MMA-PEG-PLA两亲性嵌段共聚物的合成及其在制备胶束和药物释放中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文制备了基于聚乳酸—聚乙二醇两亲性嵌段共聚物的胶束体系,并提出了能有效提高胶束稳定性的方法。首先以甲基丙烯酸和氯化亚砜为原料,合成了甲基丙烯酰氯(MAC)。通过MAC与聚乙二醇(PEG)的反应,得到了聚乙二醇单甲基丙烯酸酯(PEG-MMA)。在辛酸亚锡的引发作用下,将PEG-MMA和丙交酯进行聚合反应,合成出了聚乳酸—聚乙二醇单甲基丙烯酸酯(MMA-PEG-PLA)两嵌段共聚物。通过IR、1H-NMR、GPC和LC-MS等检测手段对其结构进行了表征。
     通过两亲性嵌段共聚物制备了MMA-PEG-PLA胶束水溶液。然后再在由过硫酸铵(APS)和四甲基乙二胺(TEMED)组成的氧化还原引发剂的作用下,向胶束水溶液中加入交联剂N-乙烯基吡咯烷酮(NVP),得到了交联反应后的PVP-PEG-PLA胶束。本实验对交联反应前后胶束的性质,如粒径大小、粒径分布、临界聚集浓度(CAC)和微观形貌等进行了分析和对比,并对所得胶束的稳定性进行了初步的探讨。最后以粉防己碱(TED)为模型药物,探讨了载药胶束在PBS缓冲液中的释放行为。
This paper presented a new approach to improve the physical and chemical stability of biodegradable poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) micelles. First of all, methacryloyl chloride (MAC) was synthesized by reacting methacrylic acid with thionyl chloride. Then, PEG monomethacrylate (PEG-MMA) was obtained through mono-terminated-group capping PEG with MAC. Initiating by stannous octoate, monomethacrylate-terminated PEG-PLA (MMA-PEG-PLA) was subsequently synthesized by polymerization reaction between PEG-MMA and lactide, which was prepared by catalyzing lactic acid with tin powder. Techniques like IR, 1H-NMR, GPC and LC-MS were utilized for characterization and measurement.
     MMA-PEG-PLA micelle was obtained based on amphiphilic diblock copolymer. Then, PVP-PEG-PLA micelle was prepared through adding crosslinking agent N-vinyl-2-pyrrolidone (NVP), which was catalyzed by a redox free-radical initiator composed of ammonium persulfate (APS) and tetramethylethylenediamine (TEMED). For the purpose of studying stability, characteristics such as particle diameter, polydispersity, critical association concentration (CAC) and morphology of micelles were monitored and compared before and after crosslinked reaction. Tetrandrine (TED) loaded micelles were as well prepared and their drug releasing behaviors were taken into consideration.
引文
[1]刘盛辉,郎美东,新一代生物医用材料,高分子通报,2005,6:113~128
    [2] Hench L L. Biomaterials. Science, 1980, 208(4446): 826~831
    [3]奚廷斐,生物医用材料现状和发展趋势,中国医疗器械信息,2006,12(5):1~4
    [4] Polak J, Hench L. Gene therapy progress and prospects: In tissue engineering. Gene Therapy, 2005, 12(24): 1725~1733
    [5] Hench LL. Bioactive materials: the potential for tissue regeneration. Journal of Biomedical Materials Research, 1998, 41(4): 511~518
    [6] Jacoby M. Biomaterials– Tough bones. Chemical Engineering News, 2001, 79(51): 13
    [7] Hench LL, Polak JM. Third-generation biomedical materials, Science, 2002, 295(5557): 1014~1017
    [8] Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science, 2002, 295(5557): 1009~1014
    [9] Peter B Maurus, Christopher C Kaeding. Bioabsorbable implant material review. Operative Techniques in Sports Medicine, 2004, 12(3): 158
    [10] Ruan Gang, Feng Sishen. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials, 2003, 24(27): 5037
    [11] Erolu H, Kay HS, Oner L, et al. The in-vitro and in-vivo characterization of PLGA: L-PLA microspheres containing dexamethasone sodium phosphate. Journal of Microencapsulation, 2001, 18(5): 603
    [12] Zhou Shaobing, Liao Xueyan, Li Xiaohong, et al. Poly-D, L-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. Journal of Controlled Release, 2003, 86(17): 195
    [13] Slager J, Domb AJ. Stereocomplexes based on poly(lactic acid) and insulin: formulation and release studies. Biomaterials, 2002, 23(22):4389
    [14] Valerie Langlois, Karine Vallee-Rehel, Jean Jacques Peron, et al. Synthesis and hydrolytic degradation of graft copolymers containing poly(lactic acid) side chains: in vitro release studies of bioactive molecules. Polymer Degradation and Stability, 2002, 76(3): 411
    [15] Perez C, Sanchez A, Putnam D, et al. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA, Journal of Controlled Release, 2001, 75(2): 211
    [16] Baras B, Benoit MA, Gillard J. Parameters influencing the antigen release from spray-dried poly(DL-lactide) microparticles. International Journal of Pharmaceutics, 2000, 200(1): 4781
    [17] Tze-Wen Chung, Yi-You Huang, Yi-Ze Liu. Effects of the rate of solvent evaporation on the characteristics of drug loaded PLLA and PDLLA microspheres. International Journal of Pharmaceutics, 2001, 212(2): 161
    [18] Tommy Tarvainen, Teija Karjalainen, Minna Malin, et al. Degradation of and drug release from a novel 2,2-bis(2-oxazoline) linked poly(lactic acid) polymer. Journal of Controlled Release, 2002, 81(3): 251
    [19] Hiroshi Tsuji, Hitoshi Sasaki, Hiroko Sato, et al. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 191(1-4): 815
    [20] Ekiss, Bertoti I, Vargha-Butler EI. XPS and wettability characterization of modified poly(lactic acid) and poly(lactide/glycolic acid) films. Journal of Colloid and Interface Science, 2002, 245(1): 91
    [21] Ouchi, Tatsuro, et al. Design of lactide copolymers as biomaterials. Polymer Chemistry, 2004, 42(3): 453
    [22]葛建华,王迎军,郑裕东等,PLA-PEG-PLA嵌段共聚物的合成及研究,材料科学与工程学报,2003,21(6):817
    [23]宋谋道,朱吉亮,张邦华等,聚乙二醇改性聚乳酸的研究,高分子学报,1998,4:454~458
    [24]吴之中,聚乳酸—聚乙二醇嵌段共聚物及其交联聚氨酯弹性体的性能研究,信阳师范学院学报(自然科学版),1999,12(2):166~169
    [25] Achim Gopferich, Susam J Peter, Andrea Lucke, et al. Modulation of marrow stromal cell function using poly(D,L-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces. Journal of Biomedical Materials Research, 1999, 46(3): 390~398
    [26] Metters AT, Anseth KS, Bowman CN. Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel. Polymer, 2000, 41(11): 3993
    [27]全大萍,高建文,寥凯荣等,聚乳酸—聚乙二醇—聚乳酸三嵌段共聚物的降解性能,功能高分子学报,2002,15(4):391
    [28] Dong Keun Han, Jeffrey A Hubbell. Synthesis of polymer network scaffolds from L-lactide and poly(ethylene glycol) and their interaction with cells. Macromolecules, 1997, 30: 6077
    [29] Wenna Chen, Weijun Luo, Shenguo Wang, et al. Synthesis and properties of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers by coupling triblock copolymers. Polymers for Advanced Technologies, 2003, 14(3~5): 245~253
    [30]熊成东,戴琦,邓先模等,聚乳酸—聚乙二醇嵌段共聚物的合成及表征,化学通报,1994,5(4):59~61
    [31] Deng XM, Xiong CD, Cheng LM. Studies on the block copolymerization of D,L-lactide and poly(ethylene glycol) with aluminum complex catalyst. Journal of Applied Polymer Science, 1995, 55(8): 1193~l196
    [32]吴桐,何勇,韦嘉,范仲勇,李速明,聚乳酸—聚乙二醇嵌段共聚物结晶行为研究,高等学校化学学报,2006,27(11):2193~2197
    [33]王方,赵耀明,汪朝阳,聚乙二醇对直接合成聚乳酸—聚乙二醇的影响,合成树脂及塑料,2005,22(2):31
    [34] Sheth M, Kumar RA, Dave V, et al. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). Journal of Applied Polymer Science, 1997, 66(8): 1495
    [35]刘斌,张基昌,陈宏勃等,生物可降解冠状动脉支架涂层材料聚乙二醇—聚乳酸—聚谷氨酸共聚物的生物相容性研究,中国实验诊断学,2006,10(9):975
    [36]孔航,潘可风,吴志刚,聚乳酸—聚乙二醇的制备及骨修复实验研究,现代口腔医学杂志,2006,20(5):501
    [37] Rowland,Tozer著,彭彬译,临床药动学,长沙:湖南科学技术出版社,1999.2
    [38]徐叔云,张均田,魏伟等,现代实用临床药理学,北京:华夏出版社,1996.13~32
    [39] Bangham AD, Standish MM, Watkins JC. Diffusion of univalentions across the lamellae of swollen phospholipid. Journal of Molecular Biology, 1965, 13(1): 238~252
    [40] Budai M, Szogyi M. Lipsomes as drug carrier systems: preparation, classification and therapeutic advantages of lipsomes. Acta Pharmaceutica Hungarica, 2001, 71(1): 114~118
    [41] Shi Guangfeng, Guo Wenjin, Stephenson SM, et al. Efficient intracellular drug and gene delivery using folate receptor-targeted pH-sensitive lipsomes composed of cationic/anionic lipid combinations. Journal of Controlled Release, 2002, 80(1-3): 309~312
    [42]沈央,方晓玲,三七总皂苷脂质体的药剂学性质及大鼠肺部给药药动学研究,中草药,2004,35(7):745~748
    [43]张景勍,张志荣,秦少容等,紫杉醇磁性长循环脂质体的研究,中国药学杂志,2003,38(7):520~521
    [44]张莉,曾鹏云,潘俊,叶酸—多聚糖复合物海藻酸钙肺靶向微球处方工艺的优化,中国医药工业杂志,2004,35(3):150~153
    [45]杨凯,温玉明,王昌美等,葫芦素BE聚乳酸纳米微粒对口腔癌颈淋巴结转移灶的靶向性评价,华西口腔医学杂志,2003:21(6):477~479
    [46]张雪梅,王晶,潘卫三,人参皂苷C-K静脉乳剂的制备及理化性质考察,沈阳药科大学学报,2004,21(6):420~425
    [47]何蕾,王桂玲,张强,紫杉醇纳米乳剂的体内外考察,药学学报,2003,38(3):227~ 229
    [48] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001, 47(1): 113~131
    [49] Yoo HS, Park TG. Floate receptor targeted biodegradable polymeric doxorubicin micelles. Journal of Controlled Release, 2004, 96(2):273~283
    [50] Yamamoto Y, Nagasaki Y, Kato Y, et al. Long-circulating poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles with modulated surface charge. Journal of Controlled Release, 2001, 77(1): 27~38
    [51] Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for several of resistant MCF-7 tumor. Journal of Controlled Release, 2005, 103(2): 405~418
    [52] Hu Y, Jiang X, Ding Y, et al. Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials, 2003, 24(13): 2395~2404
    [53] Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids surface B: Biointerface, 1999, 16(1): 3~27
    [54] Yakoyama M, Fukushima S, Uehara R, et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. Journal of Controlled Release, 1998, 50(1): 79~92
    [55] Nishiyama N, Yokoyama M, Aoyagi T, et al. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiamine platinum (II) and poly(ethylene glycol)-poly(a, b-aspartic acid) block copolymer in an aqueous medium. Langmuir, 1999, 15(2): 377~383
    [56] Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews, 2002, 54(2): 203~222
    [57] Harada A, Togawa H, Kataoka K. Physicochemical properties and nuclease resistance of antisenseoligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-Lysine) block copolymers. European Journal of Pharmaceutical Sciences, 2001, 13(1): 35~42
    [58] Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core. [II]: Characterization of the micelles prepared at non-stoichiometric mixing ratios. Lagmiur, 1999, 15(12): 4208~4212
    [59] Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. Journal of Controlled Release, 2004, 94(2/3): 323~335
    [60] Govender T, Riley T, Ehtezazi T, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. International Journal of Pharmaceutics, 2000, 199(1): 95~110
    [61] Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block–poly (N-hexyl-l-aspartamide)-acyl conjugate micelles: effects of acyl chain length. Journal of Controlled Release, 2003, 87(1): 23~32
    [62] La SB, Okano T, Kataoka K. Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly (benzyl L-aspartate) block copolymer micelles. Journal of Pharmaceutical Sciences, 1996, 85(1): 85~90
    [63] Wakebayashi D, Nishiyama N, Yamasaki Y, et al. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells. Journal of Controlled Release, 2004, 95(3): 653~664
    [64] J Rodriguez-Hernandez, F Checot, Y Gnanou, S Lecommandoux. Toward‘smart’nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science, 2005, 30: 691~724
    [65] Huang H, Kowalewski T, Remsen EE, Gertzmann R, Wolley KL. Hydrogel-coated glassy nanospheres: a novel method for the synthesis of shell cross-linked knedels. Journal of the American Chemical Society, 1997, 119: 11653~11659
    [66] Ohno K, Ejaz M, Fukuda T, Miyamoto T, Shimizu Y. Nitroxide-controlled free radical polymerization of p-tert-butoxystyrene. Kinetics and applications. Macromolecular Chemistry and Physics, 1998, 199:291~297
    [67] Yoshida E, Kunugi S. Micelle formation of poly(vinyl phenol) -block-polystyrene by a, w-diamines. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40: 3063~3067
    [68] Chen XL, Jenekhe SA. Supramolecular self-assembly of three-dimensional nanostructures and microstructures: microcapsules from electroactive and photoactive rod-coil-rod triblock copolymers. Macromolecules, 2000, 33: 4610~4612
    [69] Mir Mukkaram Ali, Harald DH Stover. Well-defined amphiphilic thermosensitive copolymers based on poly(ethylene glycol monomethacrylate) and methyl methacrylate prepared by atom transfer radical polymerization. Macromolecules, 2004, 37: 5219~5227
    [70]邓联东,两亲性嵌段共聚物及其自组装载药胶束的研究:[博士学位论文],天津:天津大学,2002
    [71]胡英,物理化学参考,北京:高等教育出版社,2003:51-1~51-9
    [72] Banus S Zolnik, Pauline E Leary, Diane J Burgess. Elevated temperature accelerated release testing of PLGA microspheres. Journal of Controlled Release, 2006, 112: 293~300
    [73] J Siepmann, NA Peppas. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 2001, 48: 139~157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700