煤矿液压支架强度校核方法及其软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿液压支架适应性强,在多种工况下使用均收效良好,是目前广泛使用的放顶煤液压支架架型。但是由于井下工况复杂,液压支架的安全性要求高,在各个零件的设计过程中必须要确保结构件的强度,否则若液压支架因为强度不足而损坏将会带来严重的生命财产损失。本文针对现有设计过程中所使用的校核模型的局限性和计算的复杂性,探讨了一种适合液压支架强度校核的模型,并依据该校核方法开发了一种能对液压支架任意关键截面进行强度校核的软件,极大的方便了设计人员对液压支架的校核计算。在分析液压支架的结构和受力情况以及了解液压支架在井下受损状态的前提下,根据受力状况和现场工作情况确定了液压支架的危险截面,并分析结构件的应力状态。
     归纳总结各种强度校核方法,根据液压支架危险截面的特征找出一种了合适的强度校核方法,通过实例计算来验证该方法的可靠性。
     依据该强度校核方法设计强度校核软件系统,该系统既能方便地绘制参数化截面图形,并将图形进行保存和实时显示。在用户选择好校核方式并输入截面的受力大小后,能快速地计算和显示出各个部位的应力状态。
     根据郑州煤矿机械厂提供的数据进行实例计算,以有限元分析结果为参考依据,验证该校核软件的准确性。
Coal-caving hydraulic support has been widely used at present as its strong adaptability and good result in many conditions. But hydraulic support demands high security because the working conditions are very complex underground, then we must ensure the strength of the structures when we design them. This paper focuses on the checking model for the strength of hydraulic support and the complexity of computing. In order to check the strength of the hydraulic support, a checking model that is suit for strength check was introduced, and was written into software.
     First of all, based on analyzing the structure and the stress state and damaged state of hydraulic support, the dangerous section was confirmed according to the stress state and working condition.
     Then, summarized all kinds of strength check method and found a suitable method in line with the characteristic of the dangerous section. Tested and verified the accuracy of this method.
     On the basis of the strength check method, a kind of software that was used for strength check was written. This software could draw parametric graphic section easily and store the graphic and timely display. It could calculate and display the stress state of every part of the section after the users input the force.
     At last, calculation examples ware done to test and verify the accuracy of this software according to the data provided by Zhengzhou coal mine machinery factory.
引文
[1].郭玉峰.综采放顶煤开采技术研究[J].中小企业管理与科技, 2009(11):227.
    [2]. Zhang X. Lightweight Design for Hydraulic Support[Z]. 2010:450,79-82.
    [3].杨振复.放顶煤矿开采技术与放顶煤液压支架[M].北京:煤炭工业出版社,1995.
    [4].刘九丰.放顶煤液压支架架型的探讨[J].煤矿机电,1986(6):2-6.
    [5].王洪林.放顶煤液压支架的发展状况[J].煤炭技术,2007(1):11-12.
    [6]. Yong W, Qiu J J, Xing F W. The development of hydraulic control technology of fully mechanized mining supporter[Z]. 200523-25.
    [7]. Feltus M A. Trac-bf1 Three-dimensional BWR Vessel Thermal-Hydraulic and Ansys Stress Analyses for BWR Core Shroud Cracking[J]. Elsevier Science,1997,25:65-81.
    [8].曹树祥.我国放顶煤支架的发展与展望[J].东北煤炭技术,1996(5).
    [9].樊军,钱玉军,徐祖辉.两柱掩护式液压支架受力分析及结构件强度校核[J].煤矿机电,2008(2):111-112.
    [10].刘玉文.放顶煤液压支架及其设计参数的选择[J].煤炭科学技术,1983(7):16-21.
    [11].刘俊峰.两柱掩护式大采高强力液压支架适应性研究[D].煤炭科学研究总院,2006.
    [12]. Jiang Z. Three Dimensions Construction Model and Finite Element Analysis of Hydraulic Support and Relevant Model[Z]. 4451-4454.
    [13].任锡义.液压支架整体动态特性仿真分析[D].太原理工大学,2010.
    [14].曹春玲,张杰,赵书明.掩护式液压支架承载能力分析系统的研究[J].煤矿机械,2010(2):65-67.
    [15].姜斌.放顶煤支架选型的探讨[J].煤矿机电,2000(5):104-106.
    [16].宁桂峰.液压支架三维动态设计与力学仿真研究[D].煤炭科学研究总院,2004.
    [17].陈雷平.液压支架的整体有限元分析[D].西安理工大学,2007.
    [18].何文斌,李宏,许兰贵.基于ANSYS的液压支架强度有限元分析[J].煤矿机械,2006(10):91-93.
    [19]. Liu H, Fan X. Computer simulation and model test research on strength test of hydraulic support[Z]. Xinjiang, China:200655-60.
    [20]. Deng Y, Tang J, Zhu X, et al. Analysis and application in controlling surrounding rock of support reinforced roadway in gob-side entry with fully mechanized mining[J]. Mining Science and Technology (China),2010,20(6):839-845.
    [21].董云峰,吕梅.最小势能原理在小挠度薄板中的应用[J].吉林建筑工程学院学报,2003(3):59-62.
    [22].钟炜辉,赫际平.薄壁杆件的弯曲与扭转[M].北京:高等教育出版社,2006.
    [23].林建好. 3种截面梁弯曲应力分析与实验[J].河南科学,2009(3):342-345.
    [24].蒋小平,施卫东,王准,等.水泵涡壳强度校核程序设计[J].农业机械学报,2008(2):77-80.
    [25].刘文武.放顶煤液压支架的力学分析及主要结构的设计[D].辽宁工程技术大学,2007.
    [26].李景辉,王悦勇,张健. ZF4800/17/28型放顶煤液压支架的研究[J].煤矿机械,2010(6):42-44.
    [27].郭金琼.箱形梁设计理论[M].北京:人民交通出版社,2006.
    [28].朱俞江.箱形截面梁和梁柱的弹塑性稳定极限承载力分析[D].浙江大学,2003.
    [29].孙海涛,沈华.大型油船的剪切强度校核[J].大连海事大学学报,2006(4):51-53.
    [30].聂杰,吴炳昭,康岳伟,等.船用起重机的主臂强度校核方法研究[J].海洋技术,2009(4):104-106.
    [31].倪樵,李国清,钱勤.材料力学[M].武汉:华中科技大学出版社,2006.
    [32].王奇志,吴建国,张行.变截面梁弯曲切应力分析[J].力学与实践,2008(6):95-97.
    [33].王晓臣,蒲军平.变截面梁有限元分析[J].浙江工业大学学报,2008(3):311-315.
    [34].吴义珍. ZF3500/17/29液压支架顶梁的有限元应力分析[D].西安科技大学,2007.
    [35].董梅.有限元法在结构件强度分析中的应用[J].指挥控制与仿真,2007(4):114-117.
    [36].王进军,贾新玲,范迅.放顶煤液压支架的整架强度有限元分析[J].煤矿机械,2005(3):36-38.
    [37]. Karlsson S R B. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood[J]. Structure and Function,22:25-289.
    [38]. Lirong W, Xiaowang W, Chenglong W. Mechanical-hydraulic integration modeling and simulation of hydraulic support[Z]. Shanxi, Taiyuan, China:2010V569-V572.
    [39].董志峰,王寿峰,常宏. Mechanisms and Kinematics of Hydraulic Support for Top-Coal Caving[J]. Journal of China University of Mining & Technology,2001(2).
    [40].孙鑫. VC++深入详解[M].北京:电子工业出版社,2007.
    [41].张海永,孟宪林,胡敬阳.车载2t移动梁起重机的设计与强度校核[J].专用汽车,2010(5):60-61.
    [42].王承禹,常汉宝,洪哲,等.基于传统设计方法的曲柄强度校核分析[J].柴油机,2009(6):38-41.
    [43].王岚徐艳秋许克宾.预应力混凝土箱梁抗扭强度理论计算方法[J].内蒙古工业大学学报(自然科学版),1999(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700