地源热泵相变蓄能地板采暖系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将以电力驱动、以浅层地热资源合理利用的地源热泵与相变蓄能技术相结合,不但能有效提高能量转换效率,而且能充分利用夜间低谷电,移峰填谷,既实现能源需求侧节能节资,也能实现能源供应侧的节能,降低电力投资,是一种高效节能环保的采暖热源方式。本文在总结以往国内外研究成果的基础上,研究地源热泵相变蓄能地板采暖系统的应用原理和节能效果,探讨其联合运行控制策略,其研究内容主要包括:
     1.在总结归纳相变材料的基础上,选择出合适的相变材料——定形相变材料,针对相变传热的特点,利用传热学理论,建立各求解模型的数学方程。
     2.与地源热泵相匹配的相变材料与地板基体材料复合工艺研究,建立地源热泵低温热水相变蓄能地板采暖模型,采用焓法数值模拟在不同的相变温度、相变潜热、相变半径、管内水流速、供回水温差、室内设计温度及管间距条件下相变材料的蓄热时间、地板层内不同点不同时刻的温度值。
     3.采用正交设计试验分析方法,对模拟结果分析,找出其主要影响因素及各因素的最优水平,选择出系统较优方案,此方案相变蓄热时间正好满足8小时谷价电时段,且相变终了时地板表面温度在27℃以上,满足人体热舒适需要。以时间为控制结束点,对此方案进行放热模拟,放热15小时后,地板表面平均温度维持在22.1℃左右,且分布也较为均匀。
     4.对三种供暖系统热源方案从能源、经济、工程等角度进行热经济工程模糊分析,得出地源热泵提供低温热水为最佳方案。
     5.开展冬季地源热泵间歇运行实验研究,对原始地温检测表明地源热泵可满足不同季节、不同运行条件下的实验要求。同时分析了间歇运行条件下,室内外温度、各井温度、单位井深换热量及供热性能系数的变化规律。指出间歇运行对土壤温度场的恢复是十分有利的,实验阶段单位井深吸热量23.78W/m,热泵机组平均循环性能系数为4.64;热泵系统平均循环性能系数为2.2。
The GSHP using geothermal energy combined with PCM storage technology not only can effectively increase energy conversion efficiency, but also can fully using off-peak electricity and shift peak load. So saving energy and cost is realized at energy demand side; at energy supply side, it is also saving energy and decreasing electric investment. Based on summarizing the study at home and abroad, the application theory and energy saving effect of GSHP radiant floor heating with PCM are studied; the running control strategy is also researched. The research content in this paper mainly includes:
     1. Based on the summarized kinds of PCM, shape-stabilized PCM is optimal. According to the character of heat transfer with PCM, using heat transfer theory, mathematical equation is built.
     2. The coupled process of GSHP and PCM with floor board. The model of low temperature water (supplied by GSHP) radiant floor heating with PCM is built. Using enthalpy method, thermal storage time, temperature in various time and point are numerical simulated at the condition of different of PCM temperature, latent heat, PCM radius, velocity, temperature difference, indoor design temperature and pipe pitch.
     3. Using orthogonal analysis method to analyze the simulation result, the main effect factor and the best level were found, the best or better scheme also chosen. The chosen scheme is just satisfying the time in 8 hours valley electricity, floor surface temperature above 27℃after phase changing. Then the control point with time, after the 15 hours simulation, the mean temperature of floor surface is around 22.1℃,the distribution is very uniform.
     4. Through the fuzzy analysis on heat economic engineering of three heating systems from energy enviroment, economic environment and engineering enviroment, it is carried out that the GSHP system supplying low temperature is the optimum.
     5. Carrying out the experimental study of GSHP intermitted running. From initial ground temperature detection, GSHP can satisfy the needs in various seasons and various running conditions. Simultaneously indoor and outdoor temperature, every well temperature, heat exchange amount per well depth and COP are analyzed, carried out GSHP intermitted running is helpful to the recovery of ground temperature. In experiment time, heat exchange amount per well depth is 23.78W/m. The COP of the heat pump unit is 4.64 and the heat pump system is 2.2.
引文
[1]江亿.我国建筑能耗趋势与节能重点[J].绿色建筑特刊,2006,7:10-15.
    [2]牧伟.新型地板采暖构造理论与实验研究[D].北京:北京建筑工程学院,2008.
    [3]涂逢祥.建筑节能——节能的战略重点中国建筑节能形势与政策建议[J].关注,2004.
    [4]郎四维.我国居住建筑节能设计标准的现状与进展[J].建筑节能,2002,(40):9-19.
    [5]Amir M, Lacroxi M, Galamis N. Comportement thermique de dalles chauffantes electriques pourle stockage quotidient [J]. Therm Sci,1999,38:121~131.
    [6]Laouadi A, Lacroxi M. Thermal performance of latent heat exergy storage ventilated panel for electric load management [J]. Heat Mass Transfer,1999,42:275~286.
    [7]张寅平,胡汉平,孔祥冬.相变贮能-理论和应用[M].合肥,中国科学技术大学出版社,1996.
    [8]陈尚模.水平椭圆管内相变材料接触融化的分析[J].太阳能学报,1995,(2):9-19.
    [9]郑淑华.本市部分地区将试行电采暖、电价实行优惠[N].北京青年报,2001-11-4(第三版).
    [10]北京电力公司网址.http://www.bpsb.com.cn/.
    [11]Hawes DW, Feldman D. Absorption of phase change materials in concrete [J]. Solar Energy Materials and Solar Cells,1992,27 (2):91~101.
    [12]Hawes D W, Banu D, Feldman D. Stability of phase change materials in concrete [J]. Solar Energy Materials and Solar Cells,1992,27 (2):103~118.
    [13]Bakos G. Energy management method for auxiliary energy saving in a passive-solar-heated residence using low cost off-peak electricity [J]. Energy and Buildings,2000,31:237~241.
    [14]Barrio M, Font J, Lopez D O, etal. Floor radiant system with heat storage by a solid-solid phase transition material [J]. Solar Energy Materials and Solar Cells,1992,27:127~133.
    [15]T.Lee,D W Ilawes et.al. Control aspects of latent heat storage and recovering in concrete [J]. Solar Energy Material&Solar Cell,2000,62:17~317.
    [16]Anthienitis A K,et al. Investigation of the thermal performance of a passive solar test-room with wall latent heat storage[J]. Building and Environment,1997,32 (5):405~410.
    [17]Athienitis A K, Chen T Y.Experimental and theoretical investigation of floor heating with thermal storag [J]. ASHRAE Trans,1993,99(1):1049~1057.
    [18]M.Yamagushi, S. Sayama etal. Heat storage with phase change material for house floor heating. Proc.Of the 7th Inter. Conf. on Thermal Energy Storage, June,1997:349~353.
    [19]Farid M, Kong W J. Underfloor heatingwith latent heat storage[C]. Proceeding of the Institution of Mechanical Engineers,2001,601~609.
    [20]Feldman D, Shapiro M M, Banu D·Organic phase change materials forthermal energy storage [J].Solar EnergyMaterials,1986,13:1~10.
    [21]Son ChangH·Morehouse JeffreyH,An experimental investigation of solid -state phase change materials for solar thermal storage [J].Trans Of the ASME,J of Solar Energy Engineering, 1991,113:244~249.
    [22]Tashfeen Syed M, Kumar Sunil, Moallemi Karim M, etal. Thermal storage using form-stable phase -change materials [J]. ASHRAE Journal,1997,39:45~50.
    [23]KamimotoM,Abe YSawata,S et al. Latent thermal storage unit using form -stable high density polyethylene; part I:performance of the storage unit [J].Transactions of the ASME,1986,108: 282~289.
    [24]Abe Y, Takahashi Y, Sakamoto R, etal. Charge and discharge characteristics of a direct contact latent thermal energy storage unit using form-stable high -density polyethylene [J].Journal of Solar Energy Engineering,1984,106:465~474.
    [25]Farid M, Kong W J. Underfloor heating with latent heat storage[C]. Proceeding of the Institution of Mechanical Engineers,2001,601~609.
    [26]Salyer I O,Sircar AK,A review of phase change materials research for thermal energy storage in heating and cooling applications at the University of Dayton from 1982 to 1996[J]. Int J Global Energy Issues,1997:183~198.
    [27]Inaba H,Tu P.Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material[J].Heat and Mass Transfer,1997,32:307-312.
    [28]Xavier Py, Pegis Olives, Sylvain Mauran. Paraffin/ porous-graphite-matrix composite as a high and constant power thermal storage material [J].Heat and Mass transfer,2001,44(14): 2727~2737.
    [29]Osamu Miyatake, Muhammad Enamul Kabir, Hidehiko Noda, etal. Transient characteristics and performance of hybrid latent heat storage and spray flash evaporation system. Journal of Chemical Engineering of Japan,1997,30(6):1076~1082.
    [30]Yasushi Koito, Kotaro Tagawa, Yasuhiro Maruta, etal. Effect of pellet size on discharge characteristics of latent heat storage columns packed with cross-linked polymer pellets. Journal of Chemical Engineering of Japan,2001,34(6):819~827.
    [31]张寅平,狄洪发,葛新石等.一种相变蓄热电供暖器[P].中国:专利号:95229702.7.
    [32]张寅平,狄洪发,王馨等.一种民用相变蓄能电取暖器[P].中国:专利号:01275868.X.
    [33]张寅平,王智超,狄洪发,江亿.未来电暖器值得关注的方向——相变蓄热电暖器[J].家用电器科技,2001.10,39~41.
    [34]刘靖,王馨,张寅平,狄洪发,江亿.高温相变蓄热电采暖器蓄放热特性的实验研究[J].工程热物理学报,2004,25:99~102.
    [35]刘靖,刘石,王馨,张寅平,狄洪发.一种高温相变蓄热电暖器的研制及其热性能测试[J].建筑科学,2007,25(4):58~62.
    [36]马贵阳,王智慧,阎润生,曹宏章.相变蓄热电暖器的制作及性能测试[J].抚顺石油学院学报,2003,23(3):50~53.
    [37]秦鹏华,张寅平,杨睿等.定形相变材料的热性能[J].清华大学学报(自然科学版),2003,43(6):833~835.
    [38]林坤平,张寅平,徐煦等.定形相变材料蓄热地板电采暖热性能研究[J].清华大学学报(自然科学版),2004,44(12):1616~1621.
    [39]林坤平,张寅平,狄洪发.相变蓄热电加热地板的优点与应用可行性分析[C].全国暖通空调制冷文摘.2002,169~172.
    [40]林坤平,张寅平.电加热相变材料蓄热地板采暖的热性能模拟[J].太阳能学报.2003,24(5),633~636.
    [41]林坤平,张寅平,徐煦,狄洪发,杨睿,秦鹏华.定形相变材料蓄热地板电采暖热性能实验研究[J].高技术通讯.2005.15(4):51~54.
    [42]林坤平,张寅平,狄洪发,丁剑红,徐煦,杨睿.送风式相变蓄热地板电采暖系统实验研究[C].全国暖通空调制冷文摘,2004,1~4.
    [43]林坤平,张寅平,狄洪发,丁剑红,杨睿,徐煦.地板下送风式相变蓄热电采暖系统[J].太阳能学报.2005,26(6):820~824.
    [44]林坤平.相变蓄能建筑构件应用原理和效果研究[D].北京:清华大学,博士论文,2006.
    [45]张群力;狄洪发;张寅平;林坤平.蓄能材料物性对低温热水采暖地板热性能的影响研究[C].制冷空调新技术进展——第四届全国制冷空调新技术研讨会论文集,2006,88~92.
    [46]叶宏.透明蜂窝和定形相变材料在太阳能利用中的理论和实验研究[D].北京:中国科学技术大学,博士论文,2002.
    [47]叶宏,葛新石.一种定形相变材料的结构和理化分析[J].太阳能学报.2000,21(4):417~421.
    [48]叶宏,葛新石,焦冬生.带定形PCM的相变贮能式地板辐射采暖系统热性能的数值模拟[J].太阳能学报.2002,23(4):482~487.
    [49]叶宏,何汉峰,葛新石,徐斌.利用焓法和有效热容法对定形相变材料熔解过程分析的比较研究[J].太阳能学报.2004,25(4):488~491.
    [50]叶宏,程丹鹏,葛新石,庄双勇,王军.定形相变贮能式地板辐射采暖系统数值模型的实验验证及参数分析[J].太阳能学报.2004,25(2):189~194.
    [51]叶宏,王军,庄双勇,葛新石,徐斌.定形相变贮能式地板辐射采暖系统的实验研究[J].太阳能学报.2004,25(5):651~656.
    [52]程丹鹏.相变传热增强及相变贮能系统研究[D].北京:中国科学技术大学,硕士论文,2006.
    [53]吴秀芬.一种封装蓄能材料用于地板辐射采暖的理论与实验研究[D].北京:北京建筑工程学院,硕士论文,2006.
    [54]邱林,魏立峰,吴秀芬,刘星.蓄能地板辐射采暖系统热性能的研究[J].建筑节能,2007年35(193):51~53.
    [55]邱林,吴秀芬,刘星,魏立峰,杨梦易.地面辐射供暖系统相变蓄能地板热工性能研究[J].煤气与热力.2007,27(2):79~82.
    [56]邱林,吴秀芬,杨梦易.相变材料蓄能采暖地板结构模型的探讨[J].建筑科学.2007,23(2): 41~44.
    [57]周传辉.利用相变蓄热材料进行地板辐射采暖的方法[J].建筑热能通风空调,2002,1:42~43.
    [58]陈其针.相变电热地板辐射采暖系统性能研究及舒适性分析[D].沈阳:沈阳建筑大学,硕士论文,2005.
    [59]李国建.相变储能电热地板采暖系统实验研究[D].沈阳:沈阳建筑大学,硕士论文,2005.
    [60]李国建,冯国会,陈其针.相变储能电热地板采暖系统蓄换热性能实验研究[C].全国暖通空调制冷2004年学术文集.,2004,18~21.
    [61]孔冉.相变蓄热地板传热特性及其供暖房间热性能的研究[D].天津:河北工业大学,硕士论文,2007.
    [62]郭茶秀、魏新利.热能存储技术与应用[M].北京:工业出版社,2005,66~91.
    [63]Ye Hong, Ge Xin-shi. Preparation of polyethylene paraffin compound as a form-stable solid-liquid phase change material[J].Solar Energy Materials & Solar Cells,2000,64:37~44.
    [64]张洪济.热传导[M].北京:高等教育出版社,1992.1.
    [65]胡军.太阳能低温地板辐射采暖系统应用研究[D].青岛:青岛建筑工程学院,硕士论文,2004.
    [66]帕坦卡,S,V著,张政译.传热与流体流动的数值计算[M].科学出版社,1984.
    [67]庄楚强,何春雄.数理统计[M].广州:华南理工大学出版社,2006,568~575.
    [68]郑祖义,彦启森,江亿.热经济工程模糊分析[J].清华大学自然科学版,1996,36:19-22.
    [69]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1983.
    [70]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告[M].北京:中国建筑工业出版社,2007.
    [71]廖吉香.几种供暖空调系统的热经济工程模糊分析[J].制冷空调与电力机械,2008,29(5):1-4.
    [72]王景刚.自然工质热泵循环和地源热泵运行特性研究[D].天津:天津大学,博士论文,2002.
    [73]李恺渊.基于管群换热器温度场分析的土壤源热泵运行特性研究[D].河北:河北工程大学,硕士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700