板坯连铸结晶器流场的数学物理模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入了解和控制结晶器内钢液的流动行为是保证高效连铸工艺顺行和提高铸坯质量的关键。因此,人们十分重视钢液在结晶器内流动特征的研究,最普遍的方法就是物理模拟和数值模拟。针对某钢厂板坯连铸结晶器,本文采用物理模拟和数值模拟的方法,研究了不同浸入式水口及连铸参数对结晶器内钢液流动行为的影响。
     本文运用商业软件FLUENT,依据计算流体动力学理论建立了三维数学模型,计算了不同工艺参数条件下结晶器内的流场和温度场,研究了浸入式水口的浸入深度、浸入式水口的侧孔倾角和拉速对结晶器内钢液的流场和温度场的影响,讨论了不同参数对结晶器内夹杂物去除情况的影响。
     结晶器物理模拟的主要方法是水力学模拟,本文利用相似原理建立1:1的水模型,采用浪高仪测量结晶器自由液面的波动情况,分析了不同工艺参数对结晶器自由液面波动的影响;采用“刺激——响应”实验技术,测量自由液面不同位置处的电导率值随时间变化的数据,计算出钢液在自由液面不同位置处的平均停留时间,通过加入染色示踪剂观察结晶器内的流场和冲击点的位置,分析了各因素对结晶器流场的影响。
     通过对结晶器进行物理模拟和数值模拟研究结果表明:随着拉速的增大,结晶器液面波动增大,流股对窄面的冲击强度增大,结晶器自由液面的温度升高,这有利于保护渣的熔化,但也容易使结晶器出口处的坯壳厚度变薄,不利于坯壳的凝固;随着浸入式水口浸入深度和水口侧孔倾角增大,液面波动减小,但上回流区的高温面积减小,容易产生表面质量问题。拉速对结晶器内夹杂物的去除率影响较大,在拉速小于1.6m/min,夹杂物颗粒直径大于350μm时,夹杂物的去除效果较好;对于直径小于100μm的夹杂物颗粒,去除率都小于20%,说明直径较小的夹杂物颗粒在结晶器中很难被去除;当夹杂物颗粒直径大于400μm时,各种情况的去除率都可以达到80%以上,说明结晶器对颗粒直径较大的夹杂物去除效果较好。板坯为1250×230mm~2,建议采用的最优工艺参数为:浸入式水口的倾角为向下15°,拉速为1.6-1.8m/min,浸入式水口的浸入深度为180~250mm,吹气量为10-20L/min。
It is necessary to know and control the flow pattern of the molten steel in the mould, which is the key point to guarantee higher and more efficiency continuous casting technology and improve the quality of the products. Therefore, the flow pattern of molten steel in the mould was highly valued, the physical simulation and the numerical simulation were the most universal method. In view of the slab continuous casting mould, the flow pattern of molten steel in mould of various SEN parameter was studied by adopting the physical simulation and the numerical simulation.
     Utilizing the commercial software Fluent, the three dimensional mathematical model were set up according to the theory of computational fluid dynamics. The flow field and the temperature field in the mould under the conditions of different technological parameter were calculated. With the influence of immersion depth, angle of the nozzle port, the casting speed, the effect on the flow field and temperature field of the molten steel in the mould were studied. The influence on the inclusion elimination under different parameter was also discussed.
     The main method of physical simulation was the hydraulics simulation.1:1 scale model was established according to the similarity theory. The level fluctuation in the mould was measured by the wave probe. The influence of different technological parameters on the level fluctuation was analyzed. Using the experimental technology that was“stimulate-response”, the electrical conductivity on the different position of the free surface along with the time’s variation was surveyed, and the average residence time on the different position of the free surface was calculated. The flow field and the impact position in the mould were observed through adding the dyeing tracer material, and the influence of various factors on the flow field was analyzed.
     From the present physical and numerical simulation research, the following conclusions can be drawn: While the casting speed increasing, the level fluctuation and the jet impingement strength to the narrow wall increase, the temperature at the free surface also increases. These are benefit for the melting slag, but these are bad for the solidification of slab at narrow wall of the mould. While the submerged depth of the SEN and the outlet angle of the SEN increase, this can improve the level fluctuation and reduce slag entrapment, but this will also form the lower temperature distribution at the upper recirculation in the mould, leading to surface quality problems. The inclusion elimination rate in the mould was more influenced by the casting speed. When the casting speed was less than 1.6m/min and the inclusion diameter was larger than 350μm, the inclusion elimination effect is good. When the inclusion diameter was smaller than 100μm, the elimination rate was lower than 20% under different casting parameters. It is proved that the smaller the diameter inclusion is the more difficult to remove in the mould. When the inclusion diameter was larger than 400μm, the elimination rate may achieve above 80% under different casting parameters. These explain that mould was good to eliminate the inclusion with larger diameter. For the 1250×230mm~2 slab caster, the chosen optimal technological parameters are: the downward 15 deg port angel of the SEN,1.6-1.8m/min of the casting speed, 180-250mm of the submerged depth of the SEN and 10-20L/min of flow rate blowing.
引文
[1]张兴中.我国连续铸钢技术的发展状况和趋势[J].钢铁研究学报,2004,16(6):1-6.
    [2]蔡开科.连铸技术发展[J].山东冶金,2004,26(1):1-9.
    [3] C.M.Park,W.S.Kim,G.J.Park.Thermal analysis of the roll in the strip casting process[J]. Mechanics Research Communications.2003(30):297-310.
    [4] Thomas B G,Mika L J,Najjar F M.Simulation of fluid flow inside a continuous slab casting machine[J].Met Trans B,1990,21B:387-400.
    [5]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [6]杨秉俭,蔡临宁,苏俊义.连铸结晶器中三维紊流场的等效模型[J].西安交通大学学报,1996,30(4):79-85.
    [7]杨宏亮.工艺参数影响连铸过程的数学模型[J].东北大学学报(自然科学版),1998, 19(5):244.
    [8] Wang Yeonhsin.A Study of the Effect of Casting Conditions on Fluid Flow in the Mold Using Water Molding[J].In: Steelmaking Conference Proceeding. A Publication of the Iron and Steel Society,1990(73):473.
    [9]薛伟锋.马钢薄板坯连铸中间包和结晶器数理模拟研究[D].重庆:重庆大学,2005.
    [10] Huang X, Thomas B G, Najjar F M. Modeling Superheat Removal During Continuous Casting Of Steel Slabs[J]. Met Trans B, 1992(23B):339-356.
    [11] T Hneyands,J Hcrbertson. Flow dynamics in thin slab caster molds[J].Steel Reserarch.1995,66(7):287-293.
    [12]万晓光,韩传基,蔡开科.连铸板坯浸入式水口试验研究[J].钢铁,2000,35(9):20-23.
    [13]齐新霞,包燕平.结晶器钢液卷渣指数的讨论[J].钢铁研究,2005(3):17-20.
    [14]包燕平,田乃媛,徐保美.薄板坯连铸机新型浸入式水口[J].北京科技大学学报,2002,24(3):262-265.
    [15]陆巧彤,杨荣光,王新华,等.板坯连铸结晶器内液面波动的水模型研究[J].包头钢铁学院学报,2006,25(1):13-17.
    [16]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[M].北京:冶金工业出版社,2001.17-18,325-331.
    [17] Brain G Thomas.Application of Mathematical Models to the Continuous Slab Casting Mold[J].I&SM,1989,16(12):53-66.
    [18]陈栋梁,杨文改,干勇,等.连铸弯月面区域凝固传热的数值仿真研究[J].钢铁,1997,32(8):26-29.
    [19]李宝宽,赫冀成.炼钢中的计算流体力学[M].北京:冶金工业出版社,1998.
    [20]包燕平,张涛,蒋伟,等.板坯连铸结晶器内钢液流场的三维数学模型[J].北京科技大学学报,2001,23(2):106-110.
    [21]高吉祥,张卫文,费劲,等.连续铸造凝固过程数值模拟的研究进展[J].铸造技术,2003,24(5):362-364.
    [22]姚征,陈康明.CFD通用软件综述[J].上海理工大学学报,2002,24(2):137-144.
    [23] Mcdavid R M.Fluid Flow and Heat Transfer Behavior of Top-Surface Flux Layers in Steel Continuous Casting[M].Unbana-Champaign,1994.
    [24] Mcdavid R M,Thomas B G.Flow and Thermal Behavior of the Top Surface Flux/Powder Layers in Continuous Casting Molds [J].Metall. Trans. B 1996,(27B):672-684.
    [25]杨秉俭,苏俊义.连铸结晶器中钢液三维紊流流动的数值模拟[J].西安交通大学学报,1997,31(4):67-72.
    [26] Szekely J,Yadoya R T.Physical and Mathematical Modeling of the Flow Field in the Mold Region in Continuous Casting System[J].Met Trans B,1973(4):1379-1388.
    [27] Launder B E,Spading D B.Numerical calculation of Turbulent Flows[J].Comput Method in Apply Method in Apply Mech and Eng,1974.
    [28] Thomas B G,Mika L J,Najjar F M.Simulation of Fluid Flow Inside Continuous Slab-casting Machine[J].Met Trans B,1990,(21B):387-400.
    [29] X Huang,B G Thomas,R C Sussman.Simulation of argan gas flow effects in a continuous slab caster[J].Metall Trans,1994(24):527-547.
    [30] Y H Ho,C H Chen,W S Huang.Analysis of molten steel flow in slab continuous caster mold[J].ISIJ Int,1994,34:255-264.
    [31] O’Connor Thomas G,Dantzig Jonathan A.Modeling the thin-slab continuous casting mold[J].Metall Mater Trans,1994,25(3):443-457.
    [32] Nam H,Park H S,Yoon J K. Numerical analysis of fluid flow and heat transfer in the funnel type mold of a thin slab caster[J].ISIJ International,2000,40(9):886-892.
    [33] Yang Hongliang,Zhao Loamgang.Mathematical Simulalion on Conpled Flow, Heat,and Solute Transport in Slab Continuous Casting Process[J].Metallurgical and materials transactions B,1998, 29B(12):1345-1356.
    [34]黄维通,伊炳希,徐保美,等.连铸结晶器内三维流动过程的数值计算方法[J].北京科技大学学报,1994,16(6):527-531.
    [35] KIM Deok-Soo,KIM Woo-Seung,CHO Keo-Hyeon.Numerical Simulation of the Coupled Turbulent Flow and Macroscopic Solidification in Continuous Casting with Electromagnetic Brake [J].ISIJ International,2000,40(7):670-676.
    [36]刘和平,王忠英.板坯结晶器液面波动的数学物理模拟及其特点[J].钢铁研究,2002(4):47-51.
    [37]孙于萍,李杰,乐可襄,等.板坯连铸结晶器钢液流场的数学模拟[J].特殊钢,2005,26(2):12-15.
    [38]郭大勇,关勇,贾洪明,等.厚板坯连铸结晶器流场数值模拟[J].鞍钢技术,2006(1):11-14.
    [39]张佩.重钢板坯连铸结晶器浸入式水口研究及应用[D].重庆:重庆大学,2001.
    [40]伍成波,李志国,王谦.连铸结晶器内钢液凝固行为的计算机仿真[J].炼钢,2004,20(3):45-48.
    [41]李中原,赵九洲.平行板型薄板坯连铸结晶器中钢液流动、凝固及溶质分布的三维耦合数值模拟[J].金属学报,2006,42(2):211-217.
    [42] Yin Zhang,Liguo Cao,Youduo He,et al.Flow and Temperature Fields in Slab Continuous Casting Molds[J].Journal of University of Science and Technology Beijing,2000,7(2):103-106.
    [43]邓安元,赫冀成,贾光霖.方坯凝固过程中夹杂物的运动轨迹[J].东北大学学报,2000,21(5):532-535.
    [44]雷洪,朱苗勇,赫冀成.连铸结晶器内非金属夹杂物运动行为模拟[J].过程工程学报, 2001,1(2):138-141.
    [45]李宝宽,霍慧芳,栾叶君.流动控制结晶器内磁场和吹氩对夹杂物粒子群运动的影响[J].金属学报, 2003,39(9):932-937.
    [46] Takatani Kouji, Sirota Yoshiyasu, Higuchi Yoshihiko,et al. Fluid flow、heat transfer and the behavior of inclusion in the process of continuous casting[J].Sumitomo Metals,1993,45(3):19-25.
    [47] Man Y.Ha,Hyun G.Lee,Seung H.Seong.Numerical simulation of three-dimensional flow,heat transfer,and solidification of steel in continuous casting mold with electromagnetic brake [J].Journal of Materials Processing Technology,2003,(133):322-329.
    [48]于海岐,李慧琴,王宝峰,等.板坯结晶器电磁制动过程的三维流场数值模拟[J].包头钢铁学院,2005,24(3):217-223.
    [49]徐愧儒,刘光穆,孟征兵,等.电磁制动对CSP结晶器内坯布壳冲击和弯月面温度的影响[J].特殊钢,2006,27(1):11-14.
    [50]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社,2004:19-26.
    [51]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [52] FLUENT User′s Guide. Fluent Int.,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700