氟铝酸铯—氟铝酸钾铝钎剂的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在铝及铝合金的钎焊过程中,应用较广泛的无腐蚀硬钎剂是Nocolok(KF-AlF_3)钎剂。该钎剂熔化温度558℃,最大不足在于操作温度(600℃)过高,一多半的铝合金由于过烧温度低于600℃而不能用该钎剂。因此,要求无腐蚀、水不溶而熔化温度又较低的钎剂,成为十余年来钎剂发展的重要方面。
     一个有可靠应用前景的钎剂是CsF-AlF_3系。从CsF-AlF_3系的相图可以看出,可用作钎剂的共晶点E_2含x(AlF_3)=42.0mol%,x(CsF)=58.0mol%,熔化温度471℃。但CsF的价格很贵,对钎剂研究的重点在于降低该类钎剂的成本,同时又能保证其活性。因此,研究CsF-AlF_3-KF三元系钎剂,无论是在进一步调整钎剂的熔化温度、改善性能和降低钎剂的成本方面,都有很大的意义。大多数文献都只从理论方面推测该三元钎剂的可行性,虽具有一定的指导意义,但并未在实际应用可行性方面做深入研究。关于以CsF-AlF_3-KF系作为钎剂的报道很少,尤其是作为钎剂在铝及铝合金焊接过程中的钎焊未见报道。
     本文以CsF-AlF_3-KF三元相图为基础,以碳酸铯、碳酸钾、氢氧化铝和氢氟酸为原料,用化学合成法配置了一系列不同摩尔比例的试样,对该试样进行熔清和摊流试验,从中选择能熔清、摊流面积较大、CsF含量较少的FM-2试样(AlF_3:CsF:KF=43mol%:18mol%:39mol%),对其进行改进。采用耐驰STA409PC型差示扫描量热分析仪测定了钎剂的熔点;D/MAX2200VPC粉末X射线衍射仪分析其物相组成;S-3400N扫描电子显微镜分析颗粒形状;按照GB11364-89《钎料铺展性及填缝性试验方法》测定钎剂的铺展面积;搭配Zn-Al30的钎料,采用搭接方法,高频钎焊工业纯铝,CMT4204型微机控制电子万能拉力试验机测试其剪切强度。结果表明:FM-2-4钎剂的熔点为520℃左右,CsF含量较少,成本低,熔点较低;其主相为Cs_2KAl_3F_(12),次相为K_2AlF_5·H_2O和KAlF_4;钎剂形貌较单一和规则;560℃时FM-2-4和FM-2-5的铺展面积较大,均比540℃大;钎焊接头剪切强度为55MPa,接近母材强度,满足实际钎焊要求。
     本文还研究了钎缝组织与力学性能的关系,用金相显微镜和MH-5D型显微硬度计观察了钎焊接头的显微组织并测试其硬度;JCM-5700型分析扫描电子显微镜观察断口形貌。结果表明:FM-2-4(AlF_3:CsF:KF=A4:C2:K4)和FM-2-5(AlF_3 :CsF:KF=A5:C2:K5)钎焊接头未见有气孔、夹渣、裂纹等焊接缺陷;硬度以钎焊缝中心处最高,钎焊缝与母材结合处次之,母材硬度最低;FM-2-4和FM-2-5断口为韧性断裂,宏观结果表现为剪切强度较高。抗拉强度、金相组织和钎缝断口形貌之间存在密切的关系。
As a non-corrosive brazing flux, the Nocolok flux(KF-AlF_3) is widely used in brazing aluminum and its alloys. The melt point of this flux is 558℃and the biggest disadvantage in brazing is the operation temperature (600℃) is too high for most of the aluminum alloys whose collapsed temperature are lower than this , so they cannot braze with it. Therefore, it has becoming an important aspect for developing a flux which has the features of non-corrosive, insoluble and low melt point.
     The system CsF-AlF_3 is a reliable application prospect flux. From the phase diagram we can see that, the eutectic point E_2 contains x(AlF_3)42.0 mol% and x(CsF)58.0 mol% and the melt point is 471℃. But the price of CsF is expensive, therefore the emphasis of the research for fluxes is decreasing the cost and improving the activity. So it has great sense to study the ternary system CsF-AlF_3-KF for adjusting the melt points improving the performance and decreasing the cost. Most of the papers are conjecturing the feasibility of the ternary system CsF-AlF_3-KF from the theory, which has guide meaning but did not do research in application. There are little reports about the ternary system CsF-AlF_3-KF as a flux, especial in the brazing aluminum and its alloys.
     Based on the phase diagram of ternary system CsF-AlF_3-KF, this paper prepared a series of samples from cesium carbonate, potassium carbonate, aluminum hydroxide and hydrofluoric acid by chemical method, the samples were investigated by melting and spread ability test, then improved it from the samples that can melt clearly, has larger spread area and low content of CsF which is FM-2(AlF_3:CsF:KF=43 mol%:18 mol%:39 mol%). Tested the melt point with naichi STA409PC Differential Scanning Calorimetry ; analyzed the structure and pattern of the fluxes with D/MAX2200VPC power X ray diffraction instrument and S-3400N scanning electronic microscope; tested the spread area according to the GB11364-89 and shear strength by CMT4204 microcomputer controlled electron universal tension test machine with brazing filler metal Zn-Al30, lap joint, high frequency and industrial pure aluminum. The results showed that: the melt point of the fluxes FM-2-4 (AlF_3:CsF:KF=A4:C2:K4)and FM-2-5(AlF_3:CsF:KF=A5:C2:K5) is about 520℃, the content of CsF is low , so the cost is low too ; the main phase of the fluxes is Cs_2KAl_3F_(12) and the rest are K_2AlF_5·H_2O or (and) KAlF_4; the pattern is simle and regulur; the spread area is large and larger in 560℃than that in 540℃, the shear strength of the brazing joint is 55 MPa, close to the strength of the base metal, meet the requirement of actual brazing.
     This paper also studied the relationship between the brazing joint and mechanical properties ,tested the microstructure of the brazing joint with metallographic microscope and the hardness with MH-5D micro hardness instrument; observed the fracture pattern with JCM-5700 SEM. The results show that: there are no gas hole, slag patch or crack in the brazing joint with the fluxes FM-2-4(AlF_3:CsF:KF=A4:C2:K4) and FM-2-5(AlF_3 :CsF:KF=A5:C2:K5); the center of the joint has the highest hardness, larger than the place the joint bonding with the base metal and the base metal is the lowest.; the fracture pattern is gliding with the fluxes FM-2-4 and FM-2-5 so the shear strength is high . There is intimate relationship between the shear strength, metallographic and fracture pattern of the brazing joint.
引文
[1] 张启运,庄鸿寿.钎焊手册第二版.北京:机械工业出版社,2008.1-3.
    [2] 邱竹贤.铝冶金物理化学.上海:上海科学技术出版社,1985.26-31.
    [3] 邹僖.焊接方法及设备第四分册钎焊和胶接.北京:机械工业出版社,1981.37-38.
    [4] Cooke W E, Wright T E, Hirschfield J A. Furnace brazing of aluminium with a non-corrosive flux. Weld, 1978, 57(12): 223-231.
    [5] Spitler C A, Pollack S S. On the x-ray diffraction patterns of η- and γ- aluminium. Catalysis, 1981, 69: 241-249.
    [6] Hunter M S, Powle P. Nature and thermally formed oxide film on aluminiu. Electrochenm. Soc, 1956,103(9): 482-489.
    [7] Paganelli M. The removal of oxider from aluminum by brazing fluxes. Inst. Met, 1986,83:33-41.
    [8] Cochran C N, Sleppy W C. Oxidation of high-purity aluminium and 5052 aluminium-magnesium alloy at debated temperatures. Electrochem. Soc., 1961,108(4): 322-335.
    [9] 虞觉奇.铝镁合金表面氧化膜的研究.98中西南(第五届)焊接学术会议论文集,武汉:中国机械工程学会,1998.87-89.
    [10] West E G.. Fluxing action in welding aluminium. Trans. Inst. Weld. 1941, 4(2):55-62.
    [11] Sully A H, Hardy H K, Heal T J. An investigation of thickening and metal entrapment in a light alloy wetting flux. Inst. Metals., 1982,49(1): 1953-1954.
    [12] 中国机械工程学会焊接学会.焊接手册第一卷焊接方法及设备.北京:机械工业出版社,1992.1125-1140.
    [13] Terrill J R., Cochran C N, Stokes J J, Haupin W E. Understanding the machanisms of aluminium brazing can improve results in production operations. Weld, 1971, 50(12): 833-845.
    [14] Miller M A. Method for soldering, fusing or brazing. United States Patent. 2723448,2723449. 1977-08-19.
    [15] 张启运,刘淑祺,郭海,等.熔盐钎剂对铝氧化膜作用过程的研究.金属学报.1985,21(1):35-39
    [16] 张启运,刘淑祺,章于华.熔盐钎剂与铝氧化膜的相互作用.金属学报, 1989,25(2): 121-126.
    [17] Field D J, Steward N I. Mechanistic aspects of the Nocolok flux brazing process, Automotive Engineers. 1988, 12: 1657-1665.
    [18] 张启运,刘淑祺,高念宗.氟铝酸钾高温铝钎剂的湿法合成及其在钎焊时的作用机理.焊接学报,1982,3(4):153-155.
    [19] 广州有色金属研究院.用化学沉淀法合成氟铝酸钾钎剂工艺的研究及其应用.广州:广州有色金属研究院,1995.
    [20] 铝及其合金的无腐蚀、不溶性钎剂钎焊.安庆师范学院学报(自然科学版),1998,4(3):51-54.
    [21] 奚瑾.铝用氟化物钎剂与氯化物钎剂的比较.航天工艺,2001,4:41-46.
    [22] 张启运.铝及其合金的无腐蚀不溶性钎剂(续).焊接,1995,10:3-7.
    [23] Mondolfo L F. Aluminum Alloys:Structure and Properties. London: Butter Worths, 1976. 513-520.
    [24] 刘淑祺,赵世明,张启运.Al-Cu-Ag三元合金体系相图.金属学报,1983,19(2):70-76.
    [25] 刘淑祺,孙国平,张启运.Al-Si-Ge三元合金相图的研究.金属学报,1982,18(4):451-456.
    [26] Chen R, Zhang Q Y. Phase relations in the System AlF_3-RbF. Thermochimica Acta, 1997,297: 125-129.
    [27] Chen R, Cao J, Zhang Q Y. Investigation of the System KAlF_4-KBeF_5 and K_3AlF_6-KBeF_5. Thermochimica Acta, 2000,354: 161-164.
    [28] Chen R, Wu G H, Zhang Q Y. Phase diagram of Pseudo-ternary System KAlF_4-KBeF_5. Thermochimica Acta, 2001, 376: 183-185.
    [29] Suzuki K C, Miura F S, Shimizu F M. Brazing flux. United States Patent PCT/JP85/00705, WO86/04007,1986-06-17
    [30] Chen R, Cao J, Zhang Q Y. A Study on the phase diagram of AlF_3-CsF System. Thermochimica Acta, 1997, 303: 145-150.
    [31] Xu Q, Ma Y M, Qiu Z X. Calculation of thermodynamic properties of LiF-AlF_3, NaF-AlF_3 and KF-AlF_3. Calphad, 2001, 25(1): 31-42.
    [32] Hu J, Zhang Q Y. Investigation of Pseudo-ternary system AlF_3-KF-KCl. Thermochimica Acta, 2003,404: 3-7.
    [33] Tixhon E, Robert E, Gilbert B. The molten MF-AlF_3-MCl system (M = K, Na):A study by Raman spectroscopy. Vibrational Spectroscopy, 1996,13: 91-98.
    [34] 陈荣,高苏,张启运.中温铝钎剂相关三元熔盐体系研究.第十届全国相图 学术会议论文集,北京:中国物理学会,2001.145-148.
    [35] Chen R, Zhang Q Y. Investigation of the Ternary System AlF_3-KF-CsF. Journal of Solid State Chemistry, 2001,161: 80-84.
    [36] Chen R, Zhang Q Y. Pseudo-binary systems CsAlF_4-KAlF_4 and Cs_3AlF_6-K_3AlF_6. Thermochimica Acta, 1999, 335: 135-139.
    [37] Chen R, Zhang Q Y. Investigation of the systems KAlF_4-M_3AlF_6 (M=Rb,Cs). Thermochimica Acta, 2000, 354: 117-120.
    [38] Chen R, Zhang Q Y. Recognition on systems RbF-GaF_3 and CsF-GaF_3. Thermochimica Acta, 2000, 363: 55-59.
    [39] 尹淑梅,张韵慧.无腐蚀、不溶性钎剂的新进展.焊接设备与材料,2002,31(3):45-47.
    [40] 张启运,陈荣,高苏.NOCOLOK铝钎剂研究的进展与延伸.焊接,1998,11:15-18.
    [41] 范富华,桑洪,杨德民.铝用氟化物的配制方法及对钎焊性能的影响.焊接,1995,6:4-6.
    [42] 梁兴华,揭晓华.化合法制备氟铝酸钾钎剂的研究.焊接设备与材料,2006,35(2):51-53.
    [43] 黄惠平,揭晓华,梁兴华,等.化学沉淀法制备纳米氟氯酸钾铝钎剂的研究.金属锻铸焊技术,2008,5:1-3.
    [44] 张韵慧,肖莉,尹淑梅,等.W/O微乳液法制备纳米铝钎剂.纳米技术与精密工程,2004,2(2):85-88.
    [45] 张韻慧,尹淑梅,张则牲,李宁.氟铝酸钾共晶铝钎剂的研究.化学工业与工程.2004,21(3):231-234.
    [46] 尹淑梅.铝及铝合金纳米共晶钎剂的研究:[天津大学学位论文].天津:天津大学,2002.
    [47] 杨凯珍,刘福平,黄云帅.气雾化制备Al-Si钎料粉末的研究.材料研究与应用,2007,1(3):210-213.
    [48] 陈志祥,曾燕,蔡志红,等.新型高温铝钎剂FA-3的研制.广东有色金属学报,2002,12(1):34-38.
    [49] 杜延发.现代仪器分析.长沙:国防科技出版社,1994.19-25.
    [50] 汪秀萍.仪器分析技术.北京:化学工业出版社,2003.151-160.
    [51] 汪尔康.现代无机材料组成与结构表征.北京:高等教育出版社,2006.466-467.
    [52] 熊炳昆,杨新民,罗方承.锆铪及其化合物应用.北京:冶金工业出版社, 2002. 97-99.
    [53] 曹锡章,宋天佑,王杏乔.无机化学.北京:高等教育出版社,1994.940-942.
    [54] 莫文剑.Au-Ag-Si中温共晶钎料的研制:[硕士学位论文].长沙:中南大学,2004.
    [55] 梁兴华.纳米氟铝酸钾铝钎剂的制备与研究:[广东工业大学硕士学位论文].广州:广东工业大学,2006.
    [56] 薛松柏,陈文华,吕晓春,等,LY12铝合金氧化膜与钎剂的反应机制.中国有色金属学院,2004,14(4):543-547.
    [57] 张玲.铝锂合金钎焊技术研究:[南京航空航天大学硕士学位论文].南京:南京航空航天大学,2007.
    [58] 吴长春,郝德庆.物理化学.北京:机械工业出版社,1988.69-71.
    [59] 高念宗.铝钎焊接头的腐蚀问题.焊接学报,1985,24(4):6-18.
    [60] 宋强.铝基钎料钎焊接头的耐蚀性研究:[甘肃工业大学硕士学位论文].甘肃:甘肃工业大学,2002.
    [61] 中国腐蚀与防护学会编.金属腐蚀手册.上海:上海科学技术出版社,1987.1-4.
    [62] 姜虹.不锈钢钎焊接头腐蚀性评价:[南京工业大学硕士学位论文].南京:南京工业大学,2004.
    [63] Xue S B, Dong J, Lu X C, et al. Reaction behaviour between the oxide film of LY12 aluminium alloy and the flux. China Welding, 2004,13(1): 36-40.
    [63] 薛松柏,董键,吕晓春,等.LY12铝合金中温钎焊技术.焊接学报,2003,24(3):21-22.
    [65] 张学军.航空钎焊技术.北京:航空工业出版社,2008.133-134.
    [66] 中国机械工程学会焊接学会.焊接手册(第1卷).北京:机械工业出版社,2001.477-481.
    [67] 周万盛,姚君山.铝及铝合金的焊接.北京:机械工业出版社,2005.49-60.
    [68] 钟群鹏.断口学的发展及微观断裂机理研究.机械强度,2005,27(3):358-359.
    [69] 崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998.34-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700