高光谱遥感图像光谱特征提取与匹配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国经济的可持续高速发展对矿产资源与能源需求极大。但是,当前我国主要矿产资源保障形势非常严峻。遥感技术作为有效的对地观测手段,先后经历了全色摄影,彩色摄影、多光谱遥感,高光谱遥感等不同历史阶段。从20世纪70年代起,遥感技术就被广泛的应用于国土资源调查和监测领域,并取得了丰硕的成果。高光谱遥感极大地增强了遥感对地观测能力和对地物的鉴别能力,提高了遥感技术的定量化水平,使遥感从对地物的鉴别发展到对地物的直接识别阶段,利用高光谱遥感技术探测矿产是遥感技术应用的主要方向之一。
     目前高光谱遥感影像矿物识别分类方法主要分成两种,一种是基于数学变换进行图像降维的数理统计,如主成分分析法。另外一种则根据矿物的光谱形成物理机制,直接利用高光谱遥感数据光谱分辨率高的特点,通过选择吸收谱段,计算光谱吸收特征等方法实现对岩矿识别,如光谱特征拟合法。将这两类方法有效结合起来实现矿物识别分类,从矿物光谱形成的物理机理出发,研究分析地物的诊断光谱特征,并利用数理统计的相关理论方法实现特征匹配达到矿物识别精细与分类填图成为本文研究重点。
     多特征匹配决策树矿物识别与分类填图技术是一个知识发现与表达、规则定义、建立和运行决策树的过程。现有各类矿物识别决策树要么仅仅使用单一特征(如光谱主吸收峰位置特征)和相同的分类算法进行矿物识别,要么使用不同的特征却使用相同的算法,但是这两种决策树都在一定程度上限制了识别精度的提高。为改善矿物识别精度,本文根据各类典型蚀变矿物的光谱吸收特征建立了多变量决策树:首先计算了研究区典型蚀变矿物的主要光谱吸收特征,并将这些特征以知识的形式表达出来。然后分别计算了光谱特征影像的信息熵,根据信息熵的大小选择了光谱吸收指数、光谱吸收深度、光谱斜率、左区域面积等类特征并结合矿物本身的主要吸收特征完成了矿物识别规则的定义。最后在规则定义基础上构建和运行了决策树,得到了分类填图结果。该结果与中国地质大学(武汉)黄定华等人和中国国土资源航空遥感中心的填图结果基本一致,尤其是绿帘石和蛇纹石填图结果吻合的较好。而对于白云母、绿泥石、方解石矿物,三类结果稍有差异。这说明了用知识表达与规则定义的方法对模拟数据进行矿物填图是可行的、有效地,在一定程度上它可以实现矿物种类及分布填图,同时也说明本文建立的多特征混合决策树分类识别树分类能力强。为定量评价决策树分类精度,本文将构建的多特征决策树和SAM方法分别应用于根据USGS光谱库随机生成的模拟图像:结果显示多特征决策树识别正确率为89.06%,而SAM方法正确率为79.99%。这说明了决策树在研究区地物先验知识部分缺失的情况下仍然可以有效的保持较好的健壮性。但是,本文的研究成果主要针对常见典型蚀变矿物,不断拓展其它类别的蚀变矿物,提高识别的准确率将是今后研究的重点。
The demand for mineral resources and energy has become greater and greater with China's sustainable and rapid economic development. However, the safeguard system of China's current major mineral resources is very grim. Remote sensing technology, as an effective means of earth observation, has gone through the full-color photography, color photography, multi-spectral remote sensing, and hyper-spectral remote sensing in different historical stages. Since 1970s, remote sensing technology was widely used in the field of land resources survey and monitoring, and has achieved fruitful results. Hyper-spectral remote sensing has greatly enhanced the ability of earth observation and discrimination of ground objects, has increased the quantitative level of remote sensing technology, has made the discrimination of ground objects develop into directly identify phase. And utilizing hyper-spectral to explore mineral resources is one of the main applications of remote sensing technology.
     At present, mineral discrimination and classification method of hyper-spectral image is divided into two kinds; one is mathematical statistics method, which is based on the mathematical transformation to reduce the dimension of the image, such as principal component analysis. Another is based on the mineral spectra's physical formation mechanism, directly use hyper-spectral data's feature of high spectral resolution, by selecting the absorption spectrum and calculating spectral absorption characteristics and other methods to discriminate the rock and mineral, such as the spectral feature fitting. Combining the two methods to discriminate of mineral classification effectively, starting from the physical formation mechanism of the mineral spectra, studying and analyzing the ground objects'diagnostic spectral characteristics, and using the theory of mathematical statistics methods to match features, identify, classify and mapping minerals precisely has been the focus of this thesis.
     Multi-feature matching decision tree for mineral identification and classification mapping technology is a process that involves knowledge discovery and expression, rule definition, establishment and operation of the decision tree. The existing different mineral identification trees only uses single features (such as the spectral main absorption peaks) and the same classification algorithm for mineral identification, or use different features while use the same algorithm, but the two decision trees are Limited to improve the accuracy of recognition to some extent. To improve the minerals'recognition accuracy, this thesis establishes a multi-variable decision tree according to the spectral absorption characteristics of various typical altered minerals. Firstly, this thesis calculates the main absorption features of the typical alteration minerals in the study area, and expresses these features in the form of knowledge. Then calculates the information entropy of the spectral features images, chooses spectral absorption index, absorption depth, spectral slope, left regional area, and other features according to the entropy, and realizes the definition of mineral identification rules by combining with minerals'main absorption features. Finally, builds and runs the decision classification tree based on the definition rules and gets the mapping results. The mapping results are basically consistent to Huang Dinghua et al from China University of Geosciences (Wuhan) and that of Remote Sensing Center of China Aviation Land and Resources, especially epidote and serpentine mapping results. As for the muscovite, chlorite, calcite minerals, the three mapping results are slightly different. This shows that the method of knowledge representation and rules definition for mineral mapping on simulated data is feasible and effective, and to a certain extent, it can achieve mapping of the mineral type and distribution. It also illustrates the established mixed-decision classification tree has a strong classification ability. In order to evaluate the classification accuracy quantitatively of the decision tree, this thesis applies the multi-feature decision tree and SAM method on simulated images which is randomly generated on the USGS spectral library the results shows that recognition accuracy of the multi-feature decision tree was 89.06%, while the SAM method is 79.99%. This represents that the decision tree can still be effective and keeps good robustness with the absence of the prior knowledge of the study area.
     However, the research results are mainly focused on the common typical alteration minerals, so how to expand to research methods on other types of alteration minerals and improve the accuracy of identification will be the focus of future research.
引文
1刘伟.基于光谱特征分析的匹配与分类技术研究[D].郑州:解放军信息工程大学.2008
    2浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    3中国地质大学(武汉).高光谱矿物信息提取产品生成技术研究报告[R].2010
    4中国地质大学(武汉).高光谱矿物信息提取产品生成技术研究报告[R].2010
    5中国地质大学(武汉).高光谱矿物信息提取产品生成技术研究报告[R1.2010
    6中国地质大学(武汉).高光谱矿物信息提取产品生成技术研究报告[R].2010
    [1]吕志强,文雅,孙净,吴志峰.珠江口沿岸十地利用变化及其地表热环境遥感分析[J].生态环境学报2010,19(8):1771-1777.
    [2]罗杰,周广华,赖家明,胡庭兴,赵安玖,黄从德.遥感技术在川西天然林资源监测中的应用——以道孚县甲斯孔林场为例[J].四川农业大学学报.2010,28(3):313-318.
    [3]刘磊.利用MODIS产品分析长江上游川江段植被变化[J].遥感信息,2007,2:42-45.
    [4]李卫国,李正金.基于CBERS卫星遥感的冬小麦产量估测研究[J].麦类作物学报2010,30(5):915-919.
    [5]甘甫平,陈伟涛,张绪教等.热红外遥感反演陆地表面温度研究进展[J].国土资源遥感,2006,1:6-11.
    [6]杨续超,张镱锂,刘林山.中国地表气温变化对土地利用/覆被类型的敏感性[J].中国科学:D辑,2009,39(5):638-646.
    [7]杜云艳,周成虎,崔海燕,苏奋振,刘宝银.遥感与GIS支持下的海洋渔业空间分布研究——以东海为例[J].海洋学报(中文版).2002,24(5):57-63.
    [8]中国国土资源航空物探遥感中心.国家高技术研究发展计划(863计划)地球观测与导航技术领域项目《地质应用系统建设与典型应用示范研究课题实施方案》[R].北京.2009.
    [9]刘天乐.基于高光谱遥感的矿物光谱特征分析和提取[D].武汉:中国地质大学.2009;
    [10]燕守勋,张兵,赵永超,郑兰芬,童庆禧,杨凯.高光谱遥感岩矿识别填图的技术流程与主要技术方法综述[J].遥感技术与应用,2004,2:52-59.
    [11]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社.2003,(6):95
    [12]陈利燕.ETM+铁矿化蚀变信息定量提取方法的应用—以西昆仑塔什库尔干—明铁盖一带为例[J].湖北农业科学.2010,49(6):1468-1470.
    [13]阐明哲,田庆久,张宗贵.新疆哈密三种典型蚀变矿物的HyMap高光谱遥感信息提取.[J]国土资源遥感.2005,1:37-39
    [14]周强,甘甫平,王润生,陈建平.高光谱遥感影像矿物白动识别与应用[J].国土资源遥感.2005,12(4):28-32;
    [15]甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘.2003,10(4):445-454;
    [16]甘甫平,刘圣伟,周强.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学.2004,29(1):119-126.
    [17]Green, A. A, Berman, M., Switzer, P., and Craig, M. D., A transformation for ordering multispectral data in terms of image quality with implications for noise removal:[J] IEEE Transactions on Geoscience and Remote Sensing,1988, v.26, no.1, p.65-74.
    [18]Boardman, J.W., and Kruse, F. A.,1994, Automated spectral analysis:a geological example using AVIRIS data, north Grapevine Mountains, Nevada:in Proceedings,ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, pp.1-407-1-418.
    [19]Jon Atli Benediktsson, Johannes R. Sveinsson, and Kolbeinn Arnason. Classification and Feature Extraction of AVIRIS Data[J]. IEEE Transaction on Geo science and Remote Sensing, 1995,3 (5):1194-1205.
    [20]Hunt G R. Spectro scopic Properties of Rocks and Minerals[A]. In Practical Handbook of Physical Properties of Rocks and Minerals[C]. Edited by Carmichael R C. Boca Raton Florid: CRC Press Inc,1989:599-669.
    [21]Hunt G R. Electromagnetic Radiation:The Omuniation Link in Remote Sensing[A].In Siegal B, Gillespie A. Remote Sensing Geology[C]. New York,Wiley.1980:702.
    [22]Clark, R. N., Gallagher, A. J., and Swayze, G. A.,1990, Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials:in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, pp.176-186.
    [23]Clark, R. N., Swayze, G. A., Gallagher, A., Gorelick, N., and Kruse, F. A.,1991, Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials:in Proceedings,3rd Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, JPL Publication 91-28, pp.2-3.
    [24]Clark, R. N., Swayze, G. A., and Gallagher, A.,1992, Mapping the mineralogy and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple spectral feature mapping algorithm:in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Publication 92-14, v 1, pp.11-13.
    [25]Crowley, J. K., and Clark, R. N.,1992, AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods:in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Publication 92-14, v 1, pp.29-31.
    [26]Swayze, G. A., and Clark, R. N.,1995, Spectral identification of minerals using imaging spectrometry data:evaluating the effects of signal to noise and spectral resolution using the Tricorder Algorithm:in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Publication 95-1, pp.157-158.
    [27]Clark, R. N., and Swayze, G. A.,1995, Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials:The USGS Tricorder Algorithm:in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Publication 95-1, pp.39-40.
    [28]Songyot Nakariyakul and David Casasent. Hyperspectral Ratio Feature Selection: Agricultural Product Inspection Example[EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.2289&rep=repl&type=pdf
    [29]Paul J. Withagen, Eric den Breejen, Eric M. Franken, Arie N. de Jong, Hans Winkel.Band selection from a hyperspectral data-cube for a real-time multispectral 3CCD camera[EB/OL]. http://staff.science.uva.nl/~paulw/publications/withagen01spie.pdf
    [30]Jiang Li. Linear Unmixing of Hyperspectral Signals via Wavelet Feature Extraction[D]. Ph D Thesis at Mississippi State University,2002.
    [31]Xiaokun Zhu, Yonghong Jia. Solution to Joint Entropy and Its Applications in Remote Sensing[EB/OL]. http://www.isprs.org/proceedings/XXXV/congress/comm5/papers/621.pdf
    [32]Bor-chen Kuo, David Landgrebe.Improved Statistics Estimation and Feature Extraction for Hyperspectral Data Classification[D]. Ph D Thesis at School of Electrical & Computer Engineering Technical Purdue University 2001. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.2558
    [33]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [34]张良培,张立福.高光谱遥感[M].武汉大学出版社.2005,10
    [35]张兵.高光谱遥感之一[EB/OL].http://www2.zzu.edu.cn/songxuan/learningbook/北京大学定量遥感精品课程/07张兵/高光谱遥感080705(1).pdf
    [36]刘伟.基于光谱特征分析的匹配与分类技术研究[D].郑州:解放军信息工程大学.2008
    [37]植被光谱曲线特征[EB/OL].http://hi.baidu.com/gisriver/blog/item/3c872fld980c0a8787d6b60b.html
    [38]张宗贵,王润生等著.成像光谱岩矿识别方法技术研究和影响因素分析[M].北京:地质出版社2006
    [39]苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究[J].计算机应用研究.2008,2:390-394;
    [40]宫鹏,浦瑞良,郁彬.不同季相针叶树种高光谱数据识别分析[J].1998,2(3):211-217;
    [41]苏红军,杜培军.高光谱数据特征选择与特征提取研究[J].2006,21(4):288-293;
    [42]史合印,邢前国,陈楚群,施平,刘亚龙.基于导数光谱的混浊河口水体叶绿素浓度反演[J].2010,29(4):575-578;
    [43]谭吕伟,郭文善,王纪华,朱新开,王君婵.浅析遥感光谱特征参量的原理及基本方法[J].2010,25(1):155-160;
    [44]徐元进,胡光道,张振飞.包络线消除法及其在野外光谱分类中的应用[J].地理与地理信息科学.2005,21(6):11-14;
    [45]童庆禧,张兵,郑兰芬.高光谱遥感—原理、技术与应用.北京:高等教育出版社.2006,6:137;
    [46]谢伯承,薛绪掌,刘伟东,王纪华.王国栋.基于包络线法对土壤光谱特征的提取及其分析[J].土壤学报.2005,42(1):171-175;
    [47]顾海燕,李海涛,杨景辉.基于最小噪声分离变换的遥感影像融合方法.{J)国土资源遥感.2007,6:53-55
    [48]刘汉湖,杨武年,杨容浩.ALI遥感数据在岩矿信息提取中的应用研究[J].地质与勘探.2009,7:456-461
    [49]Farzeen Chaudhry, Sumit Chakravarty, Antonio Plaza, Chein-I Chang.Design of fast algorithms for pixel purity index for endmember extraction in hyperspectral imagery.[C]ASPRS 2005 Annual Conference "Geospatial Goes Global:From Your Neighborhood to the Whole Planet" March 7-11,2005. Baltimore, Maryland
    [50]薛绮,匡纲要,李智勇.基于线性混合模型的高光谱图像端元提取[J].遥感技术与应用,2004,19(03):197-200.
    [51]应天玉,李明泽,范文义.基于IDL的混合光谱分解模型的实现.[J]东北林业大学学报.2007,11:70-73
    [52]蔡薇,郭洪海,隋学艳,杨丽萍.基于混合像元分解提取小麦种植面积的技术与方法研究[J].山东农业科学,2009,(05):12-16
    [53]汤泉,牛铮.基于IDL与ENVI二次开发的遥感系统开发方法[J].计算机应用,2008,28(S):270-272.
    [54]苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究[J].2008,2:390-393
    [55]周成虎,骆剑承等.遥感影像地学理解与分析[M].北京:科学出版社,1999.
    [56]何川,张友静,佘远见,陈晨,张阳.基于Web和IDL的遥感信息提取系统开发[J].遥感技术与应用,2009,24(3):405-408.
    [57]张亚南.高光谱图像特征分析技术的研究与软件开发[D].北京:中国地质大学(北京),2010;
    [58]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱停息提取的分析研究[J].环境遥 感.1992,7(1):49-58;
    [59]于晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模刑与矿物填图研究[J].环境遥感.1996,2:20-31;
    [60]刘衍宏.基于高光谱Hyperion数据的粘土矿信息提取应用研究[D].北京:中国地质大学(北京),2010;
    [61]潘琛,林怡,陈映鹰.基于多特征的遥感影像决策树分类[J].光电子激光.2010,5:731-736;
    [62]肖海燕,曾辉,咎启杰,白钰,程好好.基于高光谱数据和专家决策法提取红树林群落类型信息[J].遥感学报.2007,11(4):531-537;
    [63]刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412;
    [64]罗来平,宫辉力,刘先林.基于决策树算法的遥感图像分类研究与实现[J].计算机应用研究.2007,1:207-209;
    [65]王圆圆,李京.基于决策树的高光谱数据特征选择及其对分类结果的影响分析[J].遥感学报.2007,11(1):69-76;
    [66]李爽,张二勋.基于决策树的遥感影像分类方法研究[J].地域研究与开发,2003,22(1):17—21:
    [67]中国地质大学(武汉).高光谱矿物信息提取产品生成技术研究报告[R].北京,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700