传递函数模型的发展和农田尺度下硝态氮淋失的数值预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素淋失对农业水土环境质量的影响是重要的生态农业研究课题,该研究中颇具挑战性的科学难题之一是对农田土壤中同时受到物理、化学和生物作用影响的硝态氮淋失动态的精确模拟和预报。为了对氮素运移和转化行为在生态环境演变过程中的作用有更明晰的认识,本文采用不同的数学模型分别从点尺度和农田尺度对此进行了研究。
     本文研究的第一部分通过引入概率密度函数的修正因子,发展了一个可区分表施氮素和土壤残留氮对硝态氮淋失贡献的传递函数模型。假设累积排水量的概率密度函数的形状不随水流状态而改变,概率密度函数于不同水流条件下的差异体现在贮水量差的变化,将Jury等(1990)提出的非稳定流条件下保守溶质运移的传递函数模型推广到田间土壤硝态氮淋失的模拟中。在模型中考虑了氮素的矿化、固持、氨挥发和作物吸氮作用,把源汇项对硝态氮淋失的影响视为对溶质运移体中初始驻留浓度的输入,将各转化量与土壤贮水量或蒸散量建立了较简单的函数形式得到净矿化、氨挥发和吸氮浓度。以考虑源汇项作用时的硝态氮淋失浓度的均方根差为目标函数,采用二分法对概率密度函数的修正因子进行优化。使用1999年冬小麦—夏玉米生长条件下土壤剖面2米埋深处硝态氮淋失动态的试验观测数据,检验了所发展的模型的有效性。接着,分析了模型中各参量对模拟精度的影响,计算了模拟时段内淋失的硝态氮占肥料氮的比例。表明:作者所发展的能够估计表施氮素和残留氮对硝态氮淋失贡献的传递函数模型的计算结果是合理的;同时考虑流场变化、残留氮影响和氮素转化作用的传递函数模型具有更高的模拟精度,模拟的累积硝态氮淋失量的相对误差仅为0.99%;而既不考虑流场变化又不考虑氮素转化作用影响的模拟结果的相对误差达19.62%;仅考虑源汇项作用的硝态氮淋失量的模拟结果与发展的传递函数模型的模拟结果相差不大,相对误差为3.03%,说明在北方旱田深排水条件下长作物生育期内硝态氮淋失的模拟中,考虑氮素的转化作用对模拟结果的影响更大;表施氮的淋失量只占总淋失量的0.42%,占总施氮量的0.10%,所淋失的硝态氮大部分是土壤的残留氮,占总淋失量的99.58%。表施氮素迁移时间的概率密度函数的修正因子的取值对模拟精度的影响较大,取零时,模拟淋失量的相对误差为9.68%,取1时,相对误差为21.61%,取值在0.28到0.32之间时,对于与本文试验条件类似的农田土壤,应用我们所发展的数学模型可以获得满意的模拟结果。根据本文所发展的能区分表施氮和残留氮的传递函数模型,可为田间的~(15)N示踪试验提供一种定量的参考工具。
     本文研究的第二部分在开展大规模田间试验的基础上,获得大量具有空间变异特征的模型参数,对农田尺度下硝态氮的淋失风险进行了数值预报。北京通州区永乐店试验站的小区面积为27×27m~2(网格间距3m),采集30—50cm土层的样品;山东德州地区禹城试验站的小区面积为40×40m~2(网格间距5m),采集0—20和20—40 cm土层的样品。根据土壤传递函数方法,生成了各个采样点的土壤水力学参数和弥散度。假设土壤有机氮的矿化速率常数(零级动力学)与有机质含量成正比得到矿化速率在空间上的分布。基于柱模型假设,即,土壤由一系列不发生相互作用的一维土柱组成,运用HYDRUS-1D软件,对永乐店2000—2001年和禹城2001—2003冬小麦—夏玉米生长条件下农田尺度下土壤氮素的转化和硝态氮的淋失风险进行了数值模拟。为评价矿化作用产生的无机氮对感兴趣深度的硝态氮淋失的影响,本文设计了两种数值模拟方案,即,不考虑和考虑土壤有机氮矿化速率的空间变异性(分别简记为方案1和方案2)。
     模拟结果表明:(1)永乐店冬小麦生育期内剖面250cm埋深处平均的土壤水渗透量、累积硝
    
    态氮淋失量分别为2.25mm、0.0098m沙m,,夏玉米生育期内的值分别为l.35mm、o.oo65m沙m,,
    变异系数均在1.46以上,具有很强的空间变异性;(2)禹城冬小麦生育期内剖面ZO0cm埋深处
    平均的土壤水渗透量、累积硝态氮淋失量分别为1930mm、0.0790m沙mZ,夏玉米生育期内的值
    分别为24.48mm、0.0948m沙m,,变异系数均在0.50以上,表现为中等变异强度;(3)与总输入
    量相比,空间上平均的土壤水渗透量和硝态氮淋失量不高,而某些采样点处土壤水渗透量和硝态
    氮淋失量大大高于均值,是农田管理和环境监测的脆弱带;(4)两种数值模拟方案对模拟的下边
    界处(永乐店:250cm;禹城:ZO0cm)硝态氮淋失的影响很小,其差异主要在于方案2对土壤
    氮素各转化量的影响更大,由于考虑了氮素矿化作用的空间变异性,方案2中各氮素转化量的空
    间变异性大大高于方案1的模拟结果;(5)蒸发量、蒸腾量和蒸散量具有较低的空间变异性
     (CV<0 .06),而剖面不同埋深处的水通量(250、200、150、IO0cm)呈现较强的空间变异性。
     运用地统计学软件GEOPACK对实测土壤性状、模型参数和模拟结果进行地统计学分析,表
    明:(l)永乐店采样小区的大部分参数(参量)的半方差可用球状模型表示,其中,容重、饱和
    导水率(K:)、有机质含量(oM)的变程分别为26.26m、18.57m、4.77m;禹城采样小区大部
    分参数的半方差函数用线性无基台值模型或纯块金模型描?
Nitrogen (N) leaching has caused an increasing potential concern over N fertilizer impact on environmental diversity. It is very promising to estimate the leaching of N in soils attributable to the complicated physical, chemical, and biological processes of the chemical not only at point scale but also at field scale. Different theories and models have been applied to describe N transformation and transport at every scale.
    In the first part of this study, a transfer function model was developed to simulate the outflow concentration of nitrate-nitrogen (NO3-N) at the depth of 2m in the agricultural field, considering the influence of transient water flow, the applied N as input, the initial residual N in the soil, and main N transformations on the NO3-N leaching process. The probability density function (pdf) was assumed to be invariant under transient drainage except for differences in the water storage volume. And then the drainage pdf was corrected for storage volume differences between transient water flow and steady state and can be extended to represent transient outflow flux concentration. On N transformations the study model included immobilization, mineralization, volatilization, plant uptake, and their effects on NO3-N leaching were treated as an input to the initial concentration. Through the simple relationship between N transformations and water storage or evapotranspiration, concentration of source-sink te
    rms was obtained. A weighting factor was introduced to quantify the contributions from the applied and residual N to the leaching process. The root mean square error of leaching concentration with considering source-sink terms was taken as target function to optimize weighting factor, and according to the bi-sectional method the optimized weighting factor was determined. The developed transfer function model was tested based on data of the field experiment conducted for 196 d during the growing periods for winter wheat (Triticum aestivum L.) and summer maize (Zea mays, L.) at Quzhou experiment station of China Agricultural University, Hebei province. Soil water potential and NO3-N concentrations were measured along two 2-m deep soil profiles during the investigation period. After calibrated at steady state, the developed transfer function model was used to simulate NO3-N concentration and leaching amount at the interest depth under transient flow. Four different methods were introduced to compar
    e the effects of water flow and source-sink terms on the estimation accuracy, i.e., 1) considering both the transient water flow condition and the source-sink terms (Method 1), 2) considering the transient water flow condition only (Method 2), 3) considering neither the transient water flow condition nor the source-sink terms (Method 3), 4) considering the source-sink terms only (Method 4). Comparisons between the experimental data and simulated results with the transfer function showed that Method 1 provided the most reasonable prediction of the N leaching process as well as its total amount leached. Results also indicated that considering the transient water condition and N transformations in the transfer function significantly increased the estimation accuracy. Compared with the measured data, relative error of the estimated total amount leached N were 0.99 and 19.62%, respectively, with and without considering the transient water condition and the N transformations. The estimated results using Me
    thods 1 and 4 were similar, which showed that
    
    
    practically it may be necessary to consider the source-sink terms only and treat the water flow domain as a steady state when we simulate long-time chemical processes in dry croplands. The leached N resulting from the applied N accounted for 0.42% of the total leached N and 0.10% of the applied N, and the leached N was mainly from the residual N, which accounted for 99.58% of the total leached N. Calculations showed that the N leaching portions during the winter wheat and summer maize seasons, were 0.03 and 0.14% of the applie
引文
[1]Addisott, T.M., and R.J. Wagenet. Concepts of solute leaching in soils: a review of modeling approaches. J. Soil Sci. 1985, 36: 411-424.
    [2]AI-Kanani, T., MacKenzie, A.F., and Barthakur, N.N. Soil water and ammonia volatilization relationships with surface-applied nitrogen fertilizer solutions. Soil Sci. Soc. Am. J. 1991, 55:1761-1766.
    [3]Bailey, J.S., K. Wang, C. Jordan, and A. Higgins. Use of precision agriculture technology to investigate spatial variability in nitrogen yields in cut grassland. Chemosphere. 2001, 42: 131-140.
    [4]Baker, J.L., and D.R. Timmons. Fertilizer management effects on leaching of labeled nitrogen for no-till corn in field lysimeter. J. Environ. Qual. 1994, 23:305-310.
    [5]Burkart, M.R., D.W. Kolpin, and D.E. James. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US. Wat. Sci. Tech. 1999, 39 (3): 103-112.
    [6]Butters, G.L., and W.A. Jury. Field scale transport of bromide in an unsaturated soil 2. Dispersion modeling. Water Resour.Res. 1989, 25:1583-1589.
    [7]Butters, G.L.,W.A. Jury, and F.F. Ernst. Field scale transport of bromide in an unsaturated soil 1. Experimental methodology and result. WaterResour.Res. 1989, 25:1575-1581.
    [8]Cabon, F., G. Girard, and E. Ledoux. Modeling of the nitrogen cycle in farm land areas. Fertilizer Res. 1991, 27:161-169.
    [9]Campbell, C.A. Soil organic carbon, nitrogen and fertility. M. Schnitzer and S.U. Khan (eds). Soil organic matter. Developments in soil science 8. Elsevier., 1978, p220-228.
    [10]Cavero, J., E. Playan, N. Zapata, and J.M. Faci. Simulation of maize grain yield variability within a surface-irrigated field. J. Agron. 2001, 93 (4): 773-782.
    [11]Chung, S.-O., and R. Horton. Soil heat and water flow with a surface mulch. Water Resour. Res.1987, 23(12): 2175-2186.
    [12]de Rooij Gerrit H. de, and Frank Stagnitti. Spatial variability of solute leaching: experimental validation of a quantitative parameterization. Sci. Soc. Am. J. 2000, 64: 499-504.
    [13]de Willigen, D. Nitrogen turnover in the soil-crop system: comparison of fourteen simulation models. Fertilizer Research. 1991, 27: 141-149.
    [14]Djurhuus, J., S. Hansen, K. Schelde, and O.H. Jacobsen. Modelling mean nitrate leaching from spatially variable fields using effective hydraulic parameters. Geoderma. 1999, 87: 261-279.
    [15]Dobermann A., P. Goovaerts, and H. U. Neue. Scale-dependent correlations among soil properties in two tropical lowland rice fields. Soil Sci. Soc. Am. J. 1997, 61:1483-1496
    [16]Dowdell, R.J., C.P. Webster, D. Hill, and E.R. Mercer. A lysimeter study of the fate of fertilizer nitrogen in the spring barley crops grown on shallow soil overlying chalk: crop uptake and leaching losses. J. Soil Sci. 1984, 35:169-181.
    
    
    [17]Dyson ,J.S. and R.E. White. A simple predictive approach to solute transport in layered soils. J.Soil Sci. 1989, 40: 525-542.
    [18]Dyson ,J.S., and R.E. White. A comparison of the convection-dispersion equation and transfer function model for predicting chloride leaching through an undisturbed structured clay soil. J. Soil Sci. 1987, 37: 157-152.
    [19]Ellsworth T. R., and Boast C. W. Spatial structure of solute transport variability in an unsaturated field soil. Sci. Soc. Am. J. 1996, 60: 1355-1367.
    [20]Ersahin, S. Assessment of spatial variability in nitrate leaching to reduce nitrogen fertilizers impact on water quality. Agricultural Water Management. 2001, 48(3): 179-189.
    [21]Fenn, L.B., and S. Miyamoto. Ammonia loss and associated reactions of urea in calcareous soils. Soil Sci. Soc. Am. J. 1981, 45:537-540.
    [22]Fox, H.R., Piekielek, P.W., and Macneal, K.E. Estimating ammonia volatilization losses from urea fertilizers using a simplified micrometeorological sampler. Soil Sci. Soc. Am. J. 1996, 60: 596-601.
    [23]Gaston L. A., M. A. Locke, R. M. Zablotowicz, and K. N. Reddy. Spatial variability of soil properties and weed populations in the Mississippi Delta. Soil Sci. Soc. Am. J. 2001, 65:449-459.
    [24]Gogerya, F.S., M.F. Dahab, W.E. Woldt, and I. Bogardi. Incorporation of spatial variability in modeling non-point source groundwater nitrate pollution. Wat. Sci. Tech. 1996, 33 (5): 233-240.
    [25]Greminger, P. J., Y. K. Sud, and D. R. Nielsen. Spatial variability of field-measured soil water characteristics. Soil Sci. Soc. Am. J. 1985, 49: 1075-1082.
    [26]Grignani, C, and L. Zavattaro. A survey on actual agricultural practices and their effects on the mineral nitrogen concentration of the soil solution. Europ. J. Agron. 2000, 12: 251-268.
    [27]Gupta, R.K., S. Mostaghimi, P.W. McClellan, J.B. Birch, and D.E. Brann. Modeling spatial variability of soil chemical parameters for site-specific farming using stochastic methods. Water, Air, and Soil Pollution. 1999, 110: 17-34.
    [28]Hadas, A., A. Feigin, S. Feigenbaum, and R. Portnoy. Nitrogen mineralization in the field at various soil depths. J. Soil Sci. 1989, 40: 131-137.
    [29]Harmsen, K, and J.T. Moraghan. A comparison of the isotope recovery and difference methods for determining nitrogen fertilizer efficiency. Plant and Soil. 1988, 105: 55-67.
    [30]Harris, R.F Energetics of nitrogen transformation. F.J. Stevenson (ed). Nitrogen in agricultural soil. Agron. Monogr. 22. ASA and SSA, Madison, WI., 1982, p833-888.
    [31]Heathman, G.C., P.J. Starks, and M.A. Brown. Time domain reflectometry field calibration in the little Washita River experimental watershed. Soil Sci. Soc. AM. J. 2003, 67:52-61.
    [32]Heng ,L. K., R. E. White ,D.R. Scotter, and N.S. Bolan. A transfer function approach to modeling the leaching of solutes to subsurface drains. 1 Reactive solutes. Aust. J. Soil Res., 1994,32: 85-94.
    
    
    [33]Heng,LK., and R.E.White. A simple analytical transfer function approach to modelling the leaching of reactive solutes through field soil. European Journal of Soil Science. March 1996, 47,33-42.
    [34]Heuvelman W. J. and K. J. Mclnnes. Spatial variability of water fluxes in a field study. Soil Sci. Soc. Am. J. 1997, 61:1037-1041.
    [35]Hopmans, J.W., J. imnek, and K.L. Bristow. Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: geometry and dispersion effects. Water Resour. Res. 2002, 38(1):7-1/7-14.
    [36]Huwe, B., K.U. Totsehe., R.E Follett, and P.J. Wierenga. Deterministic and stochastic modelling of water, heat and nitrogen dynamics on different scales with WHNSIM. Journal of Contaminant Hydrology. 1995, 20: 265-284.
    [37]Indelman P., I. Touber-Yasur, B. Yaron, G. Dagan. Stochastic analysis of water flow and pesticides transport in a field experiment. Journal of Contarninat Hydrology. 1998, 32: 77-79.
    [38]Jansson, S.L., and J. Persson. Mineralization and immobilization of soil nitrogen. EJ. Stevenson (ed). Nitrogen in agricultural soil. Agron. Monogr. 22. ASA and SSA, Madison, WI., 1982, p240.
    [39]Jensen, K.H., and A.A. Mantoglou. Application of stochastic unsaturated flow theory, numerical simulations, and comparisons to field observations. Water Resour. Res. 1992, 28 (1): 269-284.
    [40]Jürg Hosang. Field-scale solute transpor ——spatially interpolating the parameters of a transfer function model. Geoderma. 1993, 60:119-133.
    [41]Jury, W.A., and G. Sposito. 1985. Field calibration and validation of solute transport models for the unsaturated zone. Soil Sci. Soc. AM. J. 49:1331-1341.
    [42]Jury , W.A., and K. Roth. Practical field application of the transfer function approach in unsaturated soil.. In W.A. Jury and K. Roth (ed). Transfer functions and solute movement through soil: Theory and applications. 1990, p105-111. Birkhauser Vedag Basel. Boston, Berlin.
    [43]Jury, W.A., J.S. Dyson and G.L. Butter. Transfer function model of field-scale solute transport under transient water flow. Soil Sci. Soe. Am. J. 1990, 54: 327-332.
    [44]Jury ,W.A., L.H. Stolzy, and P.Shouse. A field test of the transfer function model for predicting solute transport. Water Resour. Res., 1982, 18:369-374.
    [45]Jury, W.A., and D. Scotter. A unified approach to stochastic-convective transport problems. Soil Sci. Soc. Am. J. 1994.58:1327-1336.
    [46]Jury, W.A.. Simulation of solute transport using a transfer function model. Water Resour. Res., 1982,18(2): 363-368 Jury ,W.A., G. Sposito, and R.E.White.A transfer function model of solute transport through soil 1. Fundamental concepts. Water Resour. Res., 1986, 22(2): 243-247.
    [47]Kersebaum, K.C., and J. Richter. Modelling nitrogen dynamics in a plant-soil system with a simple model for advisory purposes. Fertilizer Res. 1991, 27:273-281.
    [48]Klute, A. Water retention: Laboratory methods. In A. Klute (ed.) Methods of soil analysis. 1986,
    
    p 635-662. Part 1.2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
    [49]Lafolie, F. Modelling water flow, nitrogen transport and root uptake including physical non-equilibrium and optimization of the root water potential. Fertilizer Res. 1991, 27:215-231.
    [50]Lafrance, P., and O. Banton. Implication of spatial variability of organic carbon on predicting pesticide mobility in soil. Geoderma. 1995, 65 (3-4) : 331-338.
    [51]Lyngstad, I. A lysimeter study on the nitrogen balance in soil. I. Fate of 15N-labelled nitrate fertilizer applied to barley. Norwegian Journal of Agricultural Sciences. 1990, 4:119-128.
    [52]Magesan, G.N., D.R. Scotter, and R.E.White. A transfer function approach to modeling the leaching of solutes to subsurface drains. 1. no-reactive solutes. Aust. J. Soil Res., 1994,32: 69-83.
    [53]Mahmoudjafari M., G. J. Kluitenberg, J. L. Havlin, J. B. Sisson, and A. P. Schwab. Spatial variability of nitrogen mineralization at the field scale. Soil Sci. Soc. Am. J. 1997, 61:1214-1221.
    [54]Mailants Dirk, Binayak P. Mohanty, Diederik Jacques, and Jan Feyen. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science, 1996, 161(3):167-181.
    [55]Mallawatantri, A. P., and D. J. Mulla. Uncertainties in leaching risk assessments due to field averaged transfer function parameters. Soil Sci. Soc. Am. J. 1996, 60: 722-726.
    [56]Mantoglou, A.A. Theoretical approach for modeling unsaturated flow in spatially variable soils: effective flow models in finite domains and non-stationadty. Water Resour. Res. 1992, 28 (1): 251-267.
    [57]Martinez, J., and G. Guiraud. A lysimeter study of the effects of a ryegrass catch crop, during a winter wheat/maize rotation, on nitrate leaching and on the following crop. J. Soil Sci. 1990, 41: 5-16.
    [58]Milly, P.C.D. A simulation analysis of thermal effects on evaporation from soil. Water Resour. Res. 1984, 20(8):1087-1098.
    [59]Mulla D J. Estimationg spatial patterns in water content, matric suction, and hydraulic conductivity. Soil Sci. Soc. Am. J. 1988, 52:1547-1553.
    [60]Myrold, D.D., and J.M. Tiedje. Simultaneous estimation of several nitrogen cycle rates using~(15)N: theory and application. Soil Biol. Biochem. 1986, 18(6): 559-568.
    [61]Nishio, T.,T. Kanamori, and T. Fujimoto. Nitrogen transformations in an aerobic soil as determined by a ~(15)NH_4~+ dilution technique. Soil Biol. Biochem.1985, 17(2): 149-154.
    [62]Or, D., and J.M. Wraith. Soil water content and water potential relationships. In A.W. Warfick (ed.) Soil physics companion. 2002, p59. CRC press, Boca Raton, Florida.
    [63]Patra, A.K., and T.J. Rego. Measurement of nitrate leaching potential ofa Vertisol using bromide as a tracer under rainfed conditions of the Indian semi-arid tropics. Soil Sci. 1997, 162:656-665.
    [64]Per Loll and Per Moldrup. Stochastic analyses of field-scale pesticide leaching risk as influenced by spatial variability in physical and biochemical parameters. Water Resour Res. 2000, 36(4): 959-970.
    
    
    [65]Perfect, E. A pedotransfer function for predicting solute dispersivity: Model testing and upscaling. In: Pachepsky, Y., D. E. Radcliffe, and H. M. Selim (ed.). Scaling methods in soil physics. 2003, 89-96. CRC Press.
    [66]Perfect, E., M. C. Sukop, and R. Haszler. Prediction of dispersivity for undisturbed soil columns from water retention parameters. Soil Sci. Soc. Am.J. 2002, 66: 696-701.
    [67]Persicani, D. Pesticide leaching into field soils: sensitivity analysis of four mathematical models. Ecological modeling.1996, 84-265-280.
    [68]Ramos, C., and E.A. Carbonell. Nitrate leaching and soil moisture prediction with the LEACHM model. Fertilizer Research. 1991,27: 171-180.
    [69]Ren, Li., J. Ma, and R. Zhang. Estimating nitrate leaching with a transfer function model incorporating net mineralization and uptake of nitrogen. J. Environ. Qual. 2003, 32:1455-1463.
    [70]Ritchie, J. T. and D. Godwin. Chapter 3: soil water balance. In CERES Wheat 2.0.
    [71]Russo David, Itay Russo, and Asher Laufer. On the spatial variability of parameters of the unsaturated hyduaulic conductivity. Water Resour Res. 1997, 33(5): 947-956.
    [72]Russo, D., and M. Bouton. Statistical analysis of spatial variability in unsaturated parameters. Water Resour Res. 1992, 28(7): 1977-1925.
    [73]Sharmasarkar, F.C., S. Sharmasarkar, R. Zhang, G.F. Vance, and S.D. Miller. Micro-spatial variability of soil nitrate following nitrogen fertilization and drip irrigation. Water, Air, and Soil Pollution. 1999, 116: 605-619.
    [74]Shouse P.J. Spatial variability of soil water retention functions in a silt loam soil. Soil Sci. 1995, 159 (1): 1-12
    [75]imnek, J., M. ejna, and M. Th. Van Genuchten. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media (Version 2.0). U.S. Salinity Laboratory Agricultural Research Service, U.S. Department of Agriculture, Riverside, California. 1998,10.
    [76]Standford, G., and S.J. Smith. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Amer. Proc. 1972, 36: 465-472,.
    [77]Stenger, R., E. Priesack, and F. Beese. Rates of nitrogen mineralization in disturbed and undisturbed soils. Plant and Soil. 1995, 171: 323-332.
    [78]Thomasson, M.J., and P.J. Wierenga. Spatial variability of the effective retardation factor in an unsaturated field soil. J. Hydrol. 2003, 272: 213-225.
    [79]Toride Nobuo and Feike J. Leij. Convective-dispersive stream tube model for field-scale transport: I. moment analysis. Soil Sci. Soc. Am. J. 1996, 60:342-352
    [80]van Es H. M., C. B. Ogden, R. L. Hill, R. R. Schindelbeck, and T. Tsegaye. Integrated assessment of space, time, and management-related variability of soil hydraulic properties. Soil Sci. Soc. Am. J. 1999, 63:1599-1608
    [81]van Gennuehten, M. Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. AM. J. 1980, 44:892-898.
    
    
    [82]van Soest, F., A. Stein, A.L.M. Dekkers, and W. van Duijvenbooden. A quantitative evaluation of monitoring networks for region-specific nitrate reduction policies. Journal of Environmental Management. 2001, 61: 215-225.
    [83]White, R.E., J.S. Dyson, R.A.Haigh, W.A.Jury, and G.Sposito. A transfer function model of solute transport through soil 2. Illustrative applications. Water Resour. Res., 1986,22:248-254.
    [84]White R.E. Prediction of nitrate leaching from a structured clay soil using transfer functions derived from externally applied or indigenous solute fluxes. J. Hydrol. 1989, 107:31-42.
    [85]White, I., and M. J. Sully. On the variability and use of the hydraulic conductivity Alpha parameter in stochastic treatments of unsaturated flow . Water Resour Res. 1992, 28(1): 209-213.
    [86]White, R.E. A transfer function model for the prediction of nitrate leaching under field condition. J. Hydrol, 1987, 92:207-222.
    [87]White, R.E. The transport of chloride and non-diffusible solutes through soil. Irrig Sci. 1985, 6: 3-10.
    [88]White, R.E., G.W. Thomas, and M.S. Smith. Modeling water flow through undisturbed soil cores using a transfer function model derived from ~3HOH and Cl transport. J. Soil Sci. 1984,35:159-168.
    [89]White, R.E., L.K. Heng, and G.N. Magesan. Nitrate leaching from a drained, sheep-grazed pasture. 2. Modelling nitrate leaching losses. Aust. J. Soil. Res. 1998, 36:963-977.
    [90]White, R.E., L.K. Heng, and R.B. Edis. Transfer function approaches to modeling solute transport in soils. In H.M. Selim and L. Ma (ed.) Physical nonequilibrium in soils: Modeling and application. 1998, p. 313-315. Ann Arbor Press, Chelsea, MI.
    [91]Wilhelm, F.M., and L.W. Gelhar. Stochastic analysis of transport and decay of a solute in heterogeneous aquifers. Water Resour. Res. 1996, 32 (12): 3451-3459.
    [92]Wu,Q.J., A.D. Ward, S.R. Workman, E.M. Salehow. Applying stochastic simulation techniques to a deterministic vadose zone solute transport model. J Hdrol. 1997, 197 : 88-110.
    [93]Yang, J.Z., R. Zhang, and J. Wu. Stochastic analysis of absorbing solute transport in three-dimensional heterogeneous unsaturated soils. Water Resour. Res. 1997, 33 (8):1947-1956.
    [94]Yang, J.Z., R. Zhang, J. Wu, and M.B. Allen. Stochastic analysis of absorbing solute transport in two-dimensional unsaturated soils. Water Resour. Res. 1996, 32 (9): 2747-2756.
    [95]Yates, S.R., and M.V. Yates. Geostatisties for waste management: a user's manual for the GEOPACK (Version 1.0) geostatistical software system. Robert S. Kerr environmental research laboratory offices of research and development. U.S. Environmental Protection Agency. ADA Oklahoma. 1990.
    [96]白由路,金继运,杨俐苹,梁鸣早。基于GIS的土壤养分分区管理模型研究。中国农业科学。2001,34(1):1—4。
    [97]白由路,李保国,胡克林。黄淮海平原土壤盐分及其组成的空间变异特征研究。土壤肥料。
    
    1999,3:22-26。
    [98]北京市气象局气候资料室。北京气候志。北京出版社,1987,48-68。
    [99]曹巧红,龚元石。应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征。植物营养与肥料学报。2003,9(2):139-145。
    [100]曹巧红。随机降雨/天气变化条件下冬小麦—夏玉米农田氮淋失特征模拟分析。中国农业大学博士论文。2002。
    [101]陈亚新,史海滨,田圃德,刘贵义,张建国。水盐空间变异性监测的条件模拟。水利学报。2000,6:67-73。
    [102]陈玉民,郭国双,王广兴,康绍忠,罗怀彬,张大中等编著。中国主要作物需水量与灌溉。水利电力出版社。北京,1995年2月。
    [103]陈子明,袁锋明,姚造华,周春生,付高明,李小平,王丽霞。1995。氮肥施用对土体中氮素移动利用及其对产量的影响。土壤肥料。4:36-42。
    [104]冯广龙,刘昌明。冬小麦根系生长与土壤水分利用方式相互关系分析。自然资源学报。1998,13(3):234-241。
    [105]高峻,黄元仿,李保国,张世熔,张凤荣。农田土壤颗粒组成及其剖面分层的空间变异分析。植物营养与肥料学报。2003,9(2):151—157。
    [106]高鹭,陈素英,胡春胜,霍习良。喷灌条件下农田土壤水分的空间变异性研究。地理科学进展。2002,21(6):609-615。
    [107]高强。土壤剖面不同位置累积硝态氮的作物有效性及去向。中国农业大学博士学位论文。2003。
    [108]龚元石,廖超子,李保国。土壤含水量和容重的空间变异及其分形特征。土壤学报,1998,35(1):10-15。
    [109]郭旭东,傅伯杰,马克明,陈利顶。基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例。应用生态学报。2000,11(4):557—563。
    [110]何振立。土壤微生物量及其在养分循环和环境质量评价中的意义。1997,2:61-69。
    [111]胡克林,李保国,陈德立,R.E.White。农田土壤水分和盐分的空间变异性及其协同克立格估值。水科学进展。2001,12(4):460-466。
    [112]胡克林,李保国,林启美,李贵桐,陈德立。农田土壤养分的空间变异性特征。农业工程学报。1999,15(3):33-38。
    [113]胡克林。农田尺度下土壤属性的空间变异性及硝酸盐淋失的随机模拟。中国农业大学博士学位论文。2000。
    [114]虎胆·吐马尔拜。作物在秸杆覆盖条件下土壤水分运动的实验分析与数值模拟。武汉水利电力大学博士学位论文。1996。
    [115]黄冠华,Zhan Hongbin,叶自桐。水力传导度空间变异性的分形模拟研究进展。水科学进展。2003,14(2):236—241。
    [116]黄满湘,章申,张国梁。应用大型原状土柱渗漏计测定冬小麦-夏玉米轮作期硝态氮淋失。环境科学学报。2003,23(1):11-16。
    [117]黄绍文,金继运,杨俐苹,程明芳。县级区域粮田土壤养分的空间变异性。土壤通报。2002,
    
    33(3):188-193。
    [118]黄元仿,李韵珠,李保国,陈德立。华北平原农田水、氮优化管理。农业工程学报。2001,17(2):37-41。
    [119]黄元仿,李韵珠,李保国,陈德立。区域农田土壤水和氮素行为的模拟。水利学报。2001,11:87-92。
    [120]黄元仿,李韵珠,陆锦文。田间条件下土壤氮素运移的模拟模型Ⅰ。水利学报。1996,6:9-14。
    [121]黄元仿,李韵珠,陆锦文。田间条件下土壤氮素运移的模拟模型Ⅱ.田间检验与应用。水利学报。1996,6:15-23。
    [122]黄元仿。区域土壤N素行为与土壤水、氮管理。中国农业大学博士论文,1996。
    [123]姜城,杨俐苹,金继运,张维理。土壤养分变异与合理取样数量。植物营养与肥料学报。2001,7(3):262-270。
    [124]巨晓棠,刘学军,张福锁。冬小麦/夏玉米轮作中硝态氮在土壤剖面的累积及移动。土壤学报。2003,40:538-546。
    [125]雷志栋,杨诗秀,谢森传。土壤水动力学。清华大学出版社。1988。
    [126]李保国,龚元石,左强。农田土壤水的动态模型及应用。科学出版社。2000。
    [127]李庆逵,朱兆良,于天仁。中国农业持续发展中的肥料问题。南昌:江西科学技术出版社,1998年5月。
    [128]李世娟,李建民。氮肥损失研究进展。农业环境保护。2001,20:377-379。
    [129]李小昱,雷廷武,王为。农田土壤特性的空间变异性及Kriging估值法。西北农业大学学报。2000,28(6):30—35。
    [130]林忠辉,项月琴,莫兴国,李俊,王玲。夏玉米叶面积指数增长模型的研究。中国生态农业学报。2003,11(4):69-72。
    [131]刘群昌,谢森传。华北地区夏玉米田间水分转化规律研究。水利学报。1998,1:62-68。
    [132]吕军,俞劲炎。水稻土物理性质空间变异性研究。土壤学报。1990,27(1):8-15。
    [133]罗毅。墒情监测与随机预报及作物系数研究。1998。清华大学博士论文。
    [134]乔玉辉,宇振荣,Driesssen P M.。冬小麦叶面积动态变化规律及其定量化研究。中国生态农业学报。2002,10(2):83-85。
    [135]任理,李保国,叶素萍,杨立国。稳定流场中饱和均质土壤盐分迁移的传递函数解。水科学进展,1999,10(2):107—112。
    [136]任理,刘兆光,李保国。非稳定流条件下非饱和均质土壤溶质运移的传递函数解。水利学报。2000,4:7-15。
    [137]任理,刘兆光,马军花,李保国。考虑残留氮对非稳定流场硝态氮淋失贡献的传递函数模型,Ⅰ.地中渗透计验证。水利学报。2003,11:13-20。
    [138]任理,马军花,刘兆光,李保国。考虑残留氮对非稳定流场硝态氮淋失贡献的传递函数模型,Ⅱ.农田应用。水利学报。2003,12:32-40。
    [139]任理,马军花。考虑土壤中硝态氮转化作用的传递函数模型。水利学报。2001,5:38-44。
    [140]任理,秦耀东,王济。非均质饱和土壤盐分优先运移的随机模拟。土壤学报,2001,38(1):
    
    104—113。
    [141]任理,王济,秦耀东。非均质土壤饱和稳定流中盐分运移的传递函数模拟。水科学进展,2000,11,(4):392—400。
    [142]任理,袁福生,张福锁。土壤中硝态氮淋洗的传递函数模拟。水利学报,2001,4:21—27。
    [143]任理,袁福生,张福锁。稳定流条件下土壤剖面硝态氮驻留浓度分布的随机—对流传递函数模拟。水利学报。2002,2:54-60。
    [144]沈荣开,任理,张瑜芳。夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟。水利学报。1997,2:14-21。
    [145]王坷,许红卫,史舟,J.S.Bailey,C.Jordan。土壤钾素空间变异性和空间插值方法的比较研究。植物营养与肥料学报。2000,6(3):318—322。
    [146]王绍强,朱松丽,周成虎。中国土壤土层厚度的空间变异性特征。地理研究。2001,20(2):161—169。
    [147]王树安。作物栽培学各论。北京:中国农业出版社。1995,10。
    [148]王政权,王庆成。森林土壤物理性质的空间异质性研究。生态学报。2000,20(6):945-950。
    [149]王政权。地统计学及在生态学中的应用。北京:科学出版社。1999。
    [150]谢森传。农田水分循环中的蒸发蒸腾计算。国家自然科学基金《八五》重大项目:华北平原节水农业应用基础研究。第四课题:节水农业综合技术的应用基础研究。1996年课题研究阶段成果汇编。1996,p1-7。
    [151]谢永华,黄冠华。土壤水张力时变空间结构的初步研究。水科学进展。1999,10(2):113-117。
    [152]许迪,蔡林根,王少丽,刘钰,李益农,丁昆仑。农业持续发展的农田水土管理已经。中国水利水电出版社。北京,2006,10。
    [153]许迪,蔡林根。冬小麦-夏玉米种植模式下的农田水量平衡模拟及人渗补给规律分析。水利学报。1997,12:64-78。
    [154]杨建锋,李宝庆,李运生,马瑞。浅地下水埋深区潜水对SPAC系统作用初步研究。水利学报。1999,7:27-32。
    [155]杨建锋,刘士平,张道宽,袁德洲,李连海。地下水浅埋条件下土壤水动态变化规律研究。灌溉排水。2001,20(3):25-28。
    [156]叶自桐。利用盐分迁移函数模型研究入渗条件下土层的水盐动态。水利学报。1990,2:1-9。
    [157]尹大凯,胡和平,惠士博。青铜峡银北灌区井灌井排水盐运动数值模拟。农业工程学报。2002,18(3):1-4。
    [158]袁锋明,陈子明,姚造华,周春生,傅高明,宋永林,李小平。北京地区潮土表层中硝态氮的转化积累及其淋洗损失。土壤学报。1995,32:388—399。
    [159]袁建平,雷廷武,郭索彦,蒋定生。黄土丘陵区小流域土壤入渗速率空间变异性。水利学报。2001,10:88—92。
    [160]张国梁,章申。农田氮素淋失研究进展。土壤。1998,6:291-297。
    [161]张乃明,李保国,胡克林。太原污灌区土壤重金属和盐分含量的空间变异特征。环境科学学报。2001,21(3):349-353。
    [162]张绍林,朱兆良,徐银华。黄泛区潮土—冬小麦系统中尿素的转化和化肥氮去向。核农学
    
    报。1989,3(1):9—15。
    [163]张世熔。基于GIS的区域水氮行为模拟与管理分析。中国农业大学博士学位论文。2002。
    [164]张淑娟,何勇,方慧。基于GPS和GIS的田间土壤特性空间变异性的研究。农业工程学报。2003,19(2):39-44。
    [165]张思聪,吕贤弼,黄永刚。灌溉施肥条件下氮素在土壤中迁移转化的研究。水利水电技术,1999,30(5):6-8。
    [166]张瑜芳,张蔚榛,沈荣开,刘培斌,冯绍元,水建高。排水农田中氮素转化运移和流失。武汉:中国地质大学出版社,1997年7月。
    [167]张展羽,郭相平,詹红丽,乔保雨。微咸水灌溉条件下土壤和地下水含盐量空间变异分析。灌溉排水。2001,20(3):6-9。
    [168]赵秉强,张福锁,李增嘉,李凤超,张新春,申加祥,潘海军,赵甲美,尹玉波,武传杰。间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ.间作早春玉米根系数量与活性的空间分布及变化规律。作物学报。2001,27(6):974-979。
    [169]赵其国。21世纪土壤科学展望。地球科学进展。2001,16(5):704-709。
    [170]赵其国。从未来土壤学看环境与生态优先研究领域。中国科学基金。1994,166-169。
    [171]赵其国。发展与创新现代土壤科学。土壤学报。2003,40(3):321-327。
    [172]甄文超,冯利平。北京地区渗灌条件下冬小麦生长发育状况的研究。麦类作物学报。2001,21(2):46-50。
    [173]周晓东,王馥棠,朱启疆。二氧化碳浓度增加对冬小麦生长发育影响的数值模拟。气象学报。2002,60(1):53-59。
    [174]朱兆良。农田中氮肥的损失与对策。土壤与环境,2000,9(1):1—6。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700