苕溪流域农村生活垃圾产源特征及堆肥化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文调查了苕溪流域临安市横畈镇、太湖源镇和余杭区径山镇农村生活垃圾特性以及当地农村的社会经济特征和环境意识,以此为基础,构建适合苕溪农村的生活垃圾综合管理模式,同时研制了微生物复合菌剂,并对接种微生物复合菌剂强化易腐垃圾堆肥化技术进行了研究,为农村生活垃圾的处理处置技术提供新的思路。研究结果如下:
     1、研究区域农村人均生活垃圾产生量约0.7 kg/(人·d),组成分率最大的垃圾组分为易腐垃圾,含量为48.5~66.0%。根据农村生活垃圾的这种产生特征,易选用堆肥技术对其进行处理。社会经济特征调查结果表明,非务农比例较大,人均收入较高,液化气比重大,家庭禽畜养殖以养鸡为主,研究区域农村生活垃圾人均产生量将会继续增多。村民已经认识到农村生活垃圾的危害,并愿意为垃圾处理支付费用,但村民对垃圾分类收集认知较少,文化程度和年龄对垃圾分类收集认知程度的影响明显,性别对垃圾分类收集认知程度的影响不明显,现阶段在农村推行垃圾分类收集之前,要注重村民素质的提高,加强分类收集知识的普及。依据研究区域农村生活垃圾的产生特征及农村生活垃圾消纳的载体条件,构建出由粗分类投放、源头分拣和垃圾分流三部分构成的垃圾综合管理模式。
     2、易腐垃圾一次发酵段的研究结果表明,各生物质的降解率不同,它们的降解顺序为:脂肪>总糖>半纤维素>蛋白质>纤维素>木质素。易降解组分脂肪、总糖、半纤维素和蛋白质的降解率分别为73.24%、54.76%、17.18%、16.72%,基本完成了降解过程;难降解组分纤维素和木质素的降解率分别仅为12.32%和10.49%,难降解组分主要在二次发酵段降解。微生物呈现不同的生物相演变,细菌数量呈现先升后降的趋势,真菌数量基本保持不变,放线菌数量在高温的影响下出现了两个峰值。温度对不同类别的生物质降解的影响不同,对于易降解的脂肪、总糖、半纤维素在高温65℃前后降解速率明显加快,而纤维素、木质素在高温65℃前后降解速率也不断地增加,但是增加的速率不大。
     3、从二次发酵高温期提取优势菌群,并制得复合菌剂,在二次发酵初期接种该复合菌剂堆肥化的研究结果表明,接种使得二次发酵高温期提前了12 h,高温持续时间延长了24 h。接种强化处理的C/N由最初的22.4降低到18.1进入腐熟期需要17 d,未接种处理需要24 d,接种处理使二次发酵进入腐熟期提前7 d。细菌、真菌和放线菌的数量均高于未接种处理,纤维素和木质素的降解率也均高于未接种处理的堆体。施肥蒜苗与未施肥相比,株高相差8 cm,叶片数多1.5片,亚硝酸盐含量低于国家标准,腐熟堆肥可安全施用。
Characteristics of rural refuse, social, economic and environmental awareness of villages of Taihu yuan town, Hengfan town of Lin'an city and Jingshan town in Yuhang district in the Tiaoxi River Basins were investigated in this paper. On this basis, build compound management pattern for rural refuse of Tiaoxi River Basins. Also a complex microbial compound agent was developed, and then it was inoculated to enhance domestic refuse composting process. A new way was provided to disposal the rural refuse. The main conclusions of the work were listed in following sections.
     1. The study on the area showed that rural refuse the generation rate in the investigating area was 0.5~0.7 kg per capita per day. The section of domestic refuse was most, which was 48.5~66.0%. The survey of Characteristics of social and economic showed that a larger proportion of non-farm, per capita income higher, large proportion of liquefied gas, and culture dominated by chicken in household. Rural refuse of study area per capita output would continue to increase. Although villagers had realized the dangers of rural refuse and were willing to pay for rural rufuse disposal, rufuse classification and collection was strange for villagers. The significant effected of rufuse classification and collection by Education level and age of villagers, but gender had no significant effected. At this stage, before the implementation of rufuse classification and collection in rural areas, improved the qualifications of villagers, and strengthen knowledge universal of rufuse classification and collection. Based on the the generation characteristics of rural refuse in rural areas and conditions of elimination, constructed a reasonable management pattern, which was composed of rough classification, sort in source and refuse diversion.
     2. The results perishable refuses in the first fermentation of composting showed that the degradation rate of biomass was different: fat > total > sugar > hemicellulose > protein > cellulose > lignin. Easily degradable components of fat, total sugar, hemicellulose and protein degradation rates were 73.24%, 54.76%, 17.18%, 16.72%; degradation rates of cellulose and lignin were only 12.32% and 10.49%, which were degradated in the secondary fermentation. Microorganisms show different biological phase evolution: the number of bacteria up and then decreased, the number of fungi remained unchanged; the number of actinomycetes had two peaks under the influence of high temperature.Temperature on the different types of biomass degradation; the degradation of fat, total sugar, hemicellulose at high temperature around 65℃which rate speed up significantly. But the rate of cellulose and lignin were insignificantly.
     3. Extracted from the advantages of high temperature period of secondary fermentation process and got the complex microbial agent, and complex microbial agent was inoculated at the secondary fermentation of the initial. The conclution showed that inoculated treatment got ahead of the second fermentation temperature 12 h, and the temperature was extended by 24 h than non-inoculated treatment. Inoculation enhanced composting processing, C / N decreased from 22.4 to 18.1, enter mature need 17 d, got ahead of 7 d than non-inoculated treatment; The number of microorganisms was higher than non-inoculated treatmeat; degradation rates of cellulose and lignin were higher than non-inoculated treatment in the pile. Garlic was fertilized higher about 8 cm than no-fertilized and the number of leaves more than 1.5.
引文
[1]乐小芳.我国农村生活方式对农村环境的影响分析[J].农业环境与发展, 2004, (4):42-45
    [2]王俊起,王友斌,李筱翠,等.乡镇生活垃圾与生活污水排放及处理现状[J].中国卫生工程学, 2004, 3(4):202-205
    [3]陈文胜,王文强.农村生活垃圾的环境污染问题与对策-对湘南某镇的个案考察[J].湖南社会科学, 2007, (4):122-125
    [4]潘美媛.杭州市余杭区农村面源污染状况与治理对策[J].能源工程, 2003, (1):43-45
    [5] Scheren P.A., Ibe A.C., Janssen F.J., et al. Environmental pollution in the Gulf of Guinea-a regional approach[J]. Marine Pollution Bulletion, 2002, 44(7):633-641
    [6]周燕芳,熊惠波,张阳.农村生活垃圾问题及治理对策分析-以北京市玻璃台新村为例[J].安徽农业科学, 2009, 37(1):355-356
    [7] Palamuleni L.G. Effect of sanitation facilities, domestic solid waste disposal and hygiene practices on water quality in Malawis urban poor areas: a case study of Sourth Lunzu Township in the city of Blatyre[J]. Physics and Chemistry of the Earth, 2002, 27(11-22):845-850
    [8] Ray M.R., Roychoudhury S., Mukherjee G., et al. Respiratory and general health impairments of workers employed in a municipal solid waste dispossl at an open landfill site in Delji[J]. International Journal Hygiene and Enviromental Health, 2005, 208(4):255-262
    [9] Mato A.M. Environmental impliccations involving the establishment of sanitary landfills in five municioalities in Tanzania:the case of Tanga municioality[J]. Resorces, Conservation and Recycling, 1992, 25(1):1-16
    [10]宋谦,王凤仙.农业环境研究[M].中国农业出版社, 1993
    [11]梁美英,邵海林,王建程,等.城市生活垃圾对草坪种子发芽及生长的影响[J].山西农业科学, 2008, 36(5):39-41
    [12]刘贤词,邢巧,王晓辉.海南省农村面源污染现状及防治对策[J].中国水土保持, 2009, (3):19-20
    [13] Mwiganga M., Kansiime F. The impact of Mpererwe landfill in Kampala-Uganda, on the surrounding environment[J]. Physics and Chemistry of the Earth, 2005, 30(11-16):744-750
    [14]李悦.沈阳市典型农村生活垃圾状况调查及污染防治研究[J].安徽农业科学, 2007, 35(12):3646-3647
    [15]武攀峰,崔春红,周立详,等.农村经济相对发达地区生活垃圾的产生特征与管理模式初探-以太湖地区农村为例[J].农业环境科学学报, 2006, 25(1):237-243
    [16]乔启成,顾卫兵,花海蓉,等.南通市农村生活垃圾现状调查与处理模式研究[J].江苏农业科学, 2008, (3):283-286
    [17]李娜,丛日凤.浅析宁安市农村生活垃圾污染现状与防治对策[J].环境科学与管理, 2009, 34(7):10-13
    [18] Sundaravadivel M., Vigneswaran S., Doeleman J.A. Waste management in semi-urban areas of India: appropriate technological strategies to overcome financial barriers[J]. Environmental Engineering and policy, 2000, 2(2):91-104
    [19]王培英.从居民生活视角谈太湖环境保护与治理-太湖与琵琶湖的比较分析[J].湖泊科学, 2002, 14(1):39-45
    [20] Subhasish C., Amit D., Subhabrata R. Municipal solid waste management in Kolkata, India– A review[J]. Waste Management, 2009, 29(4):1449-1458
    [21] Adesh K., Sunita G., Lata N. Evaluation of thermophilic fungal consortium for paddy straw xomposting[J]. Biodegradation, 2008, 19:395-402
    [22] Brian P.M. The second green revolution production of plant-based biodegradable plastics[J]. Biochemical Journal, 2009, 418:219-232
    [23]张凯,李多松,蒋滔.城市生活垃圾渗滤液处理方案及工艺分析[J].环境科技, 2007, 13(4):43-47
    [24] Hossain M.S., Haque M.A. Stability analyses of municipal solid waste landfills with decomposition[J]. Geotechnical and Geological Engineering, 2009, 27(6):659-666
    [25]王如意,何品晶,邵立明,等.渗滤液灌溉对香根草胁迫及抗氧化系统的影响[J].中国环境科学, 2005, 25(2):155-159
    [26]张晓星,何品晶,邵立明,等.渗滤液循环对填埋气体产生量影响的实验研究[J].环境科学学报, 2005, 25(2):264-268
    [27] Kim K.H., Choi Y.J., Oh S.I., et al. Short-term distributions of reduced sulfur compounds in the ambient air surrounding a Large Landfill facility[J]. Environmental Monitoring and Assessment, 2006, 121(1):341-352
    [28] Vladimir F., Dmitri D., Gady L., et al. Geophysical-geochemical investigation of fire-prone landfills[J]. Environmental Earth Sciences, 2010, 60(4): 787-798
    [29] Baun D.L, Christensen T H. Speciation of heavy metals in landfill leachate: a review[J]. Waste Management and Research, 2004, 22(1):3-23
    [30] Wesley B.L., Jimmie B.L. James S.D. Direct penetration technology for geotechnical and environmental site characterization[J]. Geotechnical Special Publication, 1995, 46(1):105-122
    [31]皱庐泉,何品晶,邵立明,等.垃圾填埋初期渗滤液循环对其产生量的影响[J].上海交通大学学报, 2003, 37(11):1784-1787
    [32]时璟丽,张成.垃圾焚烧发电技术在我国的应用及发展研究趋势[J].可再生能源, 2005, (2):63-66
    [33] Donald L.B., Norman L.J.P., Michael R.J.D. Design of small coal and waste co-fired AFBC for rural villages[A]. Ameican Society of Mechanical Engineers, Advanced Energy Systems Division(Publication) AES(C). New York: ASME, 1995-1169
    [34]张小琴.新农村建设必须重视污染防治问题[J],现代农业科技, 2007, (22):209-210
    [35] Lastella G. Testa C., Cornacchia G., et al. Anaerobic digestion of semi-solid orfanic waste: biogas production and its purification[J]Energy Conversion and Management, 2002, 43(1):63-75
    [36] Gowda M.C. Rural waste management in a south Idian village-a case study[J]. Bioresource Technology, 1995, 53(2):157-164
    [37] Badawi M.A., Blanc F.C., Wise D.L., et al. Anaerobic treatment with methane recovery of agricultural and village wastes[J]. Resource, Conservation and recycling, 1992, 7(4):305-323
    [38] Iglesias J.R, Castrillion L., Maranon E., et al. Solid-state anaerobic difestion of unsorted municipal solid waste in a polot-plant scale digester[J]. Bioresource Technology, 1998, 63(1):29-35
    [39] Dimporzano G., Dani F. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting[J]. Biodegradation, 2007, 18:103-113.
    [40] Takeshi Y., Astushi S., Hideyo U. et al. Successions of bacerial community in composting cow dung wastes with or without hyperthermophilic pre-treatment[J]. Applied Micobiol Biotechnol, 2008, 81:771-781
    [41] Luz r., Teresa g., Adriana A., et al. Influence of different co-substrates biochemical compositon on raw sludge co-composting[J]. Biodegradation, 2008, 19:403-415
    [42] Keiko W., Norio N., Tatsuki T., et al. Changes in bacterial communities accompanied by aggregation in a red-batch composting raector[J]. Currrent Microbiol, 2008, 56:458-467
    [43]李海莹.北京市农村生活垃圾特点及开展垃圾分类的建议[J].环境卫生工程, 2008, 16(2):35-37
    [44] Nevens F., Feheul D. The application of vegetable, fruit and garden waste(VFC) compost in addition to cattle slurry in a silage maize monoculture: nitrogen availability and use[J]. European Joural of Agronomy, 2003, 19(2):189-203
    [45] Akanbi W.B., Togun A.O. The influence of maize-stover compost and nitrogen fertilizer on growth, yield and nutrient uptake of amaranth[J]. Scientia Horticulturae, 2002, 93(1):1-8
    [46]李国学,张福锁.固体废物堆肥化与有机复合混肥生产[M].北京:化学工业出版社, 2000
    [47] Vasudevan P., Arya R.S. Composting of solid wastes for villages for disposal and fertilizer production[A]. Symposium Papers-Energy from Biomass and Wastes[C]. Chicago:Publ by Inst of Gas Technology, 1990. 1363-1386
    [48] Suzuki S. Rural refuse composting plant[J]. Journal of Irrigation Engineering and Rural Planting, 1984, (5):48-56
    [49]石春芝,蒲一涛,郑宗坤,等.垃圾堆肥接种固氮菌对堆肥含氮量的影响[J].应用与环境生物学报, 2002, 8(4): 419-421
    [50]胡菊,秦莉,吕振宇,等. VT菌剂接种堆肥的作用效果及生物效应[J].农业环境科学学报, 2006, 25:604-608
    [51]王光玉,陈雷,宣世伟,等.生活垃圾好氧堆肥微生物接种的初步研究[J].环境科学与技术, 2005, 28(2):20-21
    [52]席北斗,孟伟,刘鸿亮,等.三阶段控温堆肥过程中接种复合微生物菌群的变化规律研究[J].环境科学, 2003, 24(2):152-155
    [53]何志刚,孙军德.复合微生物菌剂在牛粪堆肥中的试验研究[J].安徽农业科学, 2007, 35(16):4922-4933
    [54]张陇利,刘青,徐智,等.复合微生物菌剂对污泥堆肥的作用效果研究[J].环境工程学报, 2008, 2(2):266-269
    [55] Tello R., Munden R.F. Hooton S., et al. Calculating transport labour for organic waste from urban to rural areas[J]. Reasource, Conversation and Recycling, 1998, 24(3):335-348
    [56]吕凡,何品晶,邵立明,等.餐厨垃圾高温好氧生物消化工艺控制条件的优化[J].同济大学学报, 2003, 31(2):233-238
    [57]孙振钧.两项蚯蚓研究新成果:蚯蚓抗菌肽的研究和蚯蚓生物反应器的研制[J].中国农业大学学报, 2005, 10(5):20
    [58] Woestwin C. Ten years of home composting[J]. BioCycle, 1996, 37(2):36-38
    [59]霍维周,丁雪梅.蚯蚓处理垃圾及产业化问题的探讨[J].城市管理与科技, 2002, (1):16-18
    [60]王丹丹,李辉信,胡锋,等.蚯蚓处理城市生活垃圾的现状与趋势[J].江苏农业科学, 2005, (4):4-8
    [61]王萍译.利用蚯蚓处理生垃圾的生态系统[J].国外科技动态, 1997, 337(8):44
    [62]陈荣,单胜道,吴亚琪.浙江省农村生活垃圾区域特征及循环利用对策[J].浙江林学院学报, 2008, 25(5):644-649
    [63] Dennison G.J., Dodd V.A., Whelan B. A socio-economic based survey of household waste characteristics in the city of Dublin, Ireland.I. Waste composition[J]. Resources, Conversition and Recycling, 1996, 17(3):227-244
    [64] Karavezyris V., Timpe K.P., Marzi R. Application of system dynamics and fuzzy logic to forecasting of municipal solid waste[J]. Mathematics and Computers in Simulation, 2002, 60(3-5):149-158
    [65] Rotter V.S., Kost T., Winkler J., et al. Material flow analysis of RDF-production processes[J]. Waste Management, 2004, 24(10):1005-1021
    [66]中华人民共和国城镇建设行业标准.城市生活垃圾pH的测定玻璃电极法[S]. CJ/T 99-1999
    [67]中华人民共和国城镇建设行业标准.城市生活垃圾有机质的测定灼烧法[S]. CJ/T 96-1999
    [68]中华人民共和国城镇建设行业标准.城市生活垃圾全氮的测定半微量开氏法[S]. CJ/T 103-1999
    [69]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002
    [70]薛惠琴,杭怡琼,陈谊.稻草秸秆中木质素、纤维素测定方法的研讨[J].上海畜牧兽医通讯, 2001, 2:15
    [71]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业, 2005(8):40-41.
    [72]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[M].北京:科学出版社, 2006, 103-108.
    [73] Sjostrom E. Wood Chemistry, Fundamentals and Applications, 2nd[M]. New York/London: Academic Press, 1993
    [74]林加涵,魏文铃,彭宣宪.现代生物学实验[M].北京:高等教育出版社, 2001
    [75]国家环保总局.食品中脂肪的测定[S]. GB/T 5009-2003
    [76]大连轻工业学院.食品分析[M].北京:中国轻工业出版社, 1994
    [77]李承强,魏源送,樊耀波.不同填充料污泥好氧堆肥的性质变化及腐熟度[J].环境科学, 2001, 22(3): 60~65
    [78] Beffa T, BlaneM, Lyon P.F., et al. Isolation of thermus strains from hot composts 60~80℃[J]. Applied and Environmental Microbiology, 1996, 62:1723~1727
    [79]黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究[J].环境污染治理技术与设备, 2004, 5(l):12-18
    [80] Kaiser J. Modelling composting as a microbial ecosystem: a simulation approach[J]. Ecological Modelling, 1996, 91(1) :25-37
    [81]陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社, 1990
    [82] Pelaez C., Mejia A., Planas A. Development of a solid phase kinetic assay for determination of enzyme activities during composting[J]. Process Biochemistry, 2004, 39(8):971-975
    [83]王伟东,王小芬,刘建斌,等.供氧方式及供氧量对堆肥发酵进程的影响[J].环境科学, 2006, 27(3):594-598
    [84] Singh A., Sharma S. Effect of microbial inocula on solid waste composting, vermicomposting and plant response [J]. Compost Science and Utilization, 2003, 11(3): 190-199.
    [85] Tiquia S.M., Wan J.H.C., Tam N.F.Y. Microbial population dynamics and enzyme activities during composting[J]. Compost Science and Utilization, 2002, 10(2): 150-161.
    [86]李元芳.固氮菌类肥料的特点及有效使用条件[J].土壤肥料, 1994, (1):40-42
    [87] Golueke C.G. Principles of biological resource recove[J]. Biocyele, 1981, 22:36-40
    [88] Abdennaceur H., Kaouala B., Naceur J. Microbial characterizion during composting of municipal solid waste[J]. Bioresoure Technology, 2001, 80:217-225
    [89]中华人民共和国.农产品质量无公害蔬菜安全要求[S]. GB18406.1-2001, 2001, 4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700