黄土高原农田退耕还草对土壤碳、氮库及CO_2、N_2O排放通量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采样分析陇中黄土高原地区农田退耕种植苜蓿3a、5a、8a后0-5、5-10、10-20cm土层土壤碳氮含/储量,并用静态箱—气质联用法对样地土壤系统、土壤-植被系统的CO_2、N_2O排放通量进行了测定,研究农田退耕还草措施对土壤碳氮库及CO_2、N_2O释放通量的影响。主要研究结果如下:
     1.退耕还草措施能够提高贫瘠土壤总有机碳(TOC)和总氮(TN)含量,且随苜蓿种植年限的延长效果增强。首年弃耕的休闲对照农田土壤TOC、TN基础含量很低,土壤贫瘠,0-5、5-10、10-20cm的TOC含量分别为2.49、2.53和2.46 g·kg-1,0-20cm的平均值为2.49 g·kg-1;TN含量在各层中均为0.23 g·kg-1。退耕后各年限草地土壤0-5、5-10、10-20cm TOC、TN含量均较对照休闲农田有所增加,且随退耕年限的增加呈连续正增长趋势。其中TOC、TN在0-5cm表层的变化最大,在该层退耕3a、5a、8a后TOC分别较对照休闲农田提高16.9%、39.4%和69.5%,TN提高12.5%、33.3%和58.3%,各退耕年限间二者含量均达5%的显著性水平差异。退耕3a、5a、8a的草地0-20cm的TOC平均含量分别为2.68、2.98和3.35 g·kg-1,比对照休闲农田提高7.6%、19.8%和34.5%。0-20cmTN平均含量分别为0.25、0.28和0.31 g·kg-1,比对照增加8.7%、21.7%和34.7%。
     2.贫瘠农田退耕还草后表现出明显的碳、氮固存效应,有很强碳、氮固存潜力。与未退耕休闲农田相比,退耕3a、5a、8a后的草地0-20cm TOC储量分别提高9.12%、20.18%和34.39%,TOC平均固存率分别为0.17、0.23和0.25Mg·hm-2·a-1。同样,退耕3a、5a、8a后的草地0-20cm TN储量分别较对照提高8.2%、18.0%和29.6%,各退耕年限0-20cm TN平均固存率均为0.2Mg·hm-2·a-1。各退耕年限间0-20cm TOC、TN储量均达5%的显著性差异。
     3.伴随TOC、TN的增加,退耕还草3a、5a、8a后土壤活性有机碳(SAOC)、硝态氮(NO3-N)含量均有不同程度的增加。SAOC在0-20cm的平均含量分别较对照休闲农田增加9.5%、19.0%和38.1%。其中在5-10cm的增加最明显,分别增加14.3%、33.3%和47.6%。N03-N含量在0-5、5-10、10-20cm都有明显增加,0-20cm的平均含量比对照增加9.5%、20.5%和29.7%。但退耕前后NH4-N含量比较稳定,各年限各土层间无明显差异。
     4.农田退耕种草后不同生长年限的草地土壤各土层间碳库活度(A)和活度指数(AI)无明显变化,说明在退耕还草初期阶段,退耕对土壤碳的活性影响不大。而碳库指数(CPI)和碳库管理指数(CPMI)的值在各年限各土层都高于对照,总体表现为上层大于下层,且随退耕年限的增加而增大,各年限间0-20cm的值差异显著,说明退耕还草会显著增加土壤表层的总碳库。退耕时间越长,其增加量越大。由于总碳库增加后碳库的活度基本没有发生改变,因此说退耕还草增加的碳以非活性碳为主。
     5.农田退耕还草后土壤-植被系统的CO_2与N_2O释放通量均较对照有所增加。对照休闲农田各观测日期的CO_2通量平均值为77.66 mg·m-2·h-1,N_2O通量平均值为8.02μg·m-2·h-1。退耕3a、5a、8a的草地土壤-植被系统各观测日期的CO_2通量平均值分别为79.33、86.39和90.15 mg·m-2·h-1,比对照分别增加2.18%、11.24%和16.08%。N_2O通量平均值分别为8.24、8.29和8.65μg·m-2·h-1,比对照分别增加2.74%、3.37%和7.86%。二者排放通量均表现为8a>5a>3a>对照。说明退耕还草措施在引起土壤碳氮固存、表现为大气CO_2吸收“汇”的同时也会加剧CO_2、N_2O的排放,表现出大气CO_2、N_2O的“源”效应。
     6.土壤CO_2通量与TOC含量、SAOC含量、TN含量、C/N值显著正相关;N_2O通量与SOC含量、矿质氮(NO3-N、NH4-N)含量、C/N值显著正相关。其中CO_2通量与SAOC含量、N_2O通量与NO3-N含量有很高的相关性(R=0.9063,n=15,P=0.01;R=0.936,n=14,P=0.01)。因此说在环境因素相同的条件下,退耕还草措施实施后土壤碳氮各指标含量的增加是引起CO_2、N_2O的排放加剧的重要因素。另外,CO_2、N_2O通量与地上生物量、植物生长以及土壤水分含量之间也有显著的正相关关系,退耕还草后地表大量植物的生长和土壤水文条件的改变也对CO_2、N_2O的排放产生重要影响。
By taking samples from forage grasslands (alfalfa) which had been converted from croplands for 3, 5, 8 years in Loess Plateau area in middle of Gansu, changes of soil total organic carbon(TOC), total nitrogen (TN) contents/storage at the three depths of 0-5,5-10 and 10-20cm were analyzed. And the fluxes of CO_2 and N_2O at the sampled lands were measured by using static enclosed chamber– GC/MS technique. Upon these measurements, the effects of cropland to grassland conversion to soil C, N pool and CO_2, N_2O fluxes were discussed. The main results showed as following:
     1. Before converting to alfalfa grassland, croplands had very low TOC and TN contents, the contents of TOC at 0-5, 5-10, 10-20cm soil layers were 2.49, 2.53, 2.46 g·kg-1 respectively,the average contents at 0-20cm was2.49 g·kg-1.The contents of TN at the 3 depths were all 0.23 g·kg-1. After converting , TOC and TN contents of converted grassland at 0-5,5-10,10-20cm were both increased comparing to that of un-converted croplands,and the increment increased when the conversion years prlonged. The greatest change of TOC and TN contents occurred at the 0-5cm layer, with increase of 16.9%,39.4% ,69.5% of TOC and 12.5%,33.3% ,58.3% of TN comparing to croplands after converting for 3,5 and 8 years.The contents of TOC and TN of different conversion years were up to 5% sinificant level.After converting for 3, 5 and 8 years, the average content of TOC at 0-20cm were 2.68, 2.98 and 3.35 g·kg-1, with increase of 7.6%, 19.8% and 34.5% comparing to that of croplands.Meanwhile, the average content of TN at 0-20cm were 0.25,0.28 and 0.31 g·kg-1, with increase of 8.7%, 21.7% and 34.7% respectively.
     2. The infertile sampled lands showed significant TOC, TN sequestration and had a great potential of it. After conversion of annually crop to perennial alfalfa for 3,5 and 8 years ,the storage of TOC at 0-20 cm increased by 9.12%,20.18%,34.39% comparing to cropland, and TOC sequestration rates were estimated to be on average of 0.17,0.23,0.25 Mg·hm-2·a-1 respectively. The storage of TN at 0-20 cm increased by 8.2%,18.0% and 29.6% , TN sequestration rates of different conversion years were all estimated to be on average of 0.2 Mg·hm-2·a-1.
     3. Following with increase of TOC and TN, the contents of SAOC and NO3-N increased with somewhat extent. After converting for 3, 5 and 8 years, the average content of SAOC at 0-20cm were increased by 9.5%, 19.0% and 38.1%. The greatest change of SAOC occurred at the 5-10cm, with increase of14.3%, 33.3% and 47.6% comparing to that of croplands. But the chang of NH4-N contents of different conversion years were not significant.
     4. Soil carbon activity (A)and activity index (AI) of converted soil at different sampled layers showed no significant change after converting,which meant the effect of convertion to soil active carbon were not great at the initial convertion stage. But carbon pool index(CPI)and carbon pool management index (CPMI) of different convertion year grasslands at different sampled layers were both higher than that of cropland, and that of upper layers were higher than lower layers , the discrepancy of different converted soil at 0-20 cm were sinificant. The result meant the measurement of convertion would increase corbon pool of surface soil. For the activity nearly not changed when the total carbon pool increased, so it can be concluded that the un-active corbon took a greater part of the increased carbon.
     5. After converting, the fluxes of CO_2 and N_2O were both increased comparing to that of croplands. The average fluxes of CO_2 and N_2O of croplands during observing date were 77.66 mg·m-2·h-1 and 8.02μg·m-2·h-1,After converting for 3,5 and 8 years,the average fluxes of CO_2 were increased to 79.33, 86.39 and 90.15 mg·m-2·h-1respectively,with increase of 2.18%,11.24% and 16.08% comparing to that of croplands.and the average fluxes of N_2O were increased to 8.24、8.29、8.65μg·m-2·h-1,with increase of 2.74%, 3.37% and 7.86%. The two fluxes were both showed as“8a>5a>3a>contrast”as a whole. The result meant the measurement of cropland to grassland conversion would intensify CO_2 and N_2O emission, which displayed as a“source”of CO_2 and N_2O to atmosphere except it displayed as a“sink”of atmosphere CO_2 caused by C sequestration.
     6. The fluxes of CO_2 were significantly positively correlated with the contents of TOC, SAOC, TN and C/N ratio. Also, the fluxes of N_2O were significantly positively correlated with the contents of TOC, TN, NO3-N, NH4-N and C/N ratio. Of that, the fluxes of CO_2 were closely positively correlated with the contents of SAOC, the fluxes of N_2O were closely positively correlated with the contents of NO3-N.(R=0.906 ,n=15,P=0.01;R=0.936, n=14,P=0.01). So it can be concluded that the increase of soil corbon and nitrogen contents caused by conversion were very important factors to intensifying CO_2 and N_2O emission when environmental factors were similar. In addition, fluxes of CO_2 and N_2O were significantly positively correlated with content of up-ground biomass, growth of vegetation and content of soil water. So, the growth of generous up-ground vegetation and the change of soi moisture caused by convertion were also very important factors to CO_2 and N_2O emission.
引文
[1] Xie X L, Sun B, Zhou H Z etal. Organic carbon density and storage in soils of China and spatial analysis. Acta Pedologica Sinica, 2004, 41(1): 35~43.
    [2]王国梁,刘国彬,常欣等.黄土丘陵区小流域植被建设的土壤水文效应[J].自然资源学报, 2002, 17(3):339~344.
    [3]张成娥.黄土丘陵区不同撂荒年限自然恢复的退化草地土壤养分及酶活性特征[J].草地学报,1997,5(3):195~200.
    [4]胡斌,段昌群,王震洪等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604~60
    [5] Lal R, Follett R F, Kimble J, Cole C V. Managing U.S. cropland to sequester carbon in soils [J]. Soil Water Conservaion, 1999, 54:374~381.
    [6] Lal R, Bruce J P. The potential of world cropland soils to sequester C and mitigate the greenhouse effect [J]. Environmental Science &Policy, 1999, 2:177~185.
    [7] Burke I C, Lauenroth W K, Coffin D P. Soil organic matter recovery in semiarid grasslands: implications for the conservation reserve program[J]. Ecological Applications, 1995, 5: 793~801.
    [8]李明峰,董云社,耿远波等.草原土壤的碳氮分布与CO_2排放通量的相关性分析[J].环境科学,2004,25(2):7~14
    [9]耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报,2001,56(1):44~53
    [10] IPCC. Climate Change [A] . The supplementary report to the IPCC scientific assessment[C] . New York :Cambridge University Press ,1992
    [11]蒋静艳,黄耀.农业土壤N_2O排放的研究进展[J].农业环境保护,2001,20(1): 51~54
    [12]齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报,1999,54 (6):534~542.
    [13] Keeling CD, Whorf TP et al. Atmospheric CO_2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory. 2004,Hawaii. http:// cdiac.esd.ornl.gov/ftp/aunaloa-CO_2/maunaloa.CO_2.
    [14]Jefferson M. Potential Climate Change: Carbon Dioxide Emissions 1990-1996[J].World Energy Council Journal, 1997, 76~82
    [15]李长生.土壤碳储量减少:中国农业之隐患—中美农业生态系统碳循环对比研究[J].第四纪研究, 2000, 20(4): 345~350.
    [16] World Bank. Issues and options in greenhouse gas emissions control[M]. Washington D C, 1994
    [17]张国盛,黄高宝等.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25 ( 2):131~138
    [18]杨景成,韩兴国,黄建辉等.土地利用变化对陆地生态系统碳贮量的影响[J].应用生态学报, 2003, 14( 8) : 1385~1290
    [19]曾昭海,胡跃高等.保护性耕作技术碳汇效应及潜力分析[J],现代农业与农作制度建设,2004,14 (6),473~451
    [20]杨学明.利用农业土壤固定有机碳—缓解全球变暖与提高土壤生产力[J].土壤与环境,2000,9(4):311~315
    [21] Post W M,West T O. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: A Global Data Analysis. Soil Science Society of America Journal, 2002, 66: 1930-1946.
    [22] Bremer E, Janzen H H, McKenzie R H. Short-term impact of fallow frequency and perennial grass on soil organic carbon in a Brown Chernozem in southern Alberta [J].Can. J - Soil Sci. 2002, 82: 481~488.
    [23] Cornant.P O. Soil carbon sequestration impacts on global climate change and food security [J].Science,304: 1623 ~1627
    [24] Gebhart D L, Johnson H S, Mayeux H S, et al.The CRPincreases soil organic carbon [J]. Journal of Soil and WaterConservation, 1994, 49: 488~492.
    [25] Bowman R A, Anderson R L. Conservation reserve program:effects of soil organic carbon and preservation when converting back to cropland in northeastern Colorado [J].Journal of Soil and Water Conservation, 2002, 57(2):121~126.
    [26] JastrowX T. Cultivation Effects on the Amounts and Concentration of Carbon, Nitrogen, and Phosphorus in Grassland Soils [J]. Agronomy Journal, 1982,74:831~835.
    [27] JANZEN H H, CAMBELL C A, GREGORICH E G, et al. Soil carbon dynamics in Canadian agro ecosystems [A]. In: LAL R, KIMBLE J M,FOLLETT R F, STEWARD B A, eds. Soil Processes and Carbon Cycle [C]. Baco Raton: CRC Press, 1997.
    [28]苏永中.黑河中游边缘绿洲农田退耕还草的土壤碳、氮固存效应[J].环境科学,2006, 27(7):1312~1319.
    [29]韩建国,韩永伟,孙铁军等.农牧交错带退耕还草对土壤有机质和氮的影响[J].草业学报, 2003,18(6):348~355
    [30]张国盛,黄高宝,张仁陟等.种植苜蓿对黄绵土表土理化性质的影响[J].草业学报2004,34(6):567~572
    [31]张冈,周志宇,王斌.苜蓿种植年限对河西走廊盐渍土氮积累量的影响[J].草业学报2005,29(9):429~435
    [32]张玉铭,胡春胜,董文旭.田土壤N_2O生成与排放形响因素及N_2O总量估算的研究[J].中国生态农业学报,2004,12(3):119~123
    [33]邹建文,黄耀.农业管理措施对N_2O排放的影响[J].农村生态环境,2002,18(l):41~49
    [34] Kucera C and Kirkham D.Soil respiration studies in tall grass prairie in Missouri.Ecology, 1971,52:912~915
    [35] Singh J S and Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems.The Botantical Review, 1977,43:449~528
    [36]崔骁勇,王艳芬,杜占池.内蒙古典型草原主要植物群落土壤呼吸的初步研究[J].草地学报, 1999,7(3):245~250
    [37]曾江海,王智平.农田土壤N_2O生成与排放研究[J].土壤通报,1995,26(8):132~134
    [38] Bouwman,A W. Introduction.In:Bouwman A W.(Ed.).Soils and the Greenhouse Effect. Wiley,Chicester. 1990,25~32
    [39]齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报, 1999,54(6):534~541
    [40] Dunry C.F.etal.Nitric oxide and nitrous oxide production from soil water and oxygen effects [J], Sci.Soc.Am. 1992,56:766
    [41]张振贤,华洛,尹逊霄等.农田土壤N_2O的发生机制及其主要影响因素[J].首都师范大学学报(白然科学版).2005,26(3):114~120
    [42]杜宝华,杨平,全乘风.农田土壤一氧化碳释放问题的研究[J].水土保持研究,1996,3(3): 101~106
    [43] F1ucliger,JADallenbach,T Blunieretal.Variations in Atmospheric N_2OConcentration Duriong Abrupt Climatic Changes[J]. 1997, (13): 230~244.
    [44]于克伟,陈冠雄,Sten Struwe.et al.农田和森林土壤中氧化亚氮的产生与还原[J].应用生态学报,2006.11(3):385~389.
    [45]黄耀,戴万宏.陆地生态系统碳循环的基本过程.见:陈泮勤主编.地球系统碳循环.北京:科学出版社. 2004,185~199
    [46]黄耀,刘世梁,沈其荣等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报, 2002,13 (6):709~714.
    [47] C.L.kucera, Holmoes W E,Macdonald N W et al.Soil temperature,matric potential,and the kinetics of microbial respiration and nitrogen mineralization.Soil Sci Soc Am J, 1999 , 63: 575~584
    [48] Birch A D, Wienhold B J, Black A L. Soil microbial respiration at different water potentials and temperatures:Theory and mathematical modeling.Soil Sci Soc Am J,1994,58:1681~1690
    [49]李良漠,朱兆良,文启孝主编.中国土壤氮素反硝化作用[M].南京:江苏科学技术出版社, 1992:145~170
    [50]江德爱,唐鼓达,马益辉等.不同条件对土壤反硝化作用的影响[J].环境科学,1989,10 (3) :13~19
    [51]焦燕,黄耀.影响农田氧化亚氮排放过程的土壤因素[J].气候与环境研究,2003,8(4): 457~466
    [52] Ryden. Inhibitory effect of nitrate on reduction of N_2O to N2 by soil micro -organisms.Soil Biol.Biochem.1978,10:187~191
    [53]衣纯真,粱洪波,张建华等.温度、湿度及通气状况对土壤中N_2O释放址影响的研究[J].北京农业大学学报,1993,19(3):85~90
    [54]齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报. 1999, 54 (6) : 534~541
    [55]黄树辉,吕军.农田土壤N_2O排放研究进展[J].土壤通报,2004,35(4):516~522
    [56]徐华,邢光熹,蔡祖聪.土壤质地对小麦和棉花田N_2O排放的影响[J].农业环境保护,2000,19(l):l~3
    [57] HansenS. Effeet of different nitrogen fertilizers on N_2O emission from soil. Chin J.Appl Eeol.1998,9(2):176~180
    [58]王彩绒,田霄鸿,李生秀.土壤中氧化亚氮的产生及减少排放量的措施[J].土壤与环境,2001,10 (2):143~148.
    [59] K.E.Dobbie,K.A.Smith.Predieting N_2O emssions from agricultural and through related soil parameters.Global Change Biology,2000,6(4):417~422
    [60] Nagele W,Conrad R. Influence of PH on the release of NO and N_2O from fertilized andunfertilized soil.Bio.Fertil.soils.l990,10:139~144
    [61]封克,王子波,王小治等.土壤pH对硝酸根还原过程中N_2O产生的影响. [J]土壤学报, 2004,41(l):81~86
    [62] WelerK.L,GilliamJ.W.Effect of acidity on nitrogen mineralization and nitrification in Atlantic coastal Plain soils.Soil Sci.Soc.AM J,1986,50:1210~1214
    [63]黄国宏,陈冠雄,韩冰.土壤含水量与N20产生途径研究.应用生态学报,1999,10(1): 53~56
    [64]颜晓元,施书莲,杜丽娟等.水分状况对水田土壤N20排放的影响[J].土壤学报,2000, 37(4):482~488
    [65] SmlthK.A.etal.Effects of temperature,water content and nitrogen fertilization on emission of Nitrous oxide by soils [J].Atmos Environ.1998, 32(19):3301~3309
    [66] Dobbie K.E.SmithK.A.The effects of temperature, water-filled pore space and landuse on N_2O emission from an imperfectly drained gleysoil [J].Europ Soil Sci.2001 (52):667~673
    [67] Qi YC, Dong YS. Nitrous oxide emission from soill and some influence factors[J]. Acta Geogr Sin,1999, 54(6):534~540
    [68]张玉铭,胡春胜,董文旭.农田土壤N20生成与排放形响因素及N20总量估算的研究[J].中国生态农业学报,2004,12(3):119~123
    [69] MaagM,VintherF.P. Effect of temperature and water on gaseous emission from soil treated with animal slurry.Soil Sci .Soc. Am. [J],1999,63(4):858~565
    [70] Drury C.F..Nitric oxide and nitrous oxide production from soil:water and oxygen effects. Soil Sci.Soc.Am.[J],1992,56:766~772
    [71] Denmead O T. Chamber systems for measuring nitrous oxide emixxion from soils in the field.Soil.Sci.Soc.Am.[J], 1979,43:89~95.
    [72] Dowdell,R.J.,Smith,K.A.,Crees,R.,Restall,S.W.F. Field studies of ethylene in the soil atmosphere equipment and preliminary results.Soil Biology and Biochemistry, 1972,4, 325~331
    [73] Fang C and Moncrieff J B. An improved dynamic chamber technique for measuring CO_2 efflux from the surface of soil. Functional Ecology. 1996,10:297~305.
    [74] Fang C and Moncrieff J B. Simple and fast technique to measure CO_2 profiles in soil [J].Soil Biol.Biochem. 1998, 30(14):2107~2112.
    [75]刘允芬,于贵瑞,李海涛等.陆地生态系统碳循环与碳通量观测[M].见于贵瑞主编,全球变化与陆地生态系统碳循环和碳蓄积.北京,气象出版社. 2003,349~388
    [76]王跃思,刘广仁,王迎红等.一台气相色谱仪同时测定陆地生态系统CO_2、CH4和N_2O排放[J].环境污染治理技术与设备, 2003,4(10):84~90.
    [77]王跃思,郑循华,王明星等.静态箱法气相色谱法自动检测农田N_2O排放[J].分析测试技术与仪器, 1997, 3(1):10~14
    [78]于贵瑞,孙晓敏,温学发.碳通量的微气象学测定[M].见:陈泮勤主编,地球系统碳循环.北京科学出版社. 2004,103~129
    [79] Pumpanen J,Kolari P,Ilvesniemi H,Minkkinen K et al. Comparison of different chamber tech- niques for measuring soil CO_2 efflux.Agricultural and Forest Meteorology, 2004,123:159~176
    [80] Rayment M B,Jarvis P G. An improved open chamber system for measuring soil CO_2 effluxes in the field.Journal of Geophysical Research. 1997,102(D24):28779~28784
    [81]王庚辰.陆地生态系统温室气体排放吸收测量方法简评[J].气候与环境研究,1997,2(3):251~263
    [82]陈素英,胡春胜.太行山前平原农田生态系统土壤呼吸速率的研究[J].生态农业研究,1997,5(2):42~46.
    [83]郎红东,杨剑虹.土壤CO_2浓度变化及其影响因素的研究[J].西南农业大学学报,2004,26(6):731~732
    [84]邹建文,黄耀,宗良纲,等.稻田CO_2、CH4和N_2O排放及其影响因素[J].环境科学学报,2003,23(6):758~764
    [85]杜睿,王庚辰等.静态箱法原位观测草原CO_2通量的探讨[J].生态学报,2002,22 (12):155~163
    [86]郑循华,徐仲均,王跃思,等.开放式空气CO_2浓度增高影响稻田-大气CO_2净交换的静态暗箱法观测研究[J].应用生态学报, 2002,13(10):1240~1244
    [87]于贵瑞,张雷明等.亚洲区域陆地生态系统碳通量观测研究进展[J].地球科学,2004,34 (增刊Ⅱ): 15~29
    [88]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 1997, 17 (5):469~476
    [89]崔骁勇,陈佐忠,陈四清.草地土壤呼吸进展研究[J].生态学报.2001,21(2):315~325
    [90]宋文质,王文彬,苏维瀚,王智平等.我国农田土壤主要温室气体CO_2、CH4和N_2O排放研究[J].环境科学,1996,17(1):85~92
    [91]李海涛,沈文清.森林生态系统碳循环与碳蓄积.见:于贵瑞主编,全球变化与陆地生态系统碳循环和碳蓄积.北京,气象出版社, 2003,139~171
    [92]洪级曾.草业与西部大开发[M].北京:农业出版社,2001
    [93] Davidson,E.A.,K.Savage,L.V.Verchot,and R.I.Navarro. Minimizing artifacts and biases in chamber-based measurements of soil respiration [J].Agriculture and Forest Meteorology 2002a.113:21~37
    [94]鲁如坤.土壤农业化学分析方法[M].北京:农业科技出版社.2000
    [95]董云社,章申,齐玉春,等.内蒙古典型草地CO_2、N_2O、CH4通量的同时观测及其日变化[J].科学通报, 2000,45:318~322
    [96]方华军,杨学明,张晓平.农田土壤有机碳动态研究进展[J].土壤通报,2003,13(6):124~131
    [97]沈宏,曹志洪,胡正义.土壤活性碳的特征及其生态效应[J].生态学杂志, 1999, 18 (3):32~38
    [98]曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究[J].自然资源学报,1999, 14(3):206~211
    [99]陈刚才,甘露等.土壤氮素及其环境效应[J].地质地球化学,2001,29(1):63~67.
    [100]吴平,印莉萍,张立平.植物营养分子生理学[M].北京:科学出版社,2001.
    [101] Kessel C van, Pennock D J, Farrell R E. Seasonal variations in denitrification and nitrous oxide evolution at the landscape scale[J]. Soil Science Society of America Journal, 1993,57: 988~995
    [102] Chistensen S, Simkins S, Tiedje J M. Temporal patterns of soil denitrifiication: their stability and causes[J]. Soil Science Society of America Journal, 1990,54: 1614~1618.
    [103] Lavado R S, Sierra J O, Hashimoto P N. Impact of grazing on soil nutrients in a Pampean grassland[J]. Journal of Range Management, 1996,49(5): 452~457.
    [104]李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究[J].植物学报, 1998,40(10): 955~961
    [105]樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持究.2003.10(1):86~87
    [106] Lemke.R.F.The formation of nitrate from ammonium nitrogen in soil:I:Effect of temperature. Soil Sci.Soc.Am.[J].1956,20:496~500
    [107] StevensR.J.,LaughinR.J.,MaloneJ.P.Soil PH affects the Processes reducing nitrate to nitrous oxide and dinitrogen[J].Soil Biol.Bioehem,1998,30(9):1119~1126
    [108] JenkinsonD.S.An Introduction to the global nitrogen cycle [J].soil Use&Managemen 1990 (6):58~61
    [109] Birch C R, Adams, Chen Z. Is photosynthesis related to concentrations of nitrogen andRubisco in leaves of Australian native plants [J]. Australian Journal of Plant Physiology, 2000,27:407~416.
    [110]张春霞,赫明德,王旭刚等.黄土高原地区紫花苜蓿生长过程中土壤养分的变化规律[J].西北植物学报,2004,(6):1107~1111 .
    [111]杨玉海,蒋平安.不同种植年限苜蓿地土壤理化特性研究[J].水土保持学报,2005, (2):110~113
    [112]贾松伟,贺秀斌,陈云明.黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响[J].水土保持学报,2004, 18(3):78~80.
    [113] Zheng Xunhua , Wang Mingxing , Wang Yuesi , et al . Impacts of soil moisture on nitrous oxide emission from croplands. Chemospere Global Change Sciences , 2000 , 2 : 207~224
    [114]杜睿.内蒙古草原土壤-植被-大气间主要温室气体(N_2O、CH4和CO_2)交换过程的研究[D].中国科学院大气物理研究所博士学位论文,1999.
    [115]李品,王明星,王跃思等.农田生态系统温室气体排放研究进展[J].大气科学,2003, 27(4):740~746
    [116] Schlesinger WH,RelusJ.A. Soil respiration and the global carbon cycle [J].Biogeochem., 2000,48:7~20.
    [117]杨恒山,曹敏建,范富等.紫花苜蓿生长年限对土壤理化性状的影响[J].中国草地学报,2006,(6):29~23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700