rev.A,2004,69(4):042324
    [69]C.Macchiavello,G.M.Palma and S.Virmani,Transition behavior in the channel capacity of two-quibit channels with memory,Phys.Rev.A,2004,69(1):010303(R)
    [70]C.Bowen and S.Maneini,Quantum channels with a finite memory,Phys.Rev.A,2004,69(1):012306
    [71]K.Banaszek,A.Dragan,W.Wasilewski and C.Radzewicz,Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise,Phys.Rev.Lett.,2004,99.(25):257901
    [72]N.J.Cerf,J.Clavarean,C.Macchiavello,and J.Roland,Quantum entanglement enhances the capacity of bosonic channels with memory,Phys.Rev.A,2005,72(4):042330
    [73]N.Arshed and A.H.Toor,Entanglement-assisted classical capacity of quantum channels with correlated noise,Phys.Rev.A,2006,73(1):014304
    [74]J.W.Jun,Superdense coding in noisy environments:A quantum trajectory approach,Phys.Rev.A,2006,73(6):064301
    [75]V.Karimipour and L.Memarzadeh,Transition behavior in the capacity of correlated-noisy channels in arbitrary dimensions,Phys.Rev.A,2006,74(3):032332;see also Preprint quant-ph/0603223.
    [76]E.Karpov,D.Deams and N.J.Cerf,Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions Phys.Rev.A,2006,74(3):032320
    [77]X.Y.Chen,Entanglement enhanced information transmission of a Pauli memory channel,Phys.Lett.A,2007,361:43
    [78]D.Bruss,A.Ekert and C.Macchiavello,Optimal Universal Quantum Cloning and stare Estimation,Phys.Rev.Lett.,1998,81(12):2598
    [79]A.Fahml and M.Golshani,Tradition of d-level quantum systems through quantum channels with correlated noise,Phys.Rev.A,2007,75(4):042301;see also Preprint quant-ph/0605024.
    [80]M.A.Nielsen and I.L.Chuang,Quantum computation and Quantum information,Cambridge:Cambridge University Press,2000
    [81]D.W.Berry,Qubit channels that achieve capacity with two states,Phys.Rev.A,2005,71(3):032334
    [82]C.E.Shannon,A mathematical theory of communication,Bell System Tech.F.,1948:379
    [83]C.E.Shannon and W.Weaver,The mathematical theory of communication,University of Illinois Press,Urbana,1949
    [84]T.M.Cover and J.A.Thomas,Elements of information theory,John Wiley and Sons,New York,1991:Chapter 2 and 16
    [85]C.Brukner and A.Zeilinger,Conceptual inadequacy of the Shannon information in quantum measurements,Phys.Rev.A,2001,63(2):022113
    [86]A.Wehrl,General properties of entropy,Rev.Mod.Phys.,1978,50(2):221
    [87]M.Ohya and D.Petz,Quantum entropy and its use,Berlin:Springer-Verlag,1993
    [88]O.Klein,Z.Phys.,1931,72:767
    [89]H.Araki and E.H.Lieb,Entropy inequalities,Commun.Math.Phys.,1970,18:160
    [90]E.H.Lieb and M.B.Ruskai,A fundamental property of quantum mechanical entropy,Phys.Rev.Lett.,1973,30(10):434
    [91]E.H.Lieb and M.B.Ruskai,Proof of the strong subadditivity of quantum mechanical entropy,J.Math.Phys.,1973,14:1938
    [92]E.Schmidt,Zur theorie der linearen undnichtlinearen integralgleighungen,Math.Annalen.,1906,63:433
    [93]A.G.White,D.F.V.James,P.H.Eberhard and P.G.Kwiat,Nonmaximally Entangled States:Production,Characterization,and Utilization,Phys.Rev.Left.,1999,83(16):3103
    [94]C.A.Sackett,D.Kielpinski,B.E.King and C.Langer,Experimental entanglement of four particles,Nature,2000,404(6775):256
    [95]M.Bourennane,M.Eibl and C.Kurtsiefer,Experimental detection of multipartite entanglement using witness operators,Phys.Rev.Lett.,2004,92(8):087902
    [96]曾谨言,量子力学(第二卷),北京:科学出版社,2001,35
    [97]S.L.Brannstein,A.Mann and M.Reven,Maximal violation of Bell inequalities for mixed states,Phys.Rev.Lett.,1992,68(22):3259
    [98]K.E.Hellwing and K.Kraus,Pure operations and measurements,Commun.Math.Phys.,1969,11:214
    [99]K.E.Hellwing and K.Kraus,Operations and measurements Ⅱ,Commun.Math.Phys.,1970,16:142
    [100]K.Kraus,States,Effects and Operations:Fundamental Notions of Quantum Theory,Leture Notes in Physics,(Berlin:Springer-Verlag),1983,v190
    [101]A.S.Holevo,The capacity of the quantum channel with general signal states,IEEE Trans.Inf.Theory,1998,44(1):269
    [102]J.P.Gordon,Noise at optical frequencies;information theory,Academic Press,New York,1964
    [103]A.S.Holevo,Statistical problems in quantum physics,Springer-Verlag,Berlin,1973,Lecture Notes in Mathematics,v330
    [104]K.Mattle,H.Weinfurter,P.G.Kwiat,and A.Zeilinger,Dense Coding in Experimental Quantum Communication,Phys.Rev.Left.,1996,76(25):4656
    [105]C.H.Bennett,G.Brassard,G.Crepean,et.al.,Teleporting an unknown quantum state via Dual Classical and Einstein-Podolsky-Rosen channels,Phys.Rev.Lett.,1993,70(13):1895
    [106]W.L.Li,C.F.Li,G.C.Guo,Probabilistic teleportation and entanglement matching,Phys.Rev.A,2000,61(3):034301
    [107]W.F.Stinespring,Positive functions on C~*-algebras,Proc.Am.Math.Sot.,1955,6:211
    [108]K.Kraus,General state changes in quantum theory,Ann.Phys,(N.Y.),1971,64:311
    [109]C.W.Helstrom,Mathematics in Science and Engineering,Academic Press,New York,1976,123:p74
    [110]C.A.Fuchs,Information Gain vs.State Disturbance in Quantum Theory,1996,Preprint quant-ph/9611010
    [111]C.King and M.B.Ruskai,Minimal entropy of states emerging from noisy quantum channels,IEEE Trans.Info.Theory,2001,47(1):192
    [112]J.L.Chen and L.M.Kuang,Quantum Dense Coding in Multiparticle Entangled States via Local Measurements,Chin.Phys.Lett.,2004,21(1):12
    [113]M.Keyl,Fundamentals of quantum information theory,Phys.Rep.2002,369:431
    [114]C.H.Bennett and P.W.Shor,Quantum channel capacities,Science,2004,303(5665):1784
    [115]L.Z.Hou and M.F.Fang,Entanglement-enhanced classical communication through generalized amplitude damping channel,Chin.Phys.,2007,16(2):0318
    [116]Y.Wu and X.Yang,Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,Phys.Rev.A,2005,70(6):063812
    [117]L.Z.Hou and M.F.Fang,The Holevo capacity of a generalized amplitude damping channel,Chin.Phys.,2007,16(7):1843
    [118]L.Z.Hou and M.F.Fang,Entanglement-assisted classical capacity of a generalized amplitude damping channel,Chin.Phys.Lett,2007,24(9):2482
    [119]D.Kretschmann and R.F.Werner,Quantum Channels with Memory,2005,Preprint quant-ph/0502106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700