类普鲁士蓝纳米修饰电极对单糖分子、H_2O_2的识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1978年首次用电沉积的方法将普鲁士蓝修饰到电极表面以来,普鲁士蓝在传感器方面得到了广泛的应用。但传统的普鲁士蓝修饰电极在中性偏碱性溶液中不稳定、易溶解,大大限制了其应用价值。所以研究者通过高分子聚合膜将普鲁士蓝固定在电极表面,提高了普鲁士蓝在碱性溶液中的稳定性,同时也改善了传感器的性能。另外,近年来使用过渡金属离子代替普鲁士蓝中的部分铁离子,合成含过渡金属的类普鲁士蓝配合物正在成为研究的热点。本论文中,我们首先利用聚二烯丙基二甲基氯化铵和壳聚糖作为稳定剂合成了普鲁士蓝纳米溶胶;接着用铈离子代替部分铁离子,合成了铈掺杂的类普鲁士蓝纳米溶胶。实验中采用透射电镜(TEM)、紫外-可见吸收光谱(UV-Vis)、共振瑞利散射(RRS)光谱等技术对合成的类普鲁士蓝纳米进行了表征,并将其应用于修饰电极的制备。本文的主要研究内容及成果如下:
     1.聚二烯丙基二甲基氯化铵和壳聚糖保护的普鲁士蓝/金纳米/4-巯基苯硼酸自组装修饰玻碳电极对单糖分子的电化学识别
     研究了一种新的用于测定单糖分子的电流型传感器。本实验中首先将聚二烯丙基二甲基氯化铵(PDDA)和壳聚糖(CS)作为保护剂合成的普鲁士蓝纳米修饰在玻碳电极表面,然后利用自组装技术,将金纳米组装在修饰有普鲁士蓝的电极表面,最后利用金和巯基之间强的成键能力,将4-巯基苯硼酸(MPBA)连接到电极上,制作完成了新的传感器。实验中利用透射电子显微镜和紫外-可见分光光度计对新合成的普鲁士蓝纳米进行了表征,同时利用循环伏安和交流阻抗技术对新制备的修饰电极进行了表征。除此之外,测定了修饰电极与单糖分子结合前后的表面pKa值,并对修饰电极响应单糖分子的最佳酸度值进行了计算。实验表明,该修饰电极在Fe(CN)63-/4-为电化学探针时,对葡萄糖、甘露糖和果糖有较好的电化学响应,建立了一种准确测定单糖分子的新方法。
     2.多层组装结构的电流型传感器用于对单糖分子的测定
     采用滴膜的方法首先将聚二烯丙基二甲基氯化铵和壳聚糖为保护剂合成的纳米普鲁士蓝固定在玻碳电极表面,此时电极表面带有大量正电荷并存在大量的氨基;然后利用静电吸附及金纳米与氨基之间的相互作用,将金纳米组装在普鲁士蓝修饰电极的表面;接着将巯基乙胺组装在金纳米表面;最后根据氨基与醛基可以形成希夫碱的反应,依次将戊二醛和3-氨基苯硼酸组装在修饰有巯基乙胺的电极表面,得到了PDDA和CS保护的普鲁十蓝/金纳米/巯基乙胺/3-氨基苯硼酸修饰玻碳电极。利用循环伏安和交流阻抗技术对该修饰电极的电化学行为进行了表征,同时对该修饰电极与单糖分子结合前后的表面pΚa值进行了测定,准确计算了该修饰电极响应不同单糖分子时的最佳pH值。实验表明,在含有Fe(CN)63-/4-探针的溶液中,该修饰电极对半乳糖、甘露糖和果糖有很好的电化学响应,并且峰电流的变化与单糖浓度的变化存在较好的线性关系,所以该法有望成为测定单糖分子的一种新方法。
     3.铈掺杂纳米普鲁士蓝的研究及其对过氧化氢的响应
     采用聚二烯丙基二甲基氯化铵和壳聚糖两种有机高聚物作为保护剂,用金属铈离子代替普鲁士蓝中的部分铁离子,首次合成了铈离子掺杂的类普鲁十蓝纳米溶胶。利用透射电子显微镜、紫外光谱仪和荧光光谱仪对该类普鲁士蓝纳米颗粒的大小、形状、吸收峰以及散射峰的位置和强度进行了表征。之后将该纳米溶胶滴涂在玻碳电极表面,制备了类普鲁士蓝纳米修饰的电极,并利用循环伏安和差分脉冲技术对该电极的电化学行为进行了表征。研究发现该修饰电极对过氧化氢分子有较好的催化还原作用,且在过氧化氢浓度为5.0×10-5~1.4×10-2M范围内,还原峰电流与浓度之间存在较好的线性关系,因此建立了一种定量测定过氧化氢的新方法。
Prussian blue (PB) is an inorganic polycrystal and has been widely used as an electron transfer mediator in the amperometric biosensors since its deposition on the surface of electrodes in 1978. However, the traditional PB modified electrodes are not stable in neutral and alkaline pH and the PB films resolve easily, which greatly limit their application. To solve this problem, a large number of PB nanoparticles have been synthesized with the stabilizers, such as PVP, PSS, PVA, and so on. These protective polymers could not only improve the stability of PB modified electrode in alkaline solutions, but also bring attractive properties to the nanoparticles. In addition, the cubic PB structure is not limited to the iron ion and combinations of several transition metal ions in different oxidation states such as Co, Ni, Cu, etc.. In this paper, FeCl3 and K4[Fe(CN)6] were used to synthesize PB nanoparticles protected by chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA). Furthermore, PB analogue nanoparticles also protected by both CS and PDDA were synthesized using Ce(NO3)3 and K4[Fe(CN)6]. Transmission electron microscopy (TEM), UV-Vis absorption spectroscopy and resonance Rayleigh scattering (RRS) technique were employed to characterize the PB and PB analogue nanoparticles.
     The main content and some conclusions of the thesis are as follows:
     1. Electrochemical recognition for sugars on the chitosan-poly(diallyldimethylammonium chloride)-Prussian blue /nano-Au/4-mercaptophenylboronic acid modified glassy carbon electrode
     A new amperometric biosensor for the detection of sugars was prepared. A glassy carbon electrode was modified with PB nanoparticles protected by CS and PDDA and then gold nanoparticles were assembled onto the electrode followed by the assembly of 4-mercaptophenylboronic acid (MPBA) onto the surface of gold nanoparticles through a sulfur-Au bond to fabricate a self-assembled biosensor. The PB nanoparticles protected by CS and PDDA were characterized using TEM and UV-vis absorption spectroscopy. The characterization of the self-assembled electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The pKa values of the MPBA monolayer before and after combining with sugars were determined. The fabricated electrode exhibited excellent performances for determining D(+)-glucose, D(+)-mannose and D(-)-fructose on the basis of the change in ip of the Fe(CN)63-/4- ion in the presence of sugars.
     2. Multilayer structured amperometric biosensor based on the self-assembling technique for recognition of sugars
     PB nanoparticles protected by CS and PDDA were cast onto a glassy carbon electrode surface directly. And gold nanoparticles were then assembled onto the electrode through strong binding interaction between gold nanoparticles and amino groups of CS and electrostatic interaction between oppositely charged gold nanoparticles and PDDA. Following this, cysteamine hydrochloride (Cys) was assembled onto the gold nanoparticles through a sulfur-Au bond, further reacted with glutaraldehyde (Glu) via Schiff s base formation. Finally,3-aminophenylboronic acid (APBA) was immobilized to the surface of upper modified electrode. TEM was employed to characterize CS and PDDA protected PB nanoparticles (CS-PDDA-nano-PB). The properties of the modified electrode were characterized by CV and EIS. The pKa values of the APBA monolayer before and after combining with sugars were determined. The fabricated electrode exhibited excellent performances for determining D(+)-galactose, D(+)-mannose and D(-)-fructose on the basis of the change in ip of the Fe(CN)63-/4-ion in the presence of sugars. Based on this, a new biosensor for determining sugars has been developed.
     3. A new material based on nanostructured Prussian blue analogue film doped with Ce(III) for development of hydrogen peroxide sensor
     PB analogue nanoparticles doped with Ce3+, have been synthesized using CS and PDDA as protective matrix, which were cast onto a glassy carbon electrode surface directly. TEM, UV-vis absorption spectroscopy and resonance Rayleigh scattering (RRS) technique were employed to characterize CS and PDDA protected PB analogue nanoparticles. And the properties of this modified electrode were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Compared with the bare glassy carbon electrode, the modified electrode exhibited excellent performances for determining H2O2 And the electrochemical behavior of H2O2 at the modified electrode was investigated by CV and differential pulse voltammetry (DPV). A good linearity was obtained in the concentration range of 5.0×10-5~1.4~10-2M with a detection limit of 8.21 x 10-6M under the optimum conditions.
引文
[1]Itaya K, Uchida I, Neff VD. Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues. Ace Chem Res 1986,19,162-168.
    [2]Kaneko M, Hara S, Yamada A. A photoresponsive graphite electrode coated with Prussian blue. J Electroanal Chem 1985,194,165-168.
    [3]Mortimer RJ. Electrochromic materials. Chem Soc Rev 1997,26,147-156.
    [4]Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate, Electrochim Acta 2001,46,4371-4378.
    [5]Mingotaud C, Lafuente C, Amiell J, Delhaes P. Ferromagnetic langmuir-blodgett film based on Prussian blue. Langmuir 1999,15,289-292.
    [6]Koncki R, Rev C. Chemical sensors and biosensors based on Prussian blues. Anal Chem 2002, 32,79-96.
    [7]Shan YP, Yang GC, Gong J, Zhang XL, Zhu LD, Qu LU. Prussian blue nanoparticles potentiostatically electrodeposited on indium tin oxide/chitosan nanofibers electrode and their electrocatalysis towards hydrogen peroxide. Electrochim Acta 2008,53,7751-7755.
    [8]Pyrasch M, Toutianoush A,Jin WQ, Schnepf J,Tieke B. Self-assembled films of Prussian blue and analogues:optical and electrochemical properties and application as Ion-sieving membranes. Chem Mater 2003,15,245-254.
    [9]Sato O, Lyoda T, Fujishima A, Hashimoto K. Science 1996,271,704-705.
    [10]Zhou PH, Xue DS, Luo HQ, Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrsys. Nano Lett 2002,2,845-847.
    [11]Ohkoshi SI., Arai KI, Sato Y, Hashimoto K. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridge metal assembly. Nat Mater 2004,3,857-861.
    [12]Taguchi M, Yamada K, Suzuki K, Sato O, Einaga Y. Photoswitchable magnetic nanopariticles of Prussian blue with amphiphilic. Chem Mater 2005,17,4554-4559.
    [13]DeLongchamp DM, Hammond PT. Multiple-color electrochromism from layer-by-layer assembled polyaniline/Prussian blue nanocomposite thin films. Chem Mater 2004,16, 4799-4805.
    [14]Rosseinsky DR, Glasser L, Jenkins HDB. Thermodynamic clarification of the curious ferric/potassium ion exchange accompanying the electrochromic redox reactions of Prussian blue, iron(Ⅲ) hexacyanoferrate. J Am Chem Soc 2004,126,10472-10477.
    [15]Moscone D, Ottavi DD, Compagnone D, Palleschi G. Construction and Analytical Characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal Chem 2001,73,2529-2535.
    [16]Pan KC, Chuang CS, Cheng SH, Su YO. Electrocatalytic reactions of nitric oxide on Prussian blue modified electrodes. J Electroanal Chem 2001,501,160-165.
    [17]Jin WQ, Toutianoush A, Pyrasch M., Schnepf J, Gottschalk H, Rammensee W, Tieke B. Self-assembled films of Prussian blue and analogues:structure and morphology, elemental composition, film growth, and nanosieving of Ions. J Phys Chem B 2003,107,12062-12070.
    [18]Kathiresan K, Manivannan S, Nabeel MA, Dhivya B.Studies on silver nanoparticles synthesized by a marine fungus, penicillium fellutanum isolated from coastal mangrove sediment. Colloid surface B:Biointerfaces 2009,1,133-137.
    [19]Liu H, Du XL, Gao PY, Zhao JH, Fang J, Shen WG. Distinct magnetic properties of one novel type of nanoscale cobalt-iron Prussian blue analogues synthesized in microemulsion. J Magn Magn Mate 2010,322,572-577.
    [20]Pournaghi-Azar MH, Dastangoo H. Electrochemical behavior of a novel palladium pentacyanonitrosylferrate modified aluminum electrode. Electrochim Acta 2003,48, 1797-1805.
    [21]Zhang D, Wang K, Sun DC, Xia XH, Chen HY. Ultrathin layers of densely packed Prussian
    blue nanoclusters prepared from a ferricyanide solution. Chem Mater 2003,15,4163-4165.
    [22]Eftekhari A. Electrochemical behavior and electrocatalytic activity of a zinc hexacyanoferrate film directly modified electrode. J Electroanal Chem 2002,537,59-66.
    [23]Li Y, Lin CG, Cao RJ. Study on nanometer ε-cobalt power prepared by precipitation-hydrogen reduction in Co(Ⅲ)-(NH4)2CO3-H2O system. Int J Refract Met H 2010,28,270-273.
    [24]Basta AH, Fierro V, EI-Saied H, Celzard A.2-steps KOH activatio of rice straw: an efficint method for preparing high-performance activated carbons.Bioresource technol 2009,100, 3941-3947.
    [25]Itaya K, Ataka T, Toshima S. Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 1982,104,4767-4772.
    [26]Shimamoto N, Ohkoshi SL, Sato O, Hashimoto K. Control of charge-transfer-induced spin transition temperature on cobalt-iron Prussian blue analogues. Inorg Chem 2002,41,678-684.
    [27]Bleuzen A, Lomenech C, Escax V, Villain FU, Varret FU, Moulin CCD, Verdaguer M. Photoinduced ferrimagnetic systems in Prussian blue analogues c1xCo4[Fe(CN)6]y (C1= Alkali Cation).1. Conditions to observe the phenomenon. J Am Chem Soc 2000,122,6648-6652.
    [28]Escax V, Bleuzen A, Moulin CCD, Villain F, Goujon A, Varret F, Verdaguer M. Photochemical incorporation of siliver quantum dots in monodisperse silica colloids for photonic crystal applications. J Am Chem Soc 2001,123,12536-12543.
    [29]Park JH, Huh YD, Cimmar E, Gamble SG, Talham DR, Meisel MW. Photoinduced magnetization in a thin Fe-CN-Co film. J Magn Magn Mater 2004,272-276,1116-1117.
    [30]Park JH, Eizmar E, Meise MW, Huh YD, Frye F, Lane S, Talham DR. Anistropic photoinduced magnetism of a RbjCok[Fe(CN)6], nH2O thin film. Appl Phys Lett 2004,85,3797-3800.
    [31]Frye FA, Pajerowski DM, Lane SM, Anderson NE, Park JH, Meisel MW, Talham DR. Effect of film thickness on the photoinduced decrease in magnetism for thin films of the cobalt iron Prussian blue analogue Rbo.7Co4[Fe(CN)6]3.0. Polyhedron 2007,26,2281-2286.
    [32]Makowski O, Stroka J, Kulesza PJ, Malik MA, Galus Z. Electrochemical identity of copper hexacyanoferrate in the solid-state:evidence for the presence and redox activity of both iron and copper ionic sites. J Electroanal Chem 2002,532,157-164.
    [33]Cafun JD, Londiniere L, Riviere E, Bleuzen A. Metal dilution effects on the switching properties of CoFe Prussian blue analogues. Inorg Chim Acta 2008,361,3555-3563.
    [34]Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R. Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. J Phys Chem B 1998,102,1870-1876.
    [35]Kulesza PJ, Malik MA, Zamponi S, Berrettoni M, Marassi R. Electrolyte-cation-dependent
    coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferratec(II&III) films. J Electroanal Chem 1995,397,287-292
    [36]Cai CX, Ju HX, Chen HY. Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a microband gold electrode modified with nickel hexacyanoferrate. Anal Chim Acta 1995,310, 145-151.
    [37]Zhou DM, Ju HX, Chen HY. Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion. J Electroanal Chem 1996, 408,219-223.
    [38]Malik MA, Miecznikowski K, Kulesza PJ. Quartz crystal microbalance monitoring of mass transport during redox processes of cyanometallate modified electrodes:complex charge transport in nickel hexacyanoferrate films. Electrochim Acta 2000,45,3777-3784.
    [39]Dong SJ, Jin Z. Electrochemistry of indium hexacyanoferrate film modified electrodes. Electrochim Acta 1989,34,963-968.
    [40]Kulesza PJ, Faszynska M. Indium(III)-hexacyanoferrate(Ⅲ,Ⅱ) as an inorganic material analogous to redox polymers for modification of electrode surfaces. Electrochim Acta 1989,34, 1749-1753.
    [41]Kulesza PJ, Faszynska M. Indium(IIl)-hexacyanof errate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates. J Electroanal Chem 1988,252,461-466.
    [42]Cui XP, Hong L, Lin XQ. Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt. J Electroanal Chem 2002,526,115-124.
    [43]Kulesza PJ, Malik MA, Skorek J, Miecznikowski K, Zamponi S, Berrettoni M, Giorgetti M, Marassi R. Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate. J Electrochem Soc 1999,146, 3757-3761.
    [44]Reddy SJ, Dostal A, Scholz F. Solid state electrochemical studies of mixed nickel-iron hexacyanoferrates with the help of abrasive stripping voltammetry. J Electroanal Chem 1996, 403,209-212.
    [45]Kulesza PJ, Malik MA, Schmidt R, Smolinska A, Miecznikowski K, Zamponi S, Czerwinski A, Berrettoni M, Marassi R. Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium. J Electroanal Chem 2000,487, 57-65.
    [46]Ricci F, Goncalves C, Amine A, Gorton L, Palleschi G, Moscone D. Electroanalytical study of
    Prussian blue modified glassy carbon paste electrodes. Electroanal 2003,15,1204-1211.
    [47]Zakharchuk NF, Meyer B, Hennig H, Scholz F, Jaworski A,.Stojek Z. A comparative study with Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian blue. J Electroanal Chem 1995,398,23-35.
    [48]Mario P, Ali T, Wanqin J, Judit S, Bernd T. Self-assembled films of Prussian blue and analogues:optical and electrochemical properties and application as ion-sieving membranes. Chem Mater 2003,15,245-254.
    [49]Lupu S, Mihailciuc C, Pigani L, Seeber RL, Totir N, Zanardi C. Electrochemical preparation and characterisation of bilayer films composed by Prussian Blue and conducting polymer. Electrochem Commun 2002,4,753-758.
    [50]Yu H, Sheng QL, Li L, Zheng JB. Rapid electrochemical preparation of a compact and thick Prussian blue film on composite ceramic carbon electrode from single ferricyanide solution in the presence of HAuCl4. J Electroanal Chem 2007,606,55-62.
    [51]Li NB, Park JH, Park K, Kwon SJ, Shin H, Kwak J. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosens Bioelectron 2008,23,1519-1526.
    [52]Abbaspour A, Kamyabi MA. Electrochemical formation of Prussian blue films with a single ferricyanide solution on gold electrode. J Electroanal Chem 2005,584,117-123.
    [53]Itaya K, Akahoshi H, Toshima S. Electrochemistry of Prussian blue modified electrodes:an electrochemical preparation method. J Electrochem Soc 1982,129,1498-1500.
    [54]Feldman BJ, Murray RW. Electron diffusion in wet and dry Prussian blue films on interdigitated array electrodes. lnorg Chem 1987,26,1702-1708.
    [55]Karyakin AA, Karyakina EE. Prussian Blue-based "artificial peroxidase" as a transducer for hydrogen peroxide detection, Application to Biosensors. Sensor Actuat B 1999,57,268-273.
    [56]Gerard M, Chaubey A, Malhorta BD. Application of conducting polymers to biosensors. Biosens Bioelectron 2002,17,345-359.
    [57]Cosnier S. Biomolecule immobilisation on electrode surfaces by entrapment or attachment to electrochemically polymerised films. Biosens Bioelectron 1999,14,443-456.
    [58]Nakayama M, Iino M, Ogura K. In situ FTIR studies on Prussian Blue (PB)-, polyaniline (PAn) and inner PB/outer PAn film modified electrodes. J Electroanal Chem 1997,440, 125-130.
    [59]Garjonyte R, Malinauskas A. Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer. Sensor Actuat B 1999,56,85-92.
    [60]Uemura T, Kitagawa S. Prussian Blue nanoparticles protected by poly(vinylpyrrolidone). J Am
    Chem Soc 2003,125,7814-7815.
    [61]Zhang Q, Zhang L, Li JH. Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochim Acta 2008,53,3050-3055.
    [62]Wang L, Guo SJ, Hu XG, Dong SJ. Layer-by-layer assembly of carbon nanotubes and Prussian blue nanoparticles:A potential tool for biosensing devices. Colloids and Surfaces A: Physicochem Eng Aspects 2008,317,394-399.
    [63]Hornok V, Dekany I. Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J Colloid Interf Sci 2007,309,176-182.
    [64]Chen SH, Yuan R, ChaYQ, Xu Y, Min LG, Li N. A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors. Sensor Actuator B 2008,135,236-244.
    [65]Chi Q, Dong S. Amperometric biosensors based on the immobilization of oxidases in a Prussian Blue film by electrochemical codeposition. Anal Chim Acta 1995,310,429-436.
    [66]Garcia-Jareno A, Navarro-Laboulais J, Vicente F. Electrochemical study of Nafion membranes/Prussian Blue films on ITO electrodes. Electrochim Acta 1996,41,2675-2682.
    [67]Karyakin AA, Gitelmacher O, Karyakina EE. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal Lett 1994,27,2861-2869.
    [68]Zhang D, Zhang K, Yao YL, Xia XH, Chen HY. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Langmuir 2004,20,7303-7307.
    [69]Karyakin AA, Karyakina EE, Gorton L. The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. J Electroanal Chem 1998,456,97-104.
    [70]Karyakin AA, Karyakina EE, Gorton L. Amperometric biosensor for glutamate using Prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. Anal Chem 2000,72, 1720-1723.
    [71]Mattos ILD, Gorton L, Laurell T, Malinauskas A, Karyakin AA. Development of biosensors based on hexacyanoferrates, Talanta 2000,52,791-799.
    [72]Lin MS, Jan BL. Determination of hydrogen peroxide by utilizing a cobalt(II) hexacyanoferrate-modifiled glass carbon electrode as a chemical sensor. Electroanal 1997,9, 340-344.
    [73]Burzynska L, Gumowska W, Rudnik E, Partyka J. Mechanism of the anodic dissolution of Cu70-Co4-Pb7 alloy originated from reduced copper converter slag in an ammoniacal solution:
    recovery of copper and cobalt. Hydrometallurgy.2008,92,34-41.
    [74]Jaffari SA, Pickup JC. Novel hexacyanoferrate(Ⅲ)-modified carbon electrodes:application in miniaturised biosensors with potential for in vivo glucose sensing. Biosens Bioelectron 1996, 11,1167-1175.
    [75]Jaffari SA, Turner APF. Novel hexacyanoferrate(III) modified graphite disc electrodes and their application in enzyme electrodes (part I). Biosens Bioelectron 1997,12,1-9.
    [76]Wang Y, Zhu J, Zhu R, Zhu Z, Lai Z, Chen Z. Chitosan/ Prussian Blue-based biosensors. Meas Sci Technol 2003,14,831-836.
    [77]Chiu JY, Yu CM, Yen MJ, Chen LC. Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes, Biosens Bioelectron 2009,24,2015-2020.
    [78]Li JP, Wei XP, Yuan YH. Synthesis of magnetic nanoparticles composed by Prussian blue and glucose oxidase for preparing highly sensitive and selective glucose biosensor. Sensor Actuator B:Chem 2009,139,400-406.
    [79]Xian YZ, Hu Y, Liu F, Xian Y, Feng LJ, Jin LT. Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing, Biosens Bioelectron 2007,22, 2827-2833.
    [80]Wang XY, Gu HF, Yin F, Tu YF. A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens Bioelectron 2009,24,1527-1530.
    [81]Li L, Sheng QL, Zheng JB, Zhang HF. Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites. Bioelectrochem 2008,74,170-175.
    [82]Li J, Peng T, Peng Y. A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a Prussian blue modified elctrode. Electroanal 2003,15,1031-1037.
    [83]Vidal JC, Espuelas J, Garcia-Ruiz E, Castillo JR. Amperometric cholesterol biosensors based on the elctropolymerisation of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers. Biosens Bioelectron 2004,64,655-664.
    [84]Garjonyte R, Yigzaw Y, Meskys R, Malinauskas A, Gorton L. Prussian-Blue and lactate oxidase-based amperometric biosensor for lactic acid. Sensor Actuator B 2001,79,33-38.
    [85]Garjonyte R, Malinauskas A. Investigation of baker's yeast Saccharomyces cerevisiae and mediator-based carbon paste electrodes as amperometric biosensor for lactic acid. Sensor Actuator B 2003,96,509-515.
    [86]Karyakin AA, Karyakina EE, Gorton L. Prussian-Blue based amperometric biosensors in flow-injection analysis. Talanta 1996,43,1597-1606.
    [87]Ricci F, Amine A, Tuta CS, Ciucu AA, Lucarelli F, Palleschi G, Moscone D. Prussian Blue and
    enzyme bulk modified screenprinted electrodes for hydrogen peroxide and. glucose determination with improved storage and operational stability. Anal Chim Acta 2003,485, 111-120.
    [88]Fiorito PA, Cordoba de Torresi I. Optimized multilayer oxalate biosensor. Talanta 2004,62, 649-654.
    [89]Ricci F, Palleschi G. Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes. Biosens Bioelectron 2005,21,389-407.
    [90]Dong SQ, Zhang S, Cheng X, He PG, Wang QJ, Fang YZ. Simultaneous determination of sugars and ascorbic acid.by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and CU2O. J Chromatogr A 2007, 1161,327-333.
    [91]Lv Y, Zhang ZJ, Chen FN. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents. Talanta 2003,59, 571-576.
    [92]Bhandari P, Kumar N, Singh B, Kaul VK. Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 2008,1194,257-261.
    [93]Chen G, Zhang LY, Wu XL, Ye JN. Determination of mannitol and three sugars in Ligustrum lucidum Ait, by capillary electrophoresis with electrochemical detection. Anal Chim Acta 2005, 530,15-21.
    [94]Zuo SH, Teng YJ, Yuan HH, Lan MB. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film. Sensor Actuator B Chem 2008,133,555-560.
    [95]Pribyl J, Skladal P. Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples. Biosens Bioelectron 2006,21,1952-1959.
    [96]Lei CX, Hu SQ, Shen GL, Yu RQ. Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 2003,59,981-988.
    [97]Bartlett PN, Birkin PR, Wang JH, Palmisano F, Benedetto GD. An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal Chem 1998,70,3685-3694.
    [98]Delvauxa M, Walcarius A, Champagne SD. Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta 2004,525,221-230.
    [99]Nowall WB, Kuhr WG. Determination of hydrogen peroxide and other molecules of biologicl
    importance at an electrocataltic surface on a carbon fiber microelectrode. Electroanal 1997,9, 102-109.
    [100]Wang Y, Huang JH, Zhang CG, Wei JB, Zhou XY. Determination of hydrogen peroxide in rainwater by using a polyaniline film and platinum particles Co-modifiled carbon fiber microelectrode. Electroanal 1998,10,776-778.
    [101]Matsubara C, Kawamoto N, Takamura K. Oxo[5,10,15,20-tetra (4-pyridyl) porphyrinato] titanium (IV):an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 1992,117,1781-1785.
    [102]Zhang LS, Wong GTF. Optimal conditions and sample storage for the determination of H2O2 in marine waters by the scopoletin-horseradish peroxidase fluorometric method. Talanta 1999, 48,1031-1039.
    [103]Hurdis EC, Romeyn JH. Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Anal Chem 1954,26,320-325.
    [104]Hanaoka S, Lin JM, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(Ⅱ)-ethanolamine complex immobilized on resin. Anal Chim Acta 2001,426,57-64.
    [105]Li WJ, Yuan R, Chai YQ, Zhou L, Chen SH, Li N. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor. J Biochem Biophys Methods 2008,70,830-837.
    [106]Liu Y, Chu ZY, Jin WQ. A sensitivity-controlled hydrogen peroxide sensor based on self-assembled Prussian blue modified electrode. Electrochem Commun 2009,11,484-487.
    [107]Guidelli R, Pergolo F, Raspi G. Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidicmedia. Anal Chem 1972,44,745-755.
    [108]Wang J, Naser N, Angnes L, Wu H, Chen L. Metal-dispersed carbon paste electrodes. Anal Chem 1992,64,1285-1293.
    [109]Zhang Z, Liu H, Deng J. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film onplatinized glassy carbon electrode. Anal Chem 1996, 68,1632-1638.
    [110]Zhang JD, Kambayashi M, Oyama M. Seed mediated growth of gold nanoparticles on indium tin oxide electrodes:electrochemical characterization and evaluation. Electroanal 2005,17, 408-416.
    [111]Zhu M, Han SB, Yuan ZB. β-Cyclodextrin polymer as the immobilization maxtix for peroxidase and mediator in the fabrication of a sensor for hydrogen peroxide. J Electroanal Chem 2000,480,255-261.
    [112]Garcia MAV, Blancoa PT, Ivaska A. A poly(o-aminophenol) modified electrode as an amperometric hydrogen peroxide biosensor. Electrochim Acta 1998,43,3533-3539.
    [113]Miao Y, Tan SN. Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Anal Chim Acta 2001,437,87-93.
    [114]Tian FM, Xu B, Zhu LD, Zhu GY. Hydrogen peroxide biosensor with enzyme entrapped within electrodeposited polypyrrole based on mediated sol-gel derived composite carbon electrode. Anal Chim Acta 2001,443,9-16.
    [115]Schubert F, Saini S, Turner APF. Mediated amperometric enzyme electrode incorporating peroxidase for the determination of hydrogen peroxide in organic solvents. Anal Chim Acta 1991,245,133-138.
    [1]Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 2000,72,5521-5528.
    [2]Gish DA, Nsiah F, McDermott MT, Brett MJ. Localized surface plasmon resonance biosensor using silver nanostructures fabricated by glancing angle deposition. Anal Chem 2007,79,4228^4232.
    [3]Hrapovic S, Liu YL, Male KB, Luong JHT. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 2004,76,1083-1088.
    [4]Streeter I, Baron R, Compton RG. Voltammetry at nanoparticle and microparticle modified electrodes: theory and experiment. J Phys Chem C 2007,111,17008-17014.
    [5]Xian YZ, Hu Y, Liu F, Xian Y, Feng LJ, Jin LT. Template synthesis of highly ordered Prussian blue array and its application to the glucose biosensing. Biosens Bioelectron 2007,22,2827-2833.
    [6]Itaya K, Uchida I, Neff VD. Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues. Acc Chem Res 1986,19,162-168.
    [7]Kaneko M, Hara S, Yamada A. A photoresponsive graphite electrode coated with Prussian blue. J Electroanal Chem 1985,194,165-168.
    [8]Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate, Electrochim Acta 2001, 46,4371-4378.
    [9]DeLongchamp DM, Hammond PT. Multiple-color electrochromism from layer-by-layer assembled polyaniline/Prussian blue nanocomposite thin films. Chem Mater 2004,16,4799-4805.
    [10]Einaga Y, Sato O, Iyoda T, Fujishima A, Hashimoto K. Photofunctional vesicles containing Prussian blue and azobenzene. J Am Chem Soc 1999,121,3745-3750.
    [11]Itaya K, Shoji N, Uchida I. Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes. J Am Chem Soc 1984,106,3423-3429.
    [12]Karyakin A A, Gitelmacher OV, Karyakina EE. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal Lett 1994,27,2861-2869.
    [13]Karyakin AA. Prussian blue and its analogues:electrochemistry and analytical applications. Electroanal 2001,13,813-819.
    [14]Chen LC, Ho KC. Multimode opto-electrochemical detection of cysteine based on an electrochromic Prussian blue electrode. Sensor Actuat B 2008,130,418-424.
    [15]Karyakin AA, Gitelmacher OV, Karyakina EE. Prussian blue-based first-generation biosensor:a sensitive amperometric electrode for glucose. Anal Chem 1995,67,2419-2423.
    [16]Zhao H, Yuan Y, Adeloju S, Wallace GG. Study on the formation of the Prussian blue films on the polypyrrole surface as a potential mediator system for biosensing applications. Anal Chim Acta 2002, 472,113-121.
    [17]Ho KC, Chen CY, Hsu HC, Chen LC, Shiesh SC, Lin XZ. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens Bioelectron 2004,20,3-8.
    [18]Gorton L. Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanal 1995,7, 23-45.
    [19]Ricci F, Palleschi G. Sensor and biosensor preparation, optimization and applications of Prussian blue modified electrodes. Biosens Bioelectron 2005,21,389-407.
    [20]Uemura T, Ohba M, Kitagawa S. Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 2004,43,7339-7345.
    [21]Li ZH, Zhang JL, Mu TC, Du JM, Liu ZM, Han BX, Chen J. Preparation of poly-vinylpyrrolidone protected Prussian blue nanocomposites in microemulsion. J Colloids Surf A 2004,243,63-66.
    [22]Zhang Q, Zhang L, Li JH. Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochim Acta 2008, 53,3050-3055.
    [23]Zhao W, Xu JJ, Shi CG, Chen HY. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir 2005,21,9630-9634.
    [24]Wang L, Guo SJ, Hu XG, Dong SJ. Layer-by-layer assembly of carbon nanotubes and Prussian blue nanoparticles:A potential tool for biosensing devices. J Colloids Surf A 2008,317,394-399.
    [25]Hornok V, Dekany I. Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J Colloid Interface Sci 2007,309,176-182.
    [26]Chen SH, Yuan R, Chai YQ, Xu Y, Min LG, Li N. A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors. Sensor Actuat B 2008,135,236-244.
    [27]Dong SQ, Zhang S, Cheng X, He PG, Wang QJ, Fang YZ. Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and CU2O. J Chromatogr A 2007,1161,327-333.
    [28]Lv Y, Zhang ZJ, Chen FN. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents. Talanta 2003,59,571-576.
    [29]Bhandari P, Kumar N, Singh B, Kaul VK. Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 2008,1194,257-261.
    [30]Chen G, Zhang LY, Wu XL, Ye JN. Determination of mannitol and three sugars in Ligustrum lucidum Ait by capillary electrophoresis with electrochemical detection. Anal Chim Acta 2005,530, 15-21.
    [31]Zuo SH, Teng YJ, Yuan HH, Lan MB. Direct electrochemistry of glucose oxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film. Sen Actuators B Chem 2008,133,555-560.
    [32]Pribyl J, Skladal P. Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples. Biosens Bioelectron 2006,21,1952-1959.
    [33]Frens G. Controlled nucleation for the regulation of the particle size in mono-disperse gold suspensions. Nat Phys Sci 1973,241,20-22.
    [34]Zhao JW, Luo LQ, Yang XR, Wang EK, Dong SJ. Determination of surface pKa of SAM using an electrochemical titration method. Electroanal 1999,11,1108-1111.
    [35]Yan J, Springsteen G, Deeter S, Wang BH. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears. Tetrahedron 2004, 60,11205-11209.
    [1]Li NB, Park JH, Park K, Kwon SJ, Shin H, Kwak J. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer modified gold electrode. Biosens Bioelectro 2008,23,1519-1526.
    [2]Karyakin AA, Gitelmacher OV, Karyakina EE. Prussian Blue-Based First Generation Biosensor. A Sensitive Amperometric Electrode for Glucose. Anal Chem 1995,67,2419-2423.
    [3]Zhao H, Yuan Y, Adeloju S, Wallace GG. Study on the formation of the Prussian blue films on the polypyrrole surface as a potential mediator system for biosensing applications. Anal Chim Acta 2002,472,113-121.
    [4]Ho KC, Chen CY, Hsu HC, Chen LC, Shiesh SC, Lin XZ. Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens Bioelectro 2004,20,3-8.
    [5]Zou YJ, Sun LX, Xu F. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites. Biosens Bioelectro 2007,22,2669-2674.
    [6]Uemura T, Ohba M, Kitagawa S. Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 2004,43,7339-7345.
    [7]Li ZH, Zhang JL, Mu TC, Du JM, Liu ZM, Han BX, Chen J. Preparation of poly(vinylpyrrolidone)-protected Prussian blue nanocomposites in microemulsion. J Colloids Surf A 2004,243,63-66.
    [8]Zhang Q, Zhang L, Li JH. Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochim Acta 2008,53,
    3050-3055.
    [9]Zhao W, Xu JJ, Shi CG, Chen HY. Multilayer membranes via layer-bylayer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir 2005,21,9630-9634.
    [10]Hornok V, Dekany I. Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J Colloid Interface Sci 2007,309,176-182.
    [11]Chen SH, Yuan R, Chai YQ, Xu Y, Min LG, Li N. A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors. Sensor Actuat B 2008,135,236-244.
    [12]Chen G, Zhang LY, Wu XL, Ye JN. Determination of mannitol and three sugars in Ligustrum lucidum Ait by capillary electrophoresis with electrochemical detection. Anal Chim Acta 2005,530, 15-21.
    [13]Bhandari P, Kumar N, Singh B, Kaul VK. Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 2008,1194,257-261.
    [14]Qian WL, Khan Z, Watson DG, Fearnley J. Analysis of sugars in bee pollen and propolis by ligand exchange chromatography in combination with pulsed amperometric detection and mass spectrometry. J Food Comp Anal 2008,21,78-83.
    [15]Zhang W, He HB, Zhang XD. Determination of neutral sugars in soil by capillary gas chromatography after derivatization to aldononitrile acetates. Soil Biol Biochem 2007,39, 2665-2669.
    [16]Zuo SH, Teng YJ, Yuan HH, Lan MB. Direct electrochemistry of glucose oxidase on screen printed electrodes through one-step enzyme immobilization process with silica sol-gel/polyvinyl alcohol hybrid film. Sensor Actuat B 2008,133,555-560.
    [17]Lv Y, Zhang ZJ, Chen FN. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents. Talanta 2003,59,571-576.
    [18]Dong SQ, Zhang S, Cheng X, He PG, Wang QJ, Fang YZ. Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and Cu2O. J Chromatogr A 2007,1161,327-333.
    [19]Zhao YQ, Luo HQ, Li NB. Electrochemical characterization of in situ functionalized gold p-aminothiophenol self-assembled monolayer with 4-formylphenylboronic acid for recognition of sugars. Sensor Actuat B 2009,137,722-726.
    [20]Takahashi S, Anzai J. Phenylboronic acid monolayer modified electrodes sensitive to sugars. Langmuir 2005,21,5102-5107.
    [21]Wang JF, Jin S, Wang BH, A new boronic acid fluorescent reporter that changes emission intensities at three wavelengths upon sugar binding. Tetrahedron Lett.2005,46,7003-7006.
    [22]Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS. Fluorescence based glucose sensors. Biosens Bioelectron 2005,20,2555-2565.
    [23]Pribyl J, Skladal P. Development of a combined setup for total and glycated haemoglobin content in blood samples. Biosens Bioelectron 2006,21,1952-1959.
    [24]He YB, Luo HQ, Li NB. Thermodynamic and kinetic analysis of the interaction between hepatitis B surface antibody and antigen on a gold electrode modified with cysteamine and colloidal gold via electrochemistry. Biosens Bioelectron 2007,22,2952-2957.
    [25]Zhang L, Zhang CH, Lian JY. Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode its use for the simultaneous determination of ascorbic acid and uric acid. Biosens Bioelectron 2008,24,690-695.
    [26]Zhao JW, Luo LQ, Yang XR, Wang EK, Dong SJ. Determination of surface pKa of SAM using an electrochemical titration method. Electroanal 1999,11,1108-1113.
    [27]Yan J, Springsteen G, Deeter S, Wang BH. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron 2004,60,11205-11209.
    [1]Moscone D, Ottavi DD, Compagnone D, Palleschi G. Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal Chem 2001,73,2529-2535.
    [2]Neff VD. Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 1978,125,886-887.
    [3]Itaya K, Uchida I, Neff VD. Electrochemistry of polynuclear transition metal cyanides:Prussian blue and its analogues. Accounts Chem Res 1986,19,162-168.
    [4]Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R. Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate. Electrochim Acta 2001,46,4371-4378.
    [5]DeLongchamp DM, Hammond PT. Multiple-color electrochromism from layer-by-layer assembled polyaniline/Prussian blue nanocomposite thin films. Chem Mater 2004,16,4799-4805.
    [6]Einaga Y, Sato O, Iyoda T, Fujishima A, Hashimoto K. Photofunctional vesicles containing Prussian blue and azobenzene. J Am Chem Soc 1999,121,3745-3750.
    [7]Itaya K, Shoji N, Uchida I. Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes. J Am Chem Soc 1984,106,3423-3429.
    [8]Karyakin AA, Gitelmacher OV, Karyakina EE. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal Lett 1994,27,2861-2869.
    [9]Karyakin AA. Prussian blue and its analogues:electrochemistry and analytical applications. Electroanal 2001,13,813-819.
    [10]Chen LC, Ho KH. Multimode optoelectrochemical detection of cysteine based on an electrochromic Prussian blue electrode. Sensor Actuat B 2008,130,418-424.
    [11]Li J, Qiu JD, Xu JJ, Chen HY, Xia XH. The synergistic effect of Prussian blue grafted carbon nanotube/poly(4-vinylpyridine) composities for amperometric sensing. Adv Funct Mater 2007,17, 1574-1580.
    [12]Zhang D, Zhang K, Yao YL, Xia XH, Chen HY. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Langmuir 2004,20,7303-7307.
    [13]Karyakin AA, Karyakina EE, Gorton L. The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow. J Electroanal Chem 1998,456,97-104.
    [14]Karyakin AA, Karyakina EE. Prussian Blue-based'artificial peroxidase'as a transducer for hydrogen peroxide detection. Sensor Actuat B 1999,57,268-273.
    [15]Karyakin AA, Karyakina EE, Gorton L. Amperometric biosensor for glutamate using Prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide. Anal Chem 2000,72, 1720-1723.
    [16]Li NB, Park JH, Park K, Kwon SJ, Shin H, Kwak J. Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano-Au/PAMAM dendrimer-modified gold electrode. Biosens Bioelectron 2008,23,1519-1526.
    [17]Ricci F, Amine A, Palleschi G, Moscone D. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 2003,18,
    165-174.
    [18]Uemura T, Ohba M, Kitagawa S. Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 2004,43,7339-7345.
    [19]Li ZH, Zhang JL, Mu TC, Du JM, Liu ZM, Han BX, Chen J. Preparation of polyvinylpyrrolidone protected Prussian blue nanocomposites in microemulsion. J Colloids Surf A 2004,243,63-66.
    [20]Zhang Q, Zhang L, Li JH. Fabrication and electrochemical study of monodisperse and size controlled Prussian blue nanoparticles protected by biocompatible polymer. Electrochim Acta 2008, 53,3050-3055.
    [21]Zhao W, Xu JJ, Shi CG, Chen HY. Multilayer membranes via layer-bylayer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir 2005,21,9630-9634.
    [22]Wang L, Guo SJ, Hu XG, Dong SJ. Layer-by-layer assembly of carbon nanotubes and Prussian blue nanoparticles:A potential tool for biosensing devices. Colloids and Surfaces A:Physicochem Eng Aspects 2008,317,394-399.
    [23]Hornok V, Dekany I. Synthesis and stabilization of Prussian blue nanoparticles and application for sensors. J Colloid Interf Sci 2007,309,176-182.
    [24]Chen SH, Yuan R, Chai YQ, Xu Y, Min LG, Li N. A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors. Sensor Actuat B 2008,135,236-244.
    [25]Shen XP, Wu SK, Liu Y, Wang K, Xu Z, Liu W. Morphology syntheses and properties of well-de.ned Prussian Blue nanocrystals by a facile solution approach. J Colloid Interf Sci 2009,329, 188-195.
    [26]Makowski O, Stroka J, Kulesza PJ, Malik MA, Galus Z. Electrochemical identity of copper hexacyanoferrate in the solid-state:evidence for the presence and redox activity of both iron and copper ionic sites. J Electroanal Chem 2002,532,157-164.
    [27]Cafun JD, Londiniere L, Riviere E, Bleuzen A. Metal dilution effects on the switching properties of CoFe Prussian blue analogues. Inorg Chim Acta 2008,361,3555-3563.
    [28]Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R. Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. J Phys Chem B 1998,102,1870-1876.
    [29]Kulesza PJ, Malik MA, Zamponi S, Berrettoni M, Marassi R. Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferratec (II&II) films. J Electroanal Chem 1995,397,287-292.
    [30]Cai CX, Ju HX, Chen HY. Catalytic oxidation of reduced nicotinamide adenine dinucleotide at a
    microband gold electrode modified with nickel hexacyanoferrate. Anal Chim Acta 1995,310, 145-151.
    [31]Zhou DM, Ju HX, Chen HY. Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion. J Electroanal Chem 1996, 408,219-223.
    [32]Malik MA, Miecznikowski K, Kulesza PJ. Quartz crystal microbalance monitoring of mass transport during redox processes of cyanometallate modified electrodes:complex charge transport in nickel hexacyanoferrate films. Electrochim Acta 2000,45,3777-3784.
    [33]Dong SJ, Jin Z. Electrochemistry of indium hexacyanoferrate film modified electrodes. Electrochim Acta 1989,34,963-968.
    [34]Kulesza PJ, Faszynska M. Indium(III)-hexacyanoferrate(III, II) as an inorganic material analogous to redox polymers for modification of electrode surfaces. Electrochim Acta 1989,34,1749-1753.
    [35]Kulesza PJ, Faszynska M. Indium(Ⅲ)-hexacyanof errate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates. J Electroanal Chem 1988,252,461-466.
    [36]Cui XP, Hong L, Lin XQ. Electrochemical preparation, characterization and application of electrodes modified with hybrid hexacyanoferrates of copper and cobalt. J Electroanal Chem 2002, 526,115-124.
    [37]Kulesza PJ, Malik MA, Skorek J, Miecznikowski K, Zamponi S, Berrettoni M, Giorgetti M, Marassi R. Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate. J Electrochem Soc 1999,146,3757-3761.
    [38]Reddy SJ, Dostal A, Scholz F. Solid state electrochemical studies of mixed nickel-iron hexacyanoferrates with the help of abrasive stripping voltammetry. J Electroanal Chem 1996,403, 209-212.
    [39]Kulesza PJ, Malik MA, Schmidt R, Smolinska A, Miecznikowski K, Zamponi S, Czerwinski A, Berrettoni M, Marassi R. Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium. J Electroanal Chem 2000,487,57-65.
    [40]Pasternack RF, Resonance light scattering:a new technique for studying chromohphore aggregation. Collings PJ. Science 1995,269,935-939.
    [41]Liu SP, Luo HQ, Li NB, Liu ZF, Zheng WX. Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenylnaphthylmethane dyes. Anal Chem 2001,73,3907-3914.
    [42]Li NB, Luo HQ, Liu SP. Resonance Rayleigh scattering study of the inclusion complexation of chloramphenicol with (3-cyclodextrin. Talanta 2005,66,495-500.
    [43]Liu SP, He YQ, Liu ZF, Kong L, Lu QM. Resonance Rayleigh scattering spectral method for
    determination of raloxifene using gold nanoparticles as a probe. Anal Chim Acta 2007,598, 304-311.
    [44]Ma Y, Li NB, Luo HQ. Instrumen. Resonance Rayleigh scattering of K2Zn3[Fe(CN)6]2 nanoparticles and its application for the determination of vitamin C. Sci. & Tech.2009,37, 345-358.
    [45]Luo HQ, Liu SP, Liu ZY, Liu Q, Li NB. Resonance Rayleigh scattering spectra for studying the interaction of heparin with some basic phenothiazine dyes and their analytical applications, Anal Chim Acta 2001,449,261-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700