保护性耕作对土壤有机碳指标及其相关性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以2001年起在黄土高原半干旱区的定西县李家堡乡进行的保护性耕作田间定位试验为基础,本研究于2008年3月取0~5 cm ,5~10 cm ,10~30cm表层土并对它们的土壤有机碳(SOC)、易氧化有机碳(ROC)、微生物量碳(MBC)、可溶性有机碳(DOC)的动态进行了系统的研究,以探讨在小麦-豌豆双序列轮作下,免耕+秸秆覆盖(NTS)、传统耕作+秸秆还田(TS)、免耕不覆盖(NT)三种保护性耕作同传统耕作(T)对土壤有机碳以及活性有机碳各指标的影响,得出主要结果如下:
     1保护性耕作对SOC的影响
     在W-P-W轮作序列下,SOC平均含量大小关系为NTS> NT>TS>T;而在P-W-P轮作下,则有TS>NTS>NT>T。两序列下传统耕作的SOC含量均最低,说明保护性耕作能显著增加SOC,其中,NTS处理的增幅最大,它更有利于碳的固定和生态与农业的健康发展,是值得大力推广的耕作措施。
     2保护性耕作对土壤活性有机碳(AOC)的影响
     (1)保护性耕作对ROC的影响:
     ROC与土壤表层SOC含量变化趋势基本一致。W-P-W轮作序列下,与T处理相比, NTS、NT、TS活性有机碳平均含量分别提高38.53%、11.74%、14.68%,增幅分别是SOC的6.03倍、4.27倍、3.30倍;而在P-W-P轮作下,则分别提高29.13%、8.26%、21.07%,增幅是SOC的3.46倍、1.70倍、2.34倍。
     (2)保护性耕作对MBC的影响:
     在W-P-W轮作序列下,在0~30cm土层中四种处理土壤MBC的平均含量是NTS >TS >NT >T,与T处理相比较,提高比例为90.19 %、53.32%、52.84%,增幅是SOC的14.43倍、14.66倍、16.66倍;而在P-W-P轮作下,四种处理的MBC平均含量是NTS>TS>NT>T,比例依次增加了63.17%、61.69%、32.69%,增幅是SOC的7.50倍、6.86倍、6.73倍,保护性耕作有利于MBC的积累。
     (3)保护性耕作对DOC的影响:
     保护性耕作措施下DOC含量均高于传统耕作。在W-P-W轮作序列下,加权平均后在0~30cm土层中四种处理的DOC平均含量是NTS > TS > NT >T,与T处理相比较,其比例提高61. 03 %、59.67%、32.24%,增速是SOC的9.54倍、13.41倍、11.74倍;而在P-W-P轮作下,DOC平均含量大小排列顺序:NTS> TS > NT >T,与T处理相比, NTS、NT、TS处理的DOC平均含量分别提高75.90%、57.34%、36.89%,与SOC的变化相比依次快9.01倍、6.38倍、7.60倍,DOC对农业生产措施反应比SOC更灵敏。
     ROC、MBC和DOC三种土壤活性有机碳相对含量的变化比SOC的变化敏感,在评价不同耕作措施对土壤有机碳的影响时,活性有机碳相对含量亦是比较理想的指标。
     (4)保护性耕作对作物产量的影响:
     以T处理作对照,保护性耕作能提高作物产量,NTS处理的产量最高,其次为TS。NTS处理的可增产30%左右,值得大力推广。
     3保护性耕作下AOC各指标之间及其与作物产量的相关性
     不同耕作措施下,土壤的SOC与AOC指标之间以及AOC指标两两之间基本达到显著或极显著的正相关关系,各AOC指标对不同耕作措施的响应与SOC基本一致,在反映不同耕作措施对SOC的变化上,MBC指标与SOC相关性最高。保护性耕作下各指标的指示灵敏度大小依次为: MBC >DOC > ROC/SOC > MBC/SOC >ROC >DOC/SOC,AOC指标对不同耕作措施响应均比SOC更加敏感,可以作为表征土壤有机碳变化和土壤生物学肥力的有效指标,MBC指标最灵敏,在研究中更值得重视和采用。
     在有机碳指标与作物产量的相关系数大小排序中,对产量敏感的有机碳指标是ROC和ROC/SOC。
Based on the long-term field experiments on semi-arid area of the west Loess Plateau since 2001, the paper discussed the soil organic carbon(SOC) and active organic carbon(AOC), whose indicators and correlations responses to the different tillage patterns, by which effects of tillage measures on SOC、readily oxidizable carbon(ROC)、microbial biomass carbon(MBC)、dissolved organic carbon (DOC) in soil layer of 0~5cm、5~10cm、10~30cm. Four different treatments: no-till with straw cover(NTS), conventional tillage with straw incorporated(TS), no-till without straw cover(NT) and conventional tillage (T) were carried out in a phased rotation systems with spring wheat and field pea. The results indicated
     1 Effects of conservation tillage on soil organic carbon
     In wheat-pea-whea(tW-P-W)rotation sequence, under four different tillage patterns, the average contents of soil organic carbon(SOC) in soil layer of 0~30cm followed the order as NTS>NT>TS>T, while in pea -wheat-pea(P-W-P)rotation sequence, the order was TS>NTS>NT>T.
     In both rotation sequences, compared with T treatment, the conservation tillage patterns of NTS、TS and NT increased the contents of SOC , conservation tillage is beneficial for carbon sequestration, among of them, NTS treatment was more advantageous to improving the soil organic carbon contents, by which to alleviate greenhouse influence. Thus, it should be recognized as the key approaches to sustainable agriculture and environment.
     2 Effects of conservation tillage on soil active organic carbon
     (1) Effects of conservation tillage methods on soil readily oxidizable carbon In wheat-pea-wheat rotation sequence, readily oxidizable carbon (ROC) average contents under four different tillage patterns followed the order as NTS>NT>TS>T, the change of ROC was rapider than SOC,the times of the speed was 6.03、4.27 and 3.30; while in pea -wheat-pea rotation sequence, compared with SOC,the change times was 3.46、1.70 and 2.34, so ROC was more sensitive responses to long-term tillage than SOC.
     (2) Effects of conservation tillage on soil microbial biomass carbon
     In wheat-pea-wheat rotation sequence, microbial biomass carbon (MBC) average contents under four different tillage patterns followed the order as NTS >TS >NT >T, this was also same as the order of SOC, the change of MBC was also rapider than SOC, the times was 14.43、14.66 and 16.66; while in pea-wheat-pea rotation sequence, the order was NTS>TS>NT>T, compared with SOC,the change times was 7.50、6.86 and 6.73, so MBC was more sensitive responses to long-term tillage than SOC. Compared with T treatment, the conservation tillage patterns of NTS and TS increased the contents of MBC greatly.
     (3) Effects of conservation tillage on soil dissolved organic carbon
     In wheat-pea-wheat rotation sequence, soil dissolved organic carbon (DOC) average contents under four different tillage patterns followed the order as NTS> TS> NT >T, this was a little different from the order of SOC, the change of DOC was rapider than SOC,the times of the speed was 9.54、13.41 and 11.74; while in pea -wheat-pea rotation sequence, it was same as the order of SOC, compared with SOC,the change times was 9.01、6.38 and 7.60, DOC was more sensitive responses to long-term tillage methods than SOC.
     Above all, ROC、MBC、DOC、ROC/SOC、MBC/SOC and DOC/SOC had the same response to the long-term tillage methods with SOC. Meanwhile, all of them had a declining trend with the increasing depth in soil profiles. In both rotation sequences, the indicator of NTS treatment was highest among the different tillage patterns.
     (4) Effects of conservation tillage on the crop yield
     The conservation tillage patterns of NTS、TS and NT increased crop yields, NTS treatment was more advantageous to improving the yields, it should be recognized as the best tillage pattern.
     3 Correlation coefficients among SOC, AOC indicators and crop yield studied
     Correlation analysis showed that, the AOC indicators were not only significantly correlated to soil organic carbon, but also significantly correlated to each other, AOC indicators were more sensitive responses to long-term tillage than SOC, they could be indicators for assessing effect on SOC,and the sensitivity of them followed the order as MBC>DOC>ROC/SOC>MBC/SOC>ROC>DOC/SOC.
     MBC had the same response to the long-term tillage with SOC, and was most sensitive among all the indicators above, so MBC is the best indicator to choose, while to judge the crop yield, ROC and ROC/SOC were more sensitive than the others.
引文
[1]吴崇友,金诚谦,魏佩敏等.保护性耕作的本质和发展[J].中国农机化,2003 (6):8-11.
    [2] SSSA.Glossary of Soil Science Terms[R].Madison, W I: Soil Sci.Soc.America, 1987.
    [3]何文清,赵彩霞,隋鹏等.农牧交错带地区发展保护性耕作的意义与前景[J].干旱地区农业研究,2006,24(4):119-128.
    [4] FAO .Conservation Agriculture[R].FAO Land and Water Digital Media Series 18, 2002.
    [5]杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义[J],地理科学, 2003, 23(1):: 101-106.
    [6] Lal R., Kimble J.M.Conservation tillage for carbon sequestration[J].Nutrient cycling in Agroecosystems, 1997, 49:243-253.
    [7] Duiker S.W., Lal R.Crop residue and tillage effects on carbon sequestration in a luvisol in central Ohio[J].Soil& Tillage Research, 1999, 52:73-81.
    [8]黄高宝,郭清毅,张仁陟,逄蕾等保护性耕作条件下旱地农田麦-豆双序列轮体系的水分动态及产量效应[J],生态学报,2006, 26(4):1176-1185.
    [9]张鸣,张仁陟,蔡立群.不同耕作措施下春小麦和豌豆叶水势变化及其与环境的关系[J].应用生态学报,2008, 19(7):1467-1474.
    [10] Alvarez R.,Diaz R.A.,Barbero N.,et a1.Soil organic carbon, microbial biomass and CO2-C production from three tillage systems[J].Soil& Tillage Research, 1995,33:17-28.
    [11]李恋卿,潘根兴.江苏省农地土壤有机碳及碳截存动态研究[J].中国农学通报, 1999, 15(6): 41-44.
    [12]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响.土壤通报, 2001, 32(5):209-213.
    [13]李新举,张志国.免耕对土壤生态环境的影响.山东农业大学学报(自然科学版) , 1998, 29(4):520-526.
    [14]沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应.干旱地区农业研究, 1998, 16(1): 45-50.
    [15]Hadas A., Wolf D., Stibbe E.Tillage practices and crop response-analyses of agro-ecosystems [J].Agro-Ecosystems, 1980, 6(3):235-248.
    [16]Franzluebbers A.J., Francis C.A.Energy output: input ratio of maize and sorghum manage- ment systems in east erll Nebraska [J].Agric. Ecosys. & Environ. 1995, 53 (3):271-278.
    [17]Borin M., Menini C., Sartori L.Effects of tillage systems on energy and carbon balance in north-eastern Italy [J]. Soil&Tillage Research,1997,40(3/4):209-226.
    [18] Uri N.D.,Atwood J.D.,Sanabria J.The environmental benefits and costs of conservation tillage[J].The Sic. of The Total Environ.,1998,216(1/2):13-32.
    [19] Janzen H.H.,Campbell C.A.,Izaurralde R.C.,eta1.Management effects on soil C storage on the Canadian prairies[J].Soil& Tillage Research,1998,47(3/4): 181-195.
    [20] E11ert B.H., Janzen H.H.Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian Prairies [J].Soil&Tillage Research, 1999, 50:21-32.
    [21]汪业勖,赵士洞.陆地碳循环研究中的模型方法[J] .应用生态学报, 1998, 9 (6) : 658 -664.
    [22]骆世明.农业生态学近年研究动向[J] .世界科技研究与发展,2000, 22(10) : 42-44.
    [23] Smith P.,Smith J.U.,Powlson D.S.A comparison of the performance of nine soil organic matter models using data sets from seven long-term experiments [J].Geoderma,1997,81: 153-225.
    [24] Hill M.J.Generating generic response signals for scenario calculation of management effects on carbon sequestration in agriculture:approximation of main effects using CENTURY [J]. Environ.Modelling&Software,2003,18 (10) :899-913.
    [25] Asseng S. ,Jamieson P. D. ,Kimball B. ,et a1.Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2, [J] .Field Crops Res. , 2004, 85(2/3) :85-102.
    [26] Watts C .W .,Eich S .,Dexter A .R .Effects of mechanical energy inputs on soil respiration at the aggregate and field scales[J] .Soil& Tillage Research,2000,53 (3/4) :231-243.
    [27] West T .0 .,Marland G .A synthesis of carbon sequestration,carbon emissions,and net Carbon flux in agriculture:comparing tillage practices in the United States [J]. Agric. Eco- system. & environ .2002,91 (1/3):217-232.
    [28] James R. Smart, Conservation Tillage Corn Production for a Semiarid, Subtropical Environ- ment[J]. Agronomy Journal, 1999.91(1): 116-121.
    [29] Yusuf, R.I., Growth Analysis of Soybean under No-Tillage and Conventional Tillage Systems [J]. Agronomy Journal, 1999.91(6): 928-933.
    [30]郑华平.保护性耕作措施的综合效应研究及其生态与经济效益评价[D] .兰州:甘肃农业大学,2004:1-127.
    [31]章秀福,王丹英,等.南方稻田保护性耕作的研究进展与研究对策[J].土壤通报,2006, 37(2): 346-351.
    [32]张飞,赵明,张宾.我国北方保护性耕作发展中的问题[J].中国农业科技导报,2004,6(3): 36-39.
    [33]高绪科,汪德水,王小彬.旱农地区麦田深松蓄墒增产效益的研究[J] .土壤肥料, 1986(3): 45-47.
    [34]蔡典雄,王小彬,张志田,等.寿阳旱农试区保护性耕作体系研究[J] .干旱地区农业研究, 1998(3):41-46.
    [35]高绪科,汪德水,王小彬,旱地春作农田不同耕法效应的研究[J] .土壤通报, 1990(3): 122 - 125 .
    [36]王小彬,蔡典雄,金轲,等.旱坡地麦田夏闲期耕作措施对土壤水分有效性的影响[J] ,中国农业科学,2003, 36(9) :1044-1049.
    [37]信乃诠.中国北方旱区农业研究[M] .北京:中国农业出版社,2002:62-92.
    [38] Wang X.B.,Cai D.X.,Hoogmoed W.B.,et a1.Scenario analysis of tillage,residue,and fertilization management effects on soil carbon dynamics[J].Pedosphere,2005,15(4) :473-483.
    [39]高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1-4.
    [40]马俊贵.保护性耕作技术简介[J].新疆农机化,2004,(4):19-20.
    [41]谭国波,边少锋,方向前,等.国内外保护性耕作技术的发展现状与我省的研究方向[J].吉林农业科学, 2006,31(3) :29-31.
    [42]张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报, 2005,10(1) :16-20.
    [43]吴潮洋,郭勇,李淑霞等.保护性耕作技术与可持续发展[J].农机化研究, 2004(4) :32-33.
    [44]蔡立群,齐鹏,张仁陟.保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响[J] .水土保持学报, 2008,22(4):141-145.
    [45]王钊英,陈发,王晓冬,等.浅谈国内外保护性耕作技术的研究与应用[J].新疆农机化,2004 (2) :34-35.
    [46]赵其斌,郝强.漫谈保护性耕作的现状与发展前景[J].农业机械, 2001 ,(12):26-27.
    [47]常旭虹.保护性耕作技术的效益和应用前景分析[J] .耕作与栽培,2004(1) :1-3
    [48]师江澜,刘建忠,吴发启.保护性耕作研究进展与评述[J].干旱地区农业研究, 2006, 24 (1) :205-212
    [49] Bruinsma J.World Agriculture:Towards 2015/2030 An FAO Perspective [M].London:Earthscan Publications Ltd.,2003 :297-330
    [50] Kern J.S., Johnson M.G.Conservation tillage impacts on national soil and atmospheric carbon levels [J].Soil Sci.Soc.Am.J. 1993, 57:200-210
    [51]王小彬,蔡典雄,华珞,等.土壤保持耕作-全球农业可持续发展优先领域[J].中国农业科学,2006,39 (4) :741-749
    [52]王燕,王小彬,蔡典雄,等.保护性耕作及其对土壤有机碳的影响[J] .中国生态农业学报, 2008,16(3) :766-771
    [53] Bellamy PH, Loveland PJ, Bradley RL, et al. Carbon losses from all soils across England and Wales 1978-2003.Nature, 2005, 437:245-248
    [54]杨景成,韩兴国,黄建辉.土壤有机质对农田管理措施的动态响应.生态学报, 2003,23 (4): 787-795
    [55]孙成权,曲建升.国际地球科学发展趋势.地球科学进展,2002,17(3):344-347.
    [56]王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响[J].亚热热带农业研究,2005,1(3): 44-51.
    [57]方精云.全球生态学:气候变化与生态响应[M].北京:高等教育出版社,2000.
    [58]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展.2000(1):11-17.
    [59] IPCC report, Climate Change [R].Working Group 1, Cambridge Univ. Press, U. K.1995.
    [60] Houghton R A. The annual net flux of carbon to the atmosphere from changes in land use 1850~1990. Tellus, 1999, 51B: 298-313.
    [61]吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学,2002,38(4):19-29.
    [62] Lovelock J E.Hand up for Gaia hypothesis[J].Nature,1990,344:10.
    [63] Rosenzweig C, Hillel D. Soils and global climate change: Challenges and opportunities [J].Soil Sci., 2000, 165: 47-56.
    [64] Duan Zhenghu, Xiao HL, Dong ZB, et al. Estimate of total CO2 output from desertified sandy land in China .At mospheric Environment, 2001, 35:5915-5921
    [65]刘允芬.农业生态系统碳循环研究.自然资源学报,1995,10(1):1-8.
    [66]李德文,孟凡祥,史奕,等.农业管理措施对土壤有机碳固存潜力影响的研究进展.农业系统科学与综合研究,2005,21(4):260-263.
    [67]Blair G J and Lefroy R D B. Soil C fractions based on their degree of Oxidation and the development of a C management index for Agricultural systems [J].Aust.J.A gri.Res, 1995, 46:1459-1466.
    [68] Jenkinson and Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J].Soil Sci, 1977, 123:298-305.
    [69]倪进治,徐建民等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,2001,7(4):374-378.
    [70]周国模,姜培坤.不同植被恢复对侵蚀型红壤活性碳库的影响[J].水土保持学报, 2004, 18(6): 68-70.
    [71]沈宏,曹志洪.不同农田生态系统土壤碳库管理指数的研究[J].生态学报, 2000, 20(4): 663-668.
    [72] Wander MM, Traina SJ, Stinner BR, etal. The effects of organic and conventional management on biologically active soil organic matter fraction[J]. Soil Science Society of America Journal, 1994, 58: 1130-1139.
    [73] Paul E A. Dynamics of soil organic Matter [J]. Plant and Soil, 1984, 76:275-285.
    [74] Bradley R L, Fyles J W. A kinetic parameter describing soil available C and its relationship to rate increase in C mineralization [J]. Soil Biology and Biochemistry, 1995, 27 (2): 167-172.
    [75]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展.土壤通报,2004,35(4):502-505.
    [76] Lefroy R D B, Blair G J.Changes in soil organic matter with cropping as measured by organiccarbon fractions and 13C natural istope abundance[J].Plant soil,1993,399-402.
    [77] Dick W A, D M Van Doren, Jr G B Triplett, and J E Henry. Influence of long-term tillage and Rotation combination on crop yields and selected soil Parameters: results Obtained for a Mollic Ochraqualf soil. OARDC Res.Bull.1180, Wooster, OH, 1986:30-35.
    [78]李克让.全球气候变化及其影响的研究进展和未来展望[J].地理学报, 1996 , 51,增刊: 1-14.
    [79]甘肃省土地管理局编.甘肃土地资源[M ].兰州:甘肃科学技术出版社,2000.
    [80]黄高宝,张恩和.甘肃黄土高原生态环境建设与农业可持续发展战略研究[J].水土保持学报, 2002,16(1):17-19.
    [81]魏项森.概述传统机械化旱地耕作与保护性耕作.科学通报,2002(5):12-13
    [82]程保卫.机械化保护性耕作技术.农林实用科技,2002(2): 38.
    [83]李玲玲,黄高宝,张仁陟.甘肃黄土高原西部保护性农业发展研究.中国农学会耕作制度分会编.粮食安全与农作制度建设会议论文.湖南:湖南科学技术出版社,2004. 185-188.
    [84] Watts C.W., Eich S., Dexter A.R.Effects of mechanical energy inputs on soil respiration at the aggregate and field scales [J].Soil& Tillage Research.2000.53 (3/4):231-243.
    [85]王树涛,门明新,刘微,许皞.农田土壤固碳作用对温室气体减排的影响[J ] .生态环境,2007. 16 (6):1775-1780.
    [86] Pan Gen-xing, Cao Jian-hua, Zhou Yun-chao. Soil carbon and its significance in carbon cycling of earth surface system [J]. Quaternary Sciences, 2000, 20 (4):325-334.
    [87] Moor B. International geosphere - biosphere program: A study of global change, some reflections [R]. IGBP Global Change Newsletter, 1999, 40:1-3.
    [88]沈宏,曹志宏,胡正义.土壤活性有机碳的表征及其生态效应[J ] .生态学杂志, 1999. 18 (3):32-38.
    [89]高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J ] .水土保持学报,2006 ,20 (1) :76-79.
    [90]王晶,解宏图,等.土壤活性有机质的内涵和现代分析方法概述[J].生态学杂志, 2003,22(6):109-112.
    [91] Blair GJ, Lefroy R, Whitbread A, et al. The development of the oxidation technique to determine labile carbon in soil and its use in a carbon management index [A] 1In: Lal R, Kimble J M, Follett R F, Stewart B A, eds. Assessment methods for soil carbon [M]. Boca Raton, Florida: Lewis Publishers, 2001. 323– 337.
    [92] Anderson TH, Domsch KH. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories[J]. Soil Boil. Biochem.1990 22:251-255.
    [93] Insam H, Parkinson D, and Domsch KH. Influence of macroclimate on soil microbial biomass. Soil Biol Biochem, 1989.21 (2):211-221.
    [94]鲁如坤.土壤农业化学分析方法[M] .北京:中国农业科技出版社. 2000.228- 246.
    [95] Gregorich EG, Carter MR, and Angers DA, et al. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sic. 1994. 74: 367-385.
    [96] Gregorich EG, Carter MR, and Doran JW, et al. Biological attributers of soil quality. In: Gregorich EGand Carter MR eds. Soil Quality for Crop Production and Ecosystem Health. Development in Soil Science 25.The Netherlands: Elsevier. 1997. 81-113.
    [97]鲍士旦主编.土壤农化分析[M].中国农业出版社,2000,30-34.
    [98] Blair GJ, Lefory R D. Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural system. Aust. J. Agri. Res., 1995, 46: 1459-1466.
    [99] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial C. Soil Biol. Biochem. , 1987, 19: 703-707.
    [100] McCarty G, W Lysenko N, Starr J L. Short-term changes in soil carbon and nitrogen pools during tillage management transition [J]. Soil Science Society of America Journal, 1998, 62: 1564-1571.
    [101] Staley T E, Boyer D G. Short-term carbon, nitrogen and pH alterations in a hill-land Ultisolunder maize silage relative to tillage method [J].Soil and Tillage Research,1997, 42: 115-126.
    [102]黄耀,刘世梁等.环境因子对农业土壤有机碳分解的影响[J].应用生态学报, 2002, 13(6): 709-714 .
    [103]刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京:中国农业出版社,2001.
    [104] Dickey E C, Jasa P J, Grisso R D. Long-term tillage effects on grain yield and soil properties in a soybean/grain sorghum rotation [J]. Journal of Production Agriculture, 1994, 7: 465-470.
    [105]曹志洪.化肥-环境与农业持续发展.土壤科学与农业持续发展[M].南京:江苏科技出版社, 1994,1183-1951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700