两近缘种铃夜蛾与烟草互作机制的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可同域发生的棉铃虫Helicoverpa armigera(H(u丨¨)bner)和烟夜蛾H.assulta(Guenee)是铃夜蛾属两近缘种昆虫,二者具有相似的生物学和生态学习性,甚至杂交可育,但它们的寄主范围却截然不同,棉铃虫是多食性昆虫,烟夜蛾则是典型的寡食性昆虫。在主要农作物中,棉花和番茄上极少发现烟夜蛾,而辣椒上几乎没有棉铃虫,只有烟草均为二者所嗜食,也唯独在烟草上它们可以稳定共存。本文从行为、生理和生态适应三个方面,对棉铃虫和烟夜蛾与烟草间的互作进行了比较研究,主要结果如下:
     成虫对烟草挥发物的EAG反应:(1)两种夜蛾对测试的20种烟草挥发物均可产生EAG反应;低浓度下对绿叶气味、脂肪族、芳香族化合物的EAG反应显著高于单萜类、倍半萜类和杂环化合物;高浓度下的EAG反应也表现出相似的总体反应趋势,但多数反应值间的差异未达显著水平。(2)低浓度下,烟夜蛾对大多数烟草挥发物的EAG反应显著大于棉铃虫;而高浓度下,两种夜蛾的EAG反应却无显著的种间差异。(3)低浓度和高浓度下,两种夜蛾对多数烟草挥发物的EAG反应均无显著的种内性别间差异。(4)在1.0×10~(-5)mol·L~(-1)~1.0×10~(-1)mol·L~(-1)范围内,两种夜蛾的EAG反应与烟草挥发物的浓度呈正相关,且均未达到饱和。
     成虫对烟草挥发物的行为反应:(1)两种夜蛾对绿叶气味、脂肪族、芳香族化合物的相对反应率,显著高于单萜类、倍半萜类和杂环化合物。(2)烟夜蛾交配雌蛾对单萜类[(α-蒎烯、(-)-里那醇]和杂环化合物(糠醛)的相对反应率显著高于棉铃虫;棉铃虫交配雌蛾对倍半萜类化合物(β-水芹烯、桧烯)的相对反应率显著高于烟夜蛾。除此之外,两种夜蛾的行为反应既无显著的种间差异,也无显著的种内性别间差异。
     烟夜蛾3种气味结合蛋白基因的时空表达:(1)烟夜蛾Hass-PBP、Hass-GOBP_1、Hass-GOBP_2基因在卵期、幼虫期、蛹期均不表达,只在成虫期表达,且表达量与成虫的日龄无关。(2)上述基因在成虫触角上特异性表达,在成虫的喙、去掉触角的头、胸、腹、足、翅等部位均不表达,其中Hass-PBP基因只在雄蛾触角上表达,而Hass-GOBP_1和Hass-GOBP_2基因在雌雄蛾触角上均表达。
     两种夜蛾GOBP_1、GOBP_2基因相对表达量的定量分析:棉铃虫和烟夜蛾成虫触角上GOBP_1和GOBP_2基因的相对表达量,既无显著的种间差异,也无显著的种内性别间差异。
     幼虫在烟草上的取食行为:(1)两种夜蛾的初孵幼虫对普通烟草和黄花烟草无取食选择性,但随着虫龄的增加,二者在普通烟草上的出现百分率均显著大于黄花烟草,表现出很强的选择性。(2)在黄花烟草上,两种夜蛾5龄幼虫的取食时间、活动时间、休息时间、取食叶面积比率均无显著差异;但是在普通烟草上,烟夜蛾5龄幼虫的取食时间和取食叶面积比率却显著高于棉铃虫。
     幼虫取食烟草后的营养效应:(1)棉铃虫6龄幼虫取食两种烟草后的近似消化率及其相对生长率无显著差异,对黄花烟草的利用率和转化率显著降低,但相对取食量却显著增加。(2)烟夜蛾6龄幼虫取食两种烟草后的相对取食量和近似消化率无显著差异,但是对黄花烟草的利用率、转化率及其相对生长率均显著下降。(3)两种夜蛾6龄幼虫对烟草的近似消化率无显著的种间差异,但烟夜蛾对烟草的相对取食量、利用率和转化率却显著高于棉铃虫,从而使其具有较高的相对生长率。
     烟草对两种夜蛾实验种群增长的影响:(1)两种烟草上,棉铃虫的发育历期、存活率、产卵量等均存在显著差异,主要表现为黄花烟草延长了幼虫的发育历期,降低了1龄、2龄幼虫的存活率和成虫的产卵量,导致该种群较低的内禀增长率(r_m=0.0951)、较小的净增殖率(R_0=30.5374)和周限增长率(λ=1.0998)。(2)烟夜蛾在两种烟草上的生长发育、存活和繁殖情况与棉铃虫类似,也表现为黄花烟草延长了幼虫的发育历期,降低了1~3龄幼虫的存活率和成虫的产卵量,导致该种群的内禀增长率(r_m=0.0848)、净增殖率(R_0=16.1085)和周限增长率(λ=1.0885)均小于普通烟草上。(3)两种烟草上,烟夜蛾实验种群的生长发育和存活情况比棉铃虫好,但成虫的雌性比和产卵量却显著降低,致使种群的增长速率小于棉铃虫。
     烟草对两种夜蛾自然种群增长的影响:(1)第二代棉铃虫在普通烟田的种群增长(I=1.9922>1)比黄花烟田(I=1.1581>1)快;第三代棉铃虫在普通烟田的种群增长有所减慢但仍呈上升趋势(I=1.5994>1),在黄花烟田却呈下降趋势(I=0.6435<1)。(2)第二代烟夜蛾在普通烟田的种群数量呈上升趋势(I=1.0325>1),在黄花烟田呈下降趋势(I=0.6577<1);第三代烟夜蛾的种群数量在两种烟田内均呈下降趋势,但黄花烟田(I=0.3592<1)的种群下降速率大于普通烟田(I=0.4571<1)。(3)两种烟田内,第二代和第三代棉铃虫自然种群的增长速率均大于烟夜蛾。(4)生物因子对两种夜蛾自然种群增长有重要的控制作用,“捕食性天敌”、“寄生性天敌”、“烟草和其他”主要对低龄幼虫起控制作用,而“病原微生物”对整个幼虫期均有一定的控制作用。
     两种夜蛾在烟田内的种群消长动态:(1)普通烟田内,第二代和第三代棉铃虫的发生高峰期分别为6月24日、8月7日,盛期持续时间分别为7.09天、9.71天。烟夜蛾的发生高峰期分别比棉铃虫晚17天和13天;第二代烟夜蛾的盛期持续时间与棉铃虫基本一致,而第三代比棉铃虫短3.78天。(2)黄花烟田内,第二代和第三代棉铃虫的发生高峰期分别为6月23日、8月8日,盛期持续时间分别为6.78天、10.36天。烟夜蛾的发生高峰期分别比棉铃虫晚18天和15天;第二代烟夜蛾的盛期持续时间与棉铃虫基本一致,而第三代比棉铃虫短4.69天。(3)棉铃虫和烟夜蛾可通过时间生态位的分离,有效避免对烟草的种间资源竞争。
     总之,两种夜蛾对烟草挥发物具有相似的嗅觉感受和行为反应,均能通过烟草挥发物准确找到烟草,从而构成了二者在烟草上共存的行为基础;两种夜蛾均能取食烟草,并能以烟草为食完成各自的生命周期,从而构成了二者在烟草上共存的生理基础;两种夜蛾的实验种群和自然种群均能在烟草上保持连续世代的种群繁衍,并可通过时间生态位的分离,有效避免对烟草的种间资源竞争,从而构成了二者在烟草上共存的生态基础。
Two sibling species Helicoverpa armigera(H(u|¨)bner) and H.assulta(Guenee) are serious crop pests in China.They have the similar morphological,biological and ecological characterstics,as well as they can even hybridize with each other.Their host plant ranges, however,are quite different.The former is a typical polyhpagous species,and its host plant range including at least more than 60 crop species such as cotton,corn,wheat,soybean, tobacco,and tomato,and 67 wild plant species from about 30 plant families including Malvaceae,Solanaceae,Gramineae,Leguminosae,etc.The latter is an oligophagous species with a narrower host plant range,and only feeds on plant species in Solanaceae,such as tobacco and hot pepper.In crops,H.assulta was rarely found in cotton and tomato field,and there was almost no H.armigera existing on hot pepper,only tobacco was the host plant on which both of them preferred and coexisted.In this paper,the behavioral,physiological, ecological adaption mechanism of H.armigera and H.assulta to their common host plant tobacco were studied comparatively,and the main results were summarized as follows:
     Electroantennogram(EAG) response of adult to tobacco volatiles:(1) H.armigera and H.assulta elicited similar EAG responses to the tested 20 tobacco volatiles;both of them elicited significantly more sensitive to green leaf volatiles,aliphatic and aromatic compounds, than to monoterpene,sesquiterpene,heterocyclic compounds under lower concentration; while the similar EAG responses under higher concentration were detected,but most of them were not significantly different with each other.(2) H.assulta elicited higher EAG responses to the most tested tobacco volatiles than H.armigera under lower concentration;however, there were no significant interspecfic differences of the two species under higher concentration.(3) There were no significant sexual differences of the two species to most of the tested tobacco volatiles under both lower and higher concentration,respectively.(4) The EAG responses of both species were positively dose-dependent to tobacco volatiles under the tested concentration range,and far from their maximum responses.
     Behavioral response of adult to tobacco volatiles:(1) The results of behavioral response suggested that the two species elicited significantly higher relative behavioral response to green leaf volatiles,aliphatic and aromatic compounds,than to monoterpenes, sesquiterpenes and heterocyclic compounds.(2) The relative behavioral response of mated H. assulta females to monoterpenes[α-pinene and(-)-linalool]and heterocyclic compounds (furfural) was much higher than that of H.armigera,while the response to sesquiterpenes (β-phellandrene and sabinene hydrate) was quite in the opposite,in addition,there were no significant interspecific differences of the two species.
     The expression of three odorant binding protein genes at different developmental stages and tissues in H.assulta:(1) Hass-PBP、Hass-GOBP_1、Hass-GOBP_2 genes were only expressed in adult stage,but not in the stages of egg,larva and pupa;and the expression quantity was irrelevant to the day-old of adult.(2) Hass-PBP、Hass-GOBP-1、Hass-GOBP_2 genes were only expressed in the antennae of adult,but not in the other parts of body,which including proboscises,head without antennae,thorax,abdomen,leg,wing;besides,Hass-PBP gene was only expressed in the antennae of male adult,while Hass-GOBP_1、Hass-GOBP_2 genes were expressed in the antennae both of male and female adult.
     Quantitative analysis of relative expression of GOBP_1 and GOBP_2 genes:there were no significant interspecfic and sexual differences of the relative expression quantity of GOBP_1 and GOBP_2 genes in the antenna of H.armigera and H.assulta adult.
     Feeding behaveor of larvae reared on two tobacco species:(1) 1~(st) instar of H. armigera and H.assulta larvae searched for food randomly,and did not showed any selectivity to plant leaves during the tested time scale;however,along with larvae growing up, they exhibited stronger selectivity to the tested tobacco species,and the percentage of appearance of H.armigera and H.assulta larvae on the leaves of Nicotiania tabacum were significantly higher than N.rustica.(2) Feeding time and area of H.assulta on N.tabacum leaves were significantly higher than H.armigera,but on N.rustica leaves,there were no significant interspecfic differences between H.armigera and H.assulta.
     Nutritional function of larvae reared on two tobacco species:(1) There were no significant differences in the approximate digestibility(AD) and relative growth rate(RGR) of 6~(th) instar H.armigera larvae reared on the two tobacco species;compared to the larvae feeding on N.tabacum,both the efficiency conversation of ingestion(ECI) and digestion (ECD) to N.rustica significantly decreased,while the relative consumption rate(RCR) increased significantly.(2) There were no significant differences in the relative consumption rate and approximate digestibility of 6~(th) instar H.assulta larvae reared on two tobacco species; compared to the larvae feeding on N.tabacum,the relative growth rate,efficiency conversation of ingestion and digestion of larvae on N.rustica significantly decreased.(3) There were no significant differences in the approximate digestibility between H.armigera and H.assulta,but the relative consumption rate and growth rate,as well as the efficiency conversation of ingestion and digestion of H.assulta reared on the two tobacco species were significantly higher than H.armigera.
     The effects of tobacco on the experimental population increase of H.armigera and H.assulta:(1) The development duration of H.armigera larvae were significantly prolonged when reared on N.rustica,while the survival rate of both 1~(st) and 2~(nd) instar larvae,as well as the fecundity of female adults reduced notably,so the net reproductive rate(R_0=30.5374) and innate capacity of increase(r_m=0.0951) decreased compared with those reared on N.tabacum. (2) When reared on N.rustica,the development duration of H.assulta larvae significantly prolonged,while the survival rate of each stage of larvae from 1~(st) to 3~(rd) instar and the fecundity of female adults reduced notablely,and the net reproductive rate(R_0=16.1086) and innate capacity of increase(r_m=0.0848) decreased.(3) The development and survivorship of H. assulta reared on two tobacco species were much better than H.armigera,but the ratio and fecundity of female in the H.assulta population were significantly decreased,leading to the growth rate of population lower than H.armigera.
     The effects of tobacco on the natural population increase of H.armigera and H. assulta:(1) The 2n~(nd) generation population of H.armigera in N.tabacum field(I=1.9922>1) increased faster than that in N.rustica field;while the increase of the 3~(rd) generation population slowed down in N.tabacum field(I=1.5994>1),and declined in yellow flower tobacco field(I=0.6435<1).(2) The 2~(nd) generation population of H.assulta in N.tabacum tobacco field(I=1.9922>1) increased,but declined in N.rustica tobacco field(I=0.6577<1), the increase of the 3~(rd) generation population slowed down in both two tobacco fields,while the population decreasing rate was faster in N.rustica field(I=0.3592<1)than in N.tabacum field(I=0.4571<1).(3) The 2~(nd) and 3~(rd) generation of H.armigera increased faster than H. assulta in both N.tabacum and N.rustica tobacco field.(4) Biotic factors were important to control the population quantities of H.armigera and H.assulta;the early stage larvae were mainly affected by the factors of "predators","parasitoids","tobacco and others";while "pathogenic microorganism" had the control effects on the whole larval stage.
     Occurrence dynamics of population quantities of H.armigera and H.assuita in two tobacco fields:(1) The peak of occurrence with 2~(nd) and 3~(rd) generation of H.armigera in N. tabacum field was June 24 and August 7,respectively;while the duration of high occurrence period of 3~(rd) generation was 2.62 days longer than 2~(nd) generation.The peak of occurrence with 2~(nd) and 3~(rd) generation of H.assulta in N.tabacum field was seventeen and thirteen days later than H.armigera,respectively;the duration of high occurrence period of 2~(nd) generation of H.assulta was similar to H.armigera,but 3~(rd) generation of H.assulta was 3.78 days shorter than H.armigera.(2) The peak of occurrence with 2~(nd) and 3~(rd) generation of H. armigera in N.rustica tobacco field were much similar to the N.tabacum field,the duration of high occurrence period of 3~(rd) generation was 3.85 days longer than 2~(nd) generation;the peak of occurrence with 2~(nd) and 3~(rd) generation of H.assulta in N.tabacum field was eighteen and fifteen days later than H.armigera,respectively;the duration of high occurrence period of 2~(nd) generation of H.assulta was similar to H.armigera,but 3~(rd) generation of H.assulta was 4.69 days shorter than H.armigera.(3) H.armigera and H.assulta could through the separation of temporal niche to effectively avoid the interspecific competition in tobacco feld.
     In conclusion,the tested insects exhibited the similar olfactory sensitivity and behavioral response to tobacco volatiles between H.armigera and H.assulta,both of them could find tobacco plant accurately through tobacco volatiles,which constituting the behavioral foundations of H.armigera and H.assulta coexisted in tobacco;both of the two Helicoverpa species could feed on tobacco,and they could also complete their life cycles on tobacco, respectively,which constituting the physiological foundations of H.armigera and H.assulta coexisted in tobacco;both of the two Helicoverpa species could keep population increasing with continuous generations in tobacco,and they could effectively avoided interspecific competition to tobacco resources through the separation of temporal niche,which constituting the ecological foundations of H.armigera and H.assulta coexisted in tobacco.
引文
1.陈雄,侯照远,张瑛,等.棉铃虫对植物挥发性次生化合物和性外激素的嗅觉敏感度.走向21世纪的中国昆虫学[M].北京:中国科学技术出版社,2000
    2.陈湖海,赵云鲜,康乐.两种同域分布的草原蝗虫对植物挥发性化合物的嗅觉反应[J].中国科学(C辑),2003,33(5):421-428
    3.董钧锋,张继红,王琛柱.植物次生物质对烟青虫和棉铃虫食物利用及中肠解毒酶活性的影响[J].昆虫学报,2002,45(3):296-300
    4.杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报,2001,27(3):193-200
    5.戈峰.现代生态学[M].北京:科学出版社,2002
    6.巩中军,原国辉,郭线茹,等.烟实夜蛾触角普通气味结合蛋白ⅡcDNA的克隆、序列分析及在大肠杆菌中的表达[J].昆虫学报,2005,48(1):18-23
    7.郭建英,Gabor L.L(O|¨)VEI,万方浩,等,取食转基因抗虫棉上的棉蚜对粉舞蛛存活和发育的影响[J].昆虫学报,2006,49(5):792-799
    8.郭线茹,李为争,原国辉,等.甜菜夜蛾成虫对黑杨萎蔫叶片挥发性物质的触角电位反应[J].华北农学报,2002,17(3):118-123
    9.郭线茹,原国辉,蒋金炜,等.植物挥发性次生物质对昆虫触角电位反应的影响[J].河南农业大学学报,2003,37(1):18-22
    10.郭线茹,原国辉,李为争,等.黑杨萎蔫叶片挥发性物质诱集蛾类成虫的研究[J].河南农业大学学报,2004,38(3):255-258
    11.郭线茹,原国辉,郑启伟,等.黑杨萎蔫叶片萃取物对蛾类成虫诱集活性的研究[J].华北农学报,2001,16(4):104-108
    12.郭予元.棉铃虫的研究[M].北京:中国农业出版社,1998
    13.胡迎利,徐春兰,汪以真.半定量RT-PCR法分析猪肝脏中铜锌超氧化物歧化酶mRNA表达水平[J].中国兽药杂志,2006,40(4):20-24
    14.蒋金炜,郭线茹,罗梅浩,等.不同类型烟草上节肢动物群落的季节特征[J].中国烟草学报,2003,9(1):35-38
    15.蒋予恩.烟草:中国作物遗传资源[M].北京:中国农业出版社,1994
    16.雷宏,邱宇彤,Christensen TA.昆虫嗅觉系统的结构与功能.见:康乐主编.昆虫学研究进展与展望[M].北京:科学出版社,2005
    17.李捷,赵飞,李群,等.棉铃虫、烟青虫对几种常见植物挥发性次生物质的触角电位反应比较[J].山西农业大学学报,2000,20(1):108-111
    18.李为争.黑杨Populus nigra L.萎蔫叶片诱蛾机理分析与铃虫成虫引诱剂配方筛选[D].郑州:河南农业大学硕士论文,2003
    19.李雄彪,张金忠.简明植物生物化学[M].天津:南开大学出版社,1992
    20.李小珍,刘映红,田艳.六种寄主植物对二点叶蝉生长发育和繁殖的影响[J].应用生态学报,2004,15(8):1431-1434
    21.林克剑,吴孔明,张永军,等.利用诱集寄主苘麻防治B型烟粉虱的研究[J].中国农业科学,2006,39(7):1379-1386
    22.林正奎.香气化合物的生源[J].四川日化,1994,2:36-40
    23.卢伟,侯茂林,文吉辉,等.植物挥发性次生物质对植食性昆虫的影响[J].植物保护,2007,33(3):7-11
    24.罗梅浩,郭线茹,郑晓军,等.烟青虫和棉铃虫在烟草上的生态位及其种间竞争[J].中国烟草学报,2002,8(4):34-37
    25.罗梅浩,薛伟伟,刘晓光,等.不同烟草品种对烟实夜蛾和棉铃虫产卵引诱作用的研究[J].河南农业大学学报,2006,40(2):198-200
    26.马继盛,罗梅浩,郭线茹,等.中国烟草昆虫[M].北京:科学出版社,2007
    27.马瑞燕,杜家纬.昆虫的触角感器[J].昆虫知识,2000,37(3):179-183
    28.庞雄飞,梁广文.害虫种群系统的控制[M].广州:广东科学技术出版社,1995
    29.钦俊德.昆虫与植物的关系-论昆虫与植物的相互作用及其演化[M].北京:科学出版社,1987
    30.阮永明,吴坤君.不同食料植物对棉铃虫生长发育和繁殖的影响[J].昆虫学报,2001,44(2):205-212
    31.孙虹霞,胡新军,舒迎花,等.白背飞虱触角感器的扫描电镜观察[J].昆虫学报,2006,49(2):349-354
    32.汤德良,王琛柱,罗林儿,等.棉铃虫Helicoverpa armigera和烟青虫H.assulta幼虫下颚栓锥感器对某些化合物反应特性的比较[J].中国科学,2002,30(5):511-516
    33.汤德良.植食性昆虫对寄主的选择-实夜蛾属二近缘种的比较研究[D].北京:中国科学院动物研究所博士学位论文,1999
    34.汤清波.棉铃虫和烟青虫幼虫对寄主取食选择行为的遗传及味觉感受基础[D].北京:中国科学院动物研究所博士学位论文,2006
    35.王琛柱,钦俊德.昆虫与植物的协同进化:寄主植物-铃夜蛾-寄生蜂相互作用[J].昆虫知识,2007,44(3):311-319
    36.王琛柱.棉酚和单宁酸对棉铃虫幼虫生长和消化生理的影响[J].植物保护学报,1997,24(1):13-18
    37.王德利.植物与草食动物之间的协同适应及进化[J].生态学报,2004,24(11):2641-2648
    38.王桂荣,郭予元,吴孔明.棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定[J].昆虫学报,2002a,45(3):285-289
    39.王桂荣,吴孔明,郭予元.棉铃虫触角普通气味结合蛋白1基因cDNA的部分克隆和定性分析[J].昆虫学报,2001,8(4):289-297
    40.王桂荣.棉铃虫气味结合蛋白的分子结构及对气味的识别[D].北京:中国农业科学研究院博士论文,2002b
    41.王四宝,周弘春,苗雪霞,等.松褐天牛触角感器电镜扫描和触角电位反应[J].应用生态学报,2005,16(2):317-322
    42.吴坤君,龚佩瑜,阮永明.番茄是烟青虫的寄主植物吗?[J]昆虫学报,2006,49(3):421-427
    43.吴少英,王桂荣,吴孔明,等.烟青虫气味结合蛋白基因的克隆与序列分析[J].中国农业科学,2005,38(9):1817-1824
    44.肖春,肖进,赵金忠,等.枫杨枝把在田间对棉铃虫的引诱作用[J].昆虫学报,2002,45(4):552-555
    45.肖春.植物气味及其对食植性昆虫的引诱作用[D].上海:中国科学院上海昆虫研究所博士论文,1999
    46.肖协忠.烟草化学[M].北京:农业科技出版社,1997
    47.谢立群,蒋明星,张孝羲.温湿度对烟青虫实验种群的影响[J].昆虫学报,1998,41(1):61-69
    48.徐汝梅,成新跃.昆虫种群生态学-基础与前沿[M].北京:科学出版社,2005
    49.许纲,钦俊德.实夜蛾属二近缘种对寄主植物次生物质的反应:次生物质对幼虫生长和食物利用的影响[J].昆虫学报,1987,30(4):359-366
    50 阎凤鸣.化学生态学[M].北京:科学出版社,2003
    51 杨慧,严善春、彭璐.鳞翅目昆虫化学感受器及其感受机理新进展[J].昆虫学报,2008,51(2):204-215
    52.原国辉,徐永伟,郭线茹,等.不同花香化合物对棉铃虫成虫触角电位的影响及诱蛾效果[J].河南农业大学学报,2004,38(2):148-150
    53.曾鑫年,吴美食,罗诗.植物挥发性成份对柑橘潜叶蛾产卵行为的影响[J].植物保护学报,2003,30(2):198-202
    54.张继红.苏云金杆菌库斯塔克变种对棉铃虫的杀虫作用机理及增效研究[D].北京:中国科学院动物研究所博士学位论文,1998
    55.张勇,王开运,王刚,等.烟青虫对三种食料植物的选择性及适应性[J].昆虫知识,2006 a,43(6):781-784
    56.张勇,王开运,原晓玲,等.人工饲料与天然饲料饲养条件下烟青虫的生长发育和繁殖力比较[J].昆虫知识,2006 b,43(4):545-548
    57.赵飞,李捷,张京社.烟青虫与棉铃虫对寄主植物的选择及适应能力的比较研究[J].山西农业科学,2000,28(4):61-64
    58.赵国强,刘晓光,罗梅浩.昆虫对寄主物植选择的化学感受机理[J].河南科技大学学报(自然科学版),2006,27(4):81-83
    59.钟国华,胡美英,章玉苹,等.黄杜鹃提取物对小菜蛾的产卵忌避和杀卵作用[J].华南农业大学学报,2000,21(3):40-43
    60.周志军,王世贵.二化螟盘绒茧蜂触角感器的超微结构[J].昆虫知识,2005,42(6):676-680
    61.AHARONI A,GIRI A P,DEUERLEIN S,et al..Terpenoid metabolism in wild-type-and transgenic Arabidopsis plants[J].The Plant Cell,2003,15:2866-2884
    62.AHMAN I,WEIBULL J,PETTERSON J.Oviposition and larvae performance of Rhabdophaga terminalis on Salix spp.with special consideration to bud size of host plants[J].Entomol.Exp.Appl.,1984,35:129-136
    63.ALTNER,H.Insect sensillum specificity and structure:an approach to a new typology,in olfaction taste Ⅳ(ed.)[M].J Le Magnen and P Mac Leod(London:Information Retrieval),1977
    64.ANDERSON P,HALLBERG E,SUBCHEV M.Morphology of antennal sensilla auricillica and their detection of plant volatiles in the Herald moth,Scoliopteryx libatrix L.(Lepidoptera:Noctuidae)[J].Arthropod Struct.Dev.,2000,29(1):33-41
    65.ANSEBO L,IGNELL R,L(O|¨)FQVIST J,et al..Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth,Cydia pomonella (Lepidoptera:Tortricidae)[J].J.Insect Physiol.,2005,51:1066-1074
    66.BALLABENI P,WLODARCZYK M,RAHIER M.Does enemy free space for eggs contribute to a leaf beetle's oviposition preference for a nutritionally inferior host plant?[J].Functional Ecology,2001,15:318-324
    67.BARTELT R J,HOSSAIN M S.Development of synthetic food-related attractant for Carpophilus davidsoni and its effectiveness in the stone fruit orchards in southern Australia[J].Journal of Chemical Ecology,2006,32:2145-2162
    68.BECERRA J X.Synchronous coadaptation in an ancient case of herbivory[J].Proceedings of the National Academy of Science of the United States of American,2003,100(22):12804-12807
    69.BECK S D,REESE J C.Insect plant interaction:Nutrition and metabolism[J].Rec.Adv.Phytochem.,1976,10:41-92
    70.BERENBAUM M R.Evolution of specialization in insect-umbellifer associations[J].Ann.Rew.Entomol.,1990,35:319-343
    71.BERG B G,GALIZIA C G,BRANDT R,et al..Digital atlases of the antennal lobe in two species of tobacco budworm moths,the Oriental Helicoverpa assulta(male) and the American Heliothis virescens(male and female)[J].J.Comp.Neurol.,2002,446:123-134
    72.BERNAYS E A,CHAPMAN R F.Taste cell responses in the polyphagous arctiid,Grammia geneura:towards a general pattern for caterpillars[J].Journal of Insect Physiology,2001,47:1029-1043
    73.BERNAYS E A,CHAPMAN R F.Host-plant Selection by Phytophagous Insects[M].New York:Chapman and Hall,1994
    74.BERNAYS E A,HARTMANN T,CHAPMAN R F.Gustatory responsiveness to pyrrolizidine alkaloids in the Senecio specialist,Tyria jacobaeae(Lepidoptera,Arctiidae)[J].Physiological Physiology, 2004, 29: 67-72.
    75. BERNAYS E A, OPPENHEIM S, CHAPMAN R F, et al. Taste sensitivity of insect herbivores to deterrents is greater in specialists than in generalists: a behavioral test of the hypothesis with two closely related caterpillars [J]. Journal of Chemical Ecology, 2000, 26: 547-563
    76. BESHERS S N, TRANIELLO J F A. The adaptiveness of worker demography in the attine ant Trachymyrmex septentrionalis [J]. Ecology (Tempe), 1994, 75(3): 763-775
    77. BJORKMAN C, LARSSON S, BOMMARCO R. Oviposition preference in pine sawflies: a trade-off between larval growth and defence against natural enemies [J]. Oikos, 1997,79: 45-52
    78. BJORKMAN M, HOPKINS R J, HAMBACK PA, et al. Effects of plant competition and herbivore density on the development of the turnip root fly (Delia floralis) in an intercropping system [J]. Arthropod-Plant Interactions, 2009, 3(1): 55-62
    79. BRUES C T. Insect dietary [M]. USA: Harvard University Press, 1946
    80. BRUYNE M de, FOSTER K, CARLSON J. Odor coding in the Drosophila antenna [J]. Neuron, 2001, 30(2): 537-552
    81. BUITENHUIS R, SHIPP J L, JANDRICIC S, et al.. Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals [J]. Pest Management Science, 2007, 63: 910-917
    82. CALAS D, THIERY D, MARION-POLL F. 20-Hydroxyecdysone deters oviposition and larval feeding in the European grapevine moth, Lobesia botrana [J]. Journal of Chemical Ecology, 2006, 32: 2443-2454
    83. CASTILLO-CHAVEZ C, LEVEN S A, GOULD F. Physiological and behavioral adaptation to varying environments: a mathematical model [J]. Evolution, 1988, 42: 986-994
    84. CHAPMAN R F. Contact chemoreception in feeding by phytophagous insects [J]. Annual Review of Entomology, 2003, 48: 455-484
    85. CHARLESTON D S, KFIR R, VET L, et al.. Behavioural responses of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) to extracts derived from Melia azedarach and Azadirachta indica [J]. Bulletin of Entomological Research, 2005, 95: 457-465
    86. CHEN H H, KANG L. Olfactory responses of two species of grasshoppers to plant odours [J]. Entomologia Experimentalis et. Applicata., 2000, 95: 129-134
    87. CLISSOLD F J, SANSON G D, READ J. Indigestibility of plant cell wall by the Australian plague locust, Chortoicetes terminifera [J]. Entomologia Experimentalis et. Applicata, 2004, 112(3): 159-168
    88. CORNELL H V, HAWKINS B A. Herbivore responses to plant secondary compounds: a test of phytochemical theory [J]. The American Naturalist, 2003, 161(4): 507-522
    89. COURTNEY S P. The ecology of pierid butterflies and their cruciferous food plants: Anthocharis cardamines(L) survival,development and oviposition on different host plant[J].Oecologia,1981,51:91-96
    90.CRUZ-LOPEZ L,MALO E A,TOLEDO J,et al..A new potential attractant for Anastrepha obliqua from Spondias mombin fruits[J].Journal of Chemical Ecology,2006,32:351-365
    91.CUNNINGHAM J P,WEST S A,ZALUCKI M P.Host selection in phytophagous insects:a new explanation for learning in adults[J].Oikos,2001,95:537-543
    92.DE BOER G.The role of the antennae and maxillary palps in mediating food preference ty larvae of the tobacco hornworm,Manduca sexta[J].Entomol.Exp.Appl.,2006,119:29-38
    93.DEL CAMPO M L,MILES C I.Chemosensory tuning to a host:recognition cues in the facultative specialist larvae of the moth Manduca sexta[J].Journal of Experimental Biology,2003,206:3979-3990
    94.DEL CAMPO M L,MILES C I,SCHROEDER F C,et al..Host recognition by the tobacco hornworm is mediated by a host plant compound[J].Nature,2001,411:186-89
    95.DETHIER V G.Mechanism of host plant recognition[J].Ent.Exp.Appl.,1982,31:49-56
    96.DETHIER V G.The role of chemosensory paterns in the discrimination of food plants[J].Colloq.Int.CNRS Paris,1973,265:103-114
    97.DU J W.Current and future prospects for insect behavior-modifying chemicals in China[J].Agric.Chem.Biotechnol,2000,43(4):222-229
    98.DUSHECK J.Larvae host suitability and oviposition preference in two checkered skippers,Pyrgus communis and pyrgus scriptura(Hesperidae)[D].California:University of Davis,1983
    99.EDRIS A E,FADEL H M.Investigation of the volatile aroma components of garlic leaves essential oil:possibility of utilization to enrich garlic bulb oil[J].Eur.Food Res.Technol.,2002,214(1):105-107
    100.EHRLICH P R,RAVEN P H.Butterflier and plants:a study in coevolution[J].Evolution,1964,18:586-608
    101.ERBILGIN N,GILLETTE N E,MORI S,et al..Acetophenone as an anti-attractant for the western pine beetle,Dendroctonus Brevicomis LeConte(Coleoptera:Scolytidae)[J].Journal of Chemical Ecology,2007,33:817-823
    102.FARRELL B D."Inordinate fondness" explained:why are there so many beetles?[J].Science,1998,281:555-559
    103.FEENY P P.Plant apparency and chemical defense[J].Rec.Adv.Phytochem.,1975,10:1-40
    104.FETTIG C J,MCKELVEY S R,HUBER D P W.Nonhost angiosperm volatiles and verbenone disrupt response of western pine beetle,Dendroctonus brevicomis(Coleoptera:Scolytidae),to attractant-baited traps[J].Journal of Economic Entomology,2005,98:2041-2048
    105.FRINGS S.Chemoelectrical signal transduction in olfactory sensory neurons of air-breathing vertebrates [J]. Cell. Mol. Life. Sci., 2001, 58: 510-519
    106. FUKUDA T, DUCHATEAU B, FLORKIN M. Contributions to silkworm biochemistry XXIV: Breakdown and biosynthesis of amino acids during the development of Bombyx mori [J]. Arohs. int. Physiol Biochem., 1961, 69: 701-719
    107. FUTUYMA D J, MORENO J. The evolution of ecological specialization [J]. Ann. Rev. Ecol. Syst., 1988, 19:207-233
    108. GARCIA-BARROS E. Evidence for geographic variation of egg size and fecundity in a satyrine butterfly, Hipparchia semele (L.) (Lepidoptera, Nymphalidae, Satyrinae) [J]. Graellsia, 1992, 48: 45-52
    109. GLENDINNING J I, NELSON N, BERNAYS E A. How do inositol and glucose modulate feeding in Manduca sexta caterpillars? [J]. Journal of experimental biology, 2000, 203: 1299-1315
    110. GOULD F. Role of behavior in the evolution of insect adaptation to insecticides and resistant host plants [J]. Ent. Soc. Am. Bull., 1984, 30: 34-41
    111. HIBBARD B E, RANDOLPH T L, BEMKDAU E J. Electroantennogram-active components of maize silk for the western corn rootworm (Coleoptera: Chrysomelidae) [J]. Environ Entomol, 1997, 42(2): 285-295
    112. HILL1ER N K, KLEINEIDAM C, VICKERS N J. Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Notuidae) responsive to behaviorally relevant odors [J]. J. Comp. Physiol., A., 2006, 192: 199-219
    113. HOCHULI D F, SANSON G D, ROBERTS B. Approximate digestibility of fibre for two locusts [J]. Entomologia Experimentalis et Applicata, 1993,66(2): 187-190
    114. HOCHULI D F. Insect herbivory and ontogeny: how do growth and development influence feeding behavior, morphology and host use? [J]. Austral Ecology, 2001, 26(5): 563-570
    115. HORI K, KISHINO M. Feeding of Adelphocoris suturalis Jakovlev (Heteroptera: Miridae) on alfalfa plants and damage caused by the feeding [J]. Research Bulletin of Obihiro University, 2007, 17: 357-365
    116. HUNTER A F. The ecology and evolution of reduced wings in forest macrolepidoptera [J]. Evolutionary Ecology, 1995, 9(3): 275-287
    117. HUSCH A, PAEHLER M, FUSCA D, et al.. Calcium current diversity in physiologically different local interneuron types of the antennal lobe [J]. J. Neurosci., 2009, 29(3): 716-726
    118. ISHIDA Y, LEAL W S. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyperhus [J]. Insect Biochem. Biol., 2002, 32: 1775-1780
    119. JACQU1N-JOLY E, MERLIN C. Insect olfactory receptors: contributions of molecular biology to chemical ecology [J]. J. Chem. Ecol., 2004, 30: 2359-2397
    120.JALLOW M F A,CUNNINGHAM J P,ZALUCKI M P.Intra-specific variation for host plant use in Helicoverpa amigera H(u|¨)bner(Lepidoptera:Noctuidae):implication for management[J].Crop.Protect.,2004,23(10):955-964
    121.JANZ N,NYBLOM K,NYLIN S.Evolutionary dynamics of host-plant specialization:a case study on the tribe Nymphalini[J].Evolution,2001,55(4):783-796
    122.JANZEN D H.When is it coevolution?[J].Evolution,1980,34:611-612
    123.JERMY T.Feeding inhibitor and food preference in chewing phytophagous insects[J].Ent.Exp.Appl.,1966,9:1-12
    124.JIANG J W,GUO X R,AN S H,et al..The seasonal characters of the arthropod community in tobacco field in the mountain area of western Henan[J].Journal of Henan Agricultural University,2001,35(4):317-323
    125.KAISSLING K E.Olfactory perireceptor and receptor events in moths:a kinetic model[J].Chem.Senses.,2001,26(2):125-150
    126.KAITALA A.Phenotypic plasticity in reproductive behavior of waterstriders:trade-offs between reproduction and longevity during food stress[J].Functional Ecology,1991,5(1):12-18
    127.KALINOVA B,HOSKOVEC M,LIBLIKAS I,et al..Detection of sex pheromone components in Manduca sexta[J].Chem.Senses,2001,26:1175-1186
    128.KELLEY S T,FARRELL B D,MITTON J B.Effects of specialization on genetic differentiation in sister species of bark beetles[J].Heredity,2000,84:218-227
    129.KELLEY S T,FARRELL B D.Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles(Scolytidae)[J].Evolution,1998,52(6):1731-1743
    130.KENNEDY J S,BOOTH C O.Host alternation in Aphis fabae Scop:Feeding preferences and fecundity in relation to the age and kind of leaves[J].Annual Application Biology,1951,38:25
    131.KENNEDY J S.Olfactory responses to distant plants and other odor sources.In:Shorey H H,McKelvey J J,eds.Chemical control of insect behavior[M].London:John Wiley and Sons,1977
    132.KORSCHING S I.Olfactory receptors[J].Encyclopedia Biol.Chem.,2004,3:149-154
    133.KRIEGER J,GROSSE-WELDE E,GOHL T,et al..Genes encoding candidate pheromone receptors in a moth(Heliothis virescens)[J].Proc.Natl.Acad.Sci.USA,2004,101(32):11 845-11 850
    134.KRIEGER J,KLINK O,MOHL C,et al..A candidate olfactory receptor subtype highly conserved across different insect orders[J].J.Comp.Physiol.,A.,2003,189(7):519-526
    135.KRIEGER J,RAMING K,DEWER Y M,et al..A divergent gene family encoding candidate olfactory receptors of the moth Heliothis vireseens[J].Eur.J.Neurosci.,2002,16(4):619-628
    136.KVELLO R ALMAAS T J,MUSTAPARTA H.A confined taste area in a lepidopteran brain[J].Arthropod Struct.Dev.,2006,35:35-45
    137.LAUDIEN H,IKEN H H.Ecological imprinting and protein biosynthesis-experiments with Drosophial melanogaster[J].Z Tierpsychol.,1977,44:113-129
    138.LAUE M.Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars[J].Arthropod Struct.Dev.,2000,29(1):57-73
    139.LEE H S,HIEU Y T,AHN Y J.Oviposition-stimulating activity of(E)-capsaicin identified in Capsicum annuum fruit and related compounds towards Helicoverpa assulta(Lepidoptera:Noctuidae)[J].Chemoecology,2006,16(3):153-157
    140.LI Y S,DICKENS J C,STEINER W M.Antennal olfactory responsiveness of Microplitis croceipes (Hymenoptera:Braconidae) to cotton plant volatiles[J].Journal of Chemical Ecology,1992,18(10):1761-1774
    141.LYTLE D A,POFF N L.Adaptation to natural flow regimes[J].Trends in Ecology and Evolution,2004,19(2):94-100
    142.LYTLE D A.Flash floods and aquatic insect life-history evolution:evaluation of multiple models[J].Ecology,2002,83(2):370-385
    143.MACARTHUR R H,WILSON E O.The theory of island biogeography[M].Princeton:Priceton University Press,1967
    144.MAIBECHE-COISNE M,MERLIN C,FRANCOIS M C,et al..Putative odorant-degrading esterase cDNA from the moth Mamestra brassicae:cloning and expression patterns in male and female antennae[J].Chem Senses,2004,29:381-390
    145.MAIBECHE-COISNE M,NIKONOV A A,ISHIDA Y,et al..Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme[J].Proc.Natl.Acad.Sci.USA,2004,101(31):11459-11464
    146.MAIDA R,MAMELI M,M(U|¨)LLER B,et al..The expression pattern of four odorant-binding proteins in male and female silk moths,Bombyx mori[J].J.Neurocytol.,2005,34:149-163
    147.MARION-POLL F,DESCOINS C.Taste detection of phytoecdysteroids in larvae of Bombyx moxi,Spodoptera littoralis and Ostrinia nubilalis[J].J.Insect Physiol.,2002,48:467-476
    148.MARTIN F,CHARRO M J,ALCORTA E.Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila[J].J.Comp.Physiol.A.,2001,187:359-370
    149.MCIVER S B.Sensilla mosquitoes(Diptera:Culicidae)[J].J.Med.Entomol.,1982,19(5):489-535
    150.MEIJERINK J,CARLSSON M A,HANSSON B S.Spatial representation of odorant structure in the moth antennal lobe:a study of structure response relationships at low doses[J].J.Comp.Neurol.,2003,467:11-21
    151.MERLIN C,FRANCOIS M C,BOZZOLAN F,et al..A new aldehyde oxidase selectively expressed in chemosensory organs of insects[J].Biochem.Biophys.Res.Commun.,2005,332:4-10
    152.MICHAUD J P,QURESHI J A,GRANT A K.Sunflowers as a trap crop for reducing soybean losses to the stalk borer Dectes texanus(Coleoptera:Cerambycidae)[J].Pest Management Science,2007, 63:903-909
    153.MILLER J C.Insect life history strategies:development and growth[J].Encyclopedia of Plant and Crop Science,2004:598-600
    154.MOMBAERTS P.Odorant receptor gene choice in olfactory sensory neurons:the one receptor-one heron hypothesis revisited[J].Current Opin.Neurobiol.,2004,14:1-6
    155.MORAN N A.The evolution of host-plant alternation in aphids:evidence for specialization as a dead end[J].Amer.Natur.,1988,132:681-706
    156.MORRIS B D,FOSTER S P,GRUGEL S,et al..Isolation of the diterpenoids,ent-kauran-16α-ol and nt-atisan-16α-ol,from sunflowers,as oviposition stimulants for the banded sunflower moth,Cochylis hospes[J].Journal of Chemical Ecology,2005,31:89-102
    157.MOZURAITIS R,STRANDEN M,RAMIREZ M I,et al..(-)-Germacrene D increases attraction and oviposition by the tobacco budworm moth Heliothis virescens[J].Chem.Senses,2002,27(6):505-509.
    158.MULLER C,RENWICK J A A.Different phagostimulants in potato foliage for Manduca sexta and Leptinotarsa decemlineata[J].Chemoecology,2001,11:37-41
    159.MURAI T,IMAI T,MAEKAWA M.Methyl anthranilate as an attractant for two thrips species and the thrips parasitoid Ceranisus menes[J].Journal of Chemical Ecology,2000,26:2557-2565
    160.NAKAYAMA T,HONDA K,OMURA H,et al..Oviposition stimulants for the tropical swallowtail butterfly,Papilio polytes,feeding on a rutaceous plant,Toddalia asiatica[J].Journal of Chemical Ecology,2003,29:1621-1634
    161.NATALE D,MATTIACCI L,HERN A,et al..Response of female Cydia molesta(Lepidoptera:Tortricidae) to plant derived volatiles[J].Bulletin of Entomological Research,2003,93:335-342
    162.NEWCOMB R D,SIREY T M,RASSAM M,et al..Pheromone binding proteins of Epiphyas postvittana(Lepidoptera:Tortricidae) are encoded at a single locus[J].Insect Biochem.Mol.Biol.,2002,32(11):543-1554
    163.ONO H,OZAKI K,YOSHIKAWA H.Identification of cytochrome P450 and glutathione-S-transferase genes preferentially expressed in chemosensory organs of the swallowtail butterfly,Papilio Xuthus L.[J].Insect Biechem.Mol.Biol.,2005,35(8):837-846
    164.ORTELLI F,LOUISE C R,VONTAS J,et al..Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide resistance locus,from the malaria vector Anopheles gambiae[J].Biochem.J.,2003,373:957-963
    165.PARR J C,THURSTEN R.Toxicity of tobacco nicotine in synthetic diets to larvae of the tobacco hornworm[J].Ann.Ent.Soc.Am.,1972,65:1185-1188
    166.PELLMYR O,KRENN H W.Origin of a complex key innovation in an obligate plant-insect mutualism[J].Proceedings of the National Academy of Sciences USA,2002,99:5498-5502
    167. PERCY D M, PAGE R D M, CRONK Q C B. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations [J]. Systematic Biology, 2004, 53(1): 120-127
    168. PIANKA E R. On r-and K- selection [J]. Amer. Natur., 1970, 102: 592-597
    169. PICHERSKY E, JONATHAN G. The formation and function of plant volatiles: perfumes for pollinator attraction and defense [J]. Cum Opin. Plant Biol, 2002, 5:237-243
    170. POLAND T M, GROOT P D, BURKE S, et al. Semiochemical disruption of the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae) [J]. Environmental Entomology, 2004, 33: 221-226
    171. POPHOF B. Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells [J]. Naturwissenschaften, 2002, 89: 515-518
    172. QIAO Q, LI H C, YUAN G H, et al. Gene cloning and expression analysis of G protein αq subunit from Helicoverpa assulta (Guenee) [J]. Agricultural sciences in China, 2008, 7(2): 187-192
    173. RANSON H, CLAUDIANOS C, ORTELLI F, et al. Evolution of supergene families associated with insecticide resistance [J]. Science, 2002, 298:179-181
    174. RAUSHER M D. The evolution of habitat preference: The evolution of avoidance and adaptation. In: Kim K C (ed.), Evolution of Insect Pests: the Pattern of Variations. New York: Wiley, 1990
    175. REISENMAN C E, CHRISTENSEN T A, FRANCKE W, et al. Enantioselectivity of projection neurons innervating identified olfactory glomeruli [J]. J. Neurosci., 2004,24(11): 2602-2611
    176. ROCK G C, KING K W. Qualitative amino acid requirements of the redbanded leafroller, Argyrotaenia velutinana [J].J. Insect Physiol, 1967, 13: 175-186
    177. ROGERS M E, KRIEGER J, VOGT R G. Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins [J]. J. Neurobiol., 2001, 49: 47-61
    178. ROGERS M E, SUN M, LERNER M R, et al. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins [J]. J. Biol. Chem., 1997,272: 14792-14799
    179. RUEBENAUER A. Olfactory coding-from molecule to the brain. Lund University. Department of Ecology. Chemical Ecology and Ecotoxicology. Pheromone Group [M]. Lund University: Introductory Paper, 2006
    180. RUTZLER M, ZWIEBEL L J. Molecular biology of insect olfaction: recent progress and conceptual models [J]. J. Comp. Physiol, A., 2005, 191(9): 777-790
    181. SACHSE S, RAPPERT A, GALIZIA C G. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code [J]. European Journal of Neuroscience, 2008, 11(11): 3970-3982
    182. SATO S, MAETO K. Attraction of female Japanese horntail Urocerus japonicas (Hymenoptera: Siricidae) to alpha-pinene[J].Applied Entomology and Zoology,2006,41:317-323
    183.SCHNEIDER D,HECKER E.Zur elektrophysiologie der antenna des seidenspinners Bombyx mmori Bei reizung mit angereicherten extrakten des sexuallockstoffes[J].Zeitschrift fur Naturforschung Part B-Chemie Biophysik Biologie und Verwandten Gebiete,1956,11:121-124
    184.SCHOONHOVEN L M,JERMY T,VAN LOON J J A.Insect-plant biology-from physiology to evolution,London:Chapman and Hall,1998
    185.SCHOONHOVEN L M,VAN LOON J J A,Dicke M.Insect-Plant Biology.2~(nd) edit.London:Oxford University Press,2005
    186.SCHOONHOVEN L M,VAN LOON J J A.An inventory of taste in caterpillars:each species its own key[J].Acta Zoologica A cademiae Scientiarum Hungaricae,2002,48(Suppl.1):215-263
    187.SCHOONHOVEN M,JERMY T,VAN LOON J A.Insect Plant Biology.London:Cambridge University Press,1988
    188.SELJASEN R,MEADOW R.Effects of neem on oviposition and egg and larval development of Mamestra brassicae L.:dose response,residual activity,repellent effect and systemic activity in cabbage plants[J].Crop Protection,2006,25:338-345
    189.SHEPHERD G M.Are there labeled lines in the olfactory pathway? In:Pfaff DW,Taste,Olfaction,and the Central Nervous System[M].New York:Rockefeller University Press,1985
    190.SIDERHURST M S,JANG E B.Female-biased attraction of oriental fruit fly,Bactrocera dorsalis (Hendel),to a blend of host fruit volatiles from Terminalia catappa L.[J].Journal of Chemical Ecology,2006,32:2513-2524
    191.SILBERING A F,GALIZIA C.Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions[J].J.Neurosci.,2007,27(44):11966-11977
    192.SILBERING A F,OKADA R,ITO K,et al..Olfactory information processing in the Drosophila antennal lobe:anything goes?[J].J.Neurosci.,2008,28(49):13075-13087
    193.SINGER M S,STIREMAN J O.Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar?[J].Oikos,2003,100:554-562.
    194.SINGH.Host-plant nutrition and composition:effects on agrieultural pests[J].Inform.Bull,1970,6:233-276
    195.SKIRl H T,GALIZIA C G,MUSTAPARTA.Representation of primary plant odorants in the antennal lobe of the moth Heliothis virescens using calcium imagin[J].Chem.Senses,2004,29:253-267
    196.SMITH D P.Odor and pheromone detection in Drosophila melanogaster[J].Pflugers.Arch.,2007,454(5):749-758
    197.SOUTHWOOD T R E.The insect/plant relationship:an evolutionary perspective.In:van Emden H F ed.Insect/Plant Relationships[M].London:Blackwell Scientific Publications,1973
    198.STEINBRECHT RA,LAUE M,ZIEGELBERGER G.Immunocytochemical of pheromone-binding protein and general odorant binding protein in olfactory sensillas of the silk moth Antheraea and Bombyx[J].Cell Tissue Res.2005,282:203-217
    199.STEINBRECHT R A,OZALI M,ZIEGELBERGER G.Immunocytochemical localization of pheromone- binding protein in moth antennae[J].Cell Tissue Res.1995,270:287-302
    200.STEINBRECHT R A.Zur morphometrie der antenne des seindenspinners,Bombyx mori L.zahl und verteilung der Riechsensillen(Insecta,Eepidoptera)[J].Z Morphol.Tiere.,1970,68:93-126
    201.SUTTON O G.Micrometeorology[M].New York:McGraw-Hill,1953
    202.TANG Q B,JIANG J W,YAN Y H,et al..Genetic analysis of larval host-plant preference in two sibling species of Helicoverpa[J].Entomologia Experimentalis et Applicata,2006 a,118:221-228
    203.TANG Q B,YAN Y H,ZHAO X C,et al..Testes and chromosomes in interspecific hybrids between Helicoverpa armigera(H(u|¨)bner) and Helieoverpa assulta(Guenee)[J].Chinese Science Bulletin,2005,50(12):1212-1217
    204.THOMPSON J N,CUNNINGHAM B M,SEGRAVES K A,et al..Plant polyploidy and insect/plant interaction[J].Amer.Natur.,1997,150:730-743
    205.TIJET N,HELVIG C,FEYEREISEN R.The cytochrome P450 gene superfamily in Drosophila melanogaster:annotation intron-exon organization and phylogeny[J].Gene,2001,262:189-198
    206.TILLMAN P G,MULLINIX J B G.Grain sorghum as a trap crop for corn earworm(Lepidoptera:Noctuidae) in cotton[J].Environmental Entomology,2004,33:1371-1380
    207.ULLAND S,IAN E,MOZURAITIS R,et al..Methyl salicylate,identified as primary odorant of a specific receptor neuron type,inhibits oviposition by the moth Mamestra brassicae L.(Lepidoptera,Noctuidae)[J].Chem.Senses,2008 a,33(1):35-46
    208.ULLAND S,IAN E,STRANDEN A K,et al..Plant volatiles activating specific olfactory receptor neurons of the cabbage moth Mamestra brassicae L.(Lepidoptera,Noctuidae)[J].Chem.Senses,2008 b,33(6):509-522
    209.VAN DER GOES,VAN NATERS W M,DEN OTTER OTTER CJ,et al..Olfactory sensitivity in tsetse flies:a daily rhythm[J].Chem.Senses.,1998,23(3):351-357
    210.VAN LENTEVEN J C J C,LUCAS P J J.Whitefly-plant relationship:Behavioral and ecological aspects.In:Gerling Ded.Whiteflies:Their Bionomics,Pest Status and Management.Intercept Andover[M],England:Hampshire,1990
    211.VAN LOON J A,WANG C Z,NIELSEN J K,et al..Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates:chemoreception and behavior[J].Entomol.Experi.Appl.,2002,104:27-34
    212.VOGT R G,CALLAHAN F E,ROGERS M E,et al..Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera) [J]. Chem. Senses, 1999, 24(5): 481-495
    213. VOGT R G, RIDDIFORD L M. Pheromone binding and inactivation by moth antennae [J]. Nature, 1981,293: 161-163
    214. VOGT R G. Molecular basis of pheromone detection in insects [J]. Comprehensive Physiology, Biochemistry, Pharmacology and Molecular Biology, 2005, 3:753-804
    215. WALDBAUER G P. The consumption and utilization of food by insects [J]. Advan. Insect Physiol., 1968,5:229-288
    216. WANG C Z. Interpretation of the biological species concept from interspecific hybridization of two Helicoverpa species [J]. Chinese Science Bulletin, 2007, 52(2): 284-286
    217. WANG G R, GUO Y Y, WU K M. Cloning of cDNA fragment of an antennal-specific gene in Helicoverpa armigera [J]. J. Agric. Biotechnol., 2003 a, 11:49-54
    218. WANG G R, GUO Y Y, WU K M. Partial cloning and characterization of the cDNA of general odorant binding protein 1 gene in the antenna of Helicoverpa armigera (Hubner) [J]. Acta Entomologica Sinica, 2001, 8(4): 289-297
    219. WANG G R,WU K M,GUO Y Y. Cloning,expression and immunocytochemical localization of a general odorant-binding protein from Helicoverpa armigera (Hubner) [J]. Insect Biology. Mol. Bioi, 2003 b, 33:115-124
    220. WANG Q, HASAN G, PIKIELNY C. Preferential expression of biotransformation en2ymes in the olfactory organs of Drosophila melanogaster, the antennae [J]. J. Biol. Chem., 1999, 274: 10309-10315
    221. WEST S A, CUNNINGHAM J P. A general model for host plant selection in phytophagous insects [J]. J. Theor. Biol., 2002, 214(3): 499-513
    222. WILLAMS K S. The coevolution of Euphydryas chlcedona butterflies and their larvae host plants: Oviposition behavior and host plant quality [J]. Oecologia, 1983, 56: 336-340
    223. WIKLUND C. Generalist vs. specialist oviposition behavior in Papilio machaon and functional aspects on the hierarchy of oviposition preferences [J]. Oikos., 1981, 36: 163-170
    224. WU K M, LU Y H, FENG H Q, et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton [J]. Science, 2008, 321(19): 1676-1677
    225. XU P X, ATKINSON R, JONES D N, et al.. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons [J]. Neuron, 2005, 45(2): 179-181, 193-200
    226. XU P X. A Drosophila OBP required for pheromone signaling [J]. Science, 2005(310): 798-799
    227. YAMAMOTO R J. Induction of host plant specificity in the tobacco hornworm, Manduca sexta [J]. J. Insect Physiol., 1974, 20: 641-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700