辽宁红沿河核电厂一期工程核岛泵房基坑稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文采用的是“边坡稳定过程模拟与过程控制”的研究思路,对辽宁红沿河核电厂核岛区边坡进行工程地质研究,通过现场调查、测试实验以及模拟研究和分析,对边坡的各种力学参数及取值,预测方法及其适宜性进行深入系统的分析。研究表明传统的方法并不完全适宜该边坡安全预测,因此本文非线性边坡预测模型为主的评价体系进行了探索。论文提出采用赤平投影、极限平衡、非线性有限元等方法进行分析模拟、BP神经网络进行安全预测方法。以辽宁红沿河核电厂核岛边坡为研究对象,在Matlab7.3平台上实现BP神经网络的边坡稳定预测。预测结果表明基于有限元和神经网络的边坡稳定预测具有较好的客观性。研究成果可为边坡失稳工程设计提供科学依据,并体现了论文选题具有科学意义,具有应用和推广的价值。
Together with the development of engineering projects and the deepening in the slope problems research, more and more attention has been drawn to the research of transformation stability of slope rocks. Traditional appraisal and control of slope and relative geological disasters such as collapse and slide are based on intensity stability theory and statics-based criterion design. The guiding principles have some obvious disadvantages. First of all, the basic starting point is the extreme balance theory which deals with the simple destructive pattern of even medium. It is far from the truth in most rocksoil structure and structure control. Secondly, the key of design—rocksoil pressure should be the result of the reciprocity of rocksoil transformation and supporting structure. While in the traditional way, a destructive surface is assumed, then stability coefficient can be calculated in the extreme balance way. In order to overcome the above-mentioned disadvantages, the construction of a new engineering theory, which is based on the limited and nerve fiber network, about geological disasters control has become a necessity. Against this background, in this paper,“simulation and control of slope stability process”is used to carry out an engineering geological research of the slopes of the nuclear island district of the Hong Yan He Nuclear Power Plant in Liaoning Province. Massive on-the-spot investigation, testing experiments and simulative research and analysis lead to the following major results.
     1. Through analysis of the attainable information and on-the-spot investigation, engineering surroundings and geological conditions are revealed. What’s more, stability appraisal and research are conducted on the slopes of the nuclear island by way of bare even projection and extreme balance methods.
     2. The method based on limited and nerve fiber network is put forward to carry out the research of slope problems. And reasonable and objective research results have been obtained.
     3. The slope stability conclusion has been drawn.
     (1) The west slope is generally considered as unsatisfactory in stability. Seen on the bare even projection chart of the structural surface, the unstable cuniform sliding objects on the west slope have obliquities less than 50o. The calculation results are analyzed by extreme balance method, and the following conclusion can be reached: for the seriously airslaked rocks, when the slope rate is 1:1.5, the stability coefficient for engineering condition two seriously airslaked granite is 1.346, whilst the stability coefficient for engineering condition two seriously airslaked gneiss is 1.284. These make the temporary slope in a state of stability.
     (2) The south slope is not stable.
     The above part of the south slope is seriously airslaked granite which is 6.00m~14.20m in thickness. The other parts are mainly moderately airslaked granite and gneiss. Based on the bare even projection of the south slope, the structural surface combination that most likely causes trouble is the cuniform sliding object combined by advantage section group J1 and J3, with a leaning angle of 25o. The digging experience of nuclear island tells us that in the south slope, section group of directing NEE with leaning NW, or directing NW with leaning VE, may cause cuniform sliding object. Sliding and collapsing of different scales may arise as the result of the digging of the slope. Generally speaking, the south slope is not stable. It is strongly recommended that reinforcement measures are taken to guarantee the stability.
     (3) The east slope is not stable.
     In the east slope, the rock above the base is mainly moderately airslaked granite. Based on the bare even projection of the east slope, the advantage structural surface combination that most likely causes trouble is the cuniform sliding object combined by advantage section group J1 and J3, and J4 and J5, with leaning angles of 25o and 18o respectively. The engineering geological testing information of the slope part reveals that in the pump room part exist several section crannies which are not good for the stability of the east slope (315°∠63°、260°∠60°). These sections are massive in size and combined together they may cause various scales of sliding and collapsing. Therefore, the general appraisal of the east slope is unstability. Engineering reinforcement measures are recommended.
     (4) The stability of the north slope is really bad.
     The rock above the base in the north slope is mainly composed of seriously airslaked gneiss. In the 45m long slope, the middle part is moderately airslaked granite, 5.0m~12.0m in thickness, whilst the above and the base are seriously airslaked gneiss. The north slope has the worst geological condition among all the four slopes surrounding the pump room foundation. The geological conditions are complicated. The above base seriously airslaked blackcloud gneiss has loose structure with split core or even soil core. It is easily collapsed or dissolved when meeting water, and it may appear a loose sand or mud condition when agitated mechanically. When the digging of the foundation begins, under the influence of mechanical agitation, underground water, and surface water, the seriously airslaked gneiss is very likely to slide and collapse. Based on the bare even projection of the north slope, the stability angle of the north slope is less than 45o. Since seriously airslaked rocks are revealed in the north slope, the stability slope rate should be recalculated by the extreme balance method. The analysis shows us when 3-meter steps are reserved at the top of temporary slope as well as the 12m permanent slope foot, the stability coefficient for engineering condition two seriously airslaked gneiss is 0.986. Considering the 12m permanent slope can not be destroyed when the foundation is dug, supporting measures should be used to protect the slope when digging.
     4. In this paper, a non-linear prediction model based on plane limited and three-dimensional BP nerve fiber network is put forward for the first time. It promises a new way to predict the slope stability by way of non-linear methods. It can solve practical problems by providing scientific evidence for the slope unstability research and slope security. The significance of the choice of this subject lies in its practicality and innovation.
     5.In this paper, BP artificial nerve fiber network is applied in the predictive research of the stability condition of the four slopes of nuclear island. The construction of the network is based on the Matlab 7.3. In the nerve fiber network prediction model set up in the paper, the section of input layer, hidden layer, and output layer can all be chosen randomly, it also makes use of multiple ways of calculation about the training function, passing function, value function, valve matrix, etc.
     6. If the limited simulation results are in accordance with the BP nerve fiber network based slope unstability prediction research results, they guarantee more liability and objectivity. Nerve fiber network based slope stability prediction can solve practical constructional problems, that’s why it possesses the value to be applied and promoted.
     7.When studying similar slope stability problems, non-linear theory methods can be used with reference to the non-linear appraisal and prediction system put forward in this paper. This, together with slope extreme balance theory calculation methods and three-dimensional digital simulation methods, provide more information for the slope stability conditions.
     8.The stability of slopes are influenced by numerous factors, that is why it is a global problem, just like the prediction and forecast of earthquake and sliding. In the future, deeper research should by conducted about the factors affecting slope stability and their destroying patterns, so that a better precaution model can be set up about slope security.
     9.In the design of slope projects, methods and economic benefits should be both taken into consideration. At the same time, precautions should be taken. The predicting research results about slope stability, which is drawn in this paper, can provide scientific references for the slope engineering design of the nuclear island in Hong Yan He.
     10.The geology should be given enough attention during the construction process. The concrete geological structure changes in slopes must be observed, especially in the part where seriously airslaked gneiss is abundant. Special treatment measures should be used when meeting with splitting parts which may affect the stability of the slopes. If necessary, manual dynamic design and construction of slopes can be performed.
     11.The intensity of seriously airslaked gneiss will drop dramatically when frozen and melted repeatedly in winter, which may affect the stability of slopes a lot. For this reason, the engineering units should carefully arrange the time of construction in case the temporary slopes are destroyed by freezing and melting.
引文
[1]. 2007 年中国核电行业分析及投资咨询报告.
    [2]. 刘红丹.火电与核电的厂址选择及差异性分析[J ].应用能源技术,2007(7).
    [3]. 核电厂厂址选择基本程序 EJPT 1127 - 2001.
    [4]. 何德炜. 秦山核电厂结构抗震研究. 核工业中的地震科技研究[C] . 北京:地震出版社. 1992 , 54 - 56.
    [5]. 刘玉刚,代丽思,钱瑞华,等. 长治水泥厂区域地震地质环境评价[J ] . 工程地质学报. 1998 , 6(1) :75 - 78.
    [6]. 周念清,朱学愚,唐和平等. 秦山三期核电工程场地岩石力学性质与差异性沉降分析[J ] . 岩石力学与工程学报. 2002 ,21 (10) :1533 -1536. (即将出版) .
    [7]. 古迅. 秦山核电二期工程地基动态参数测试与地基动态模型[J ] . 岩石力学与工程学报. 1992 , 11(2) : 140 - 149.
    [8]. 张倬元,王兰生,王士天.工程地质分析原理(第二版).北京:地质出版社,1994
    [9]. [9]S.K.Sarma.Stability Analysis of Embarkments And Slopes.Journal of The GeotechnicalEngineering Division,1979
    [10]. 齐更生,彭少民.国内外滑坡防治与研究现状综述.地质勘探安全,2000(3):16-19
    [11]. 钟立勋 . 意 大利瓦依 昂水库滑 坡事件的 启示 . 中国 地质灾害 与防治学报,1994,5(2):77-84
    [12]. 张倬元. 岩体经验强度准则及其在地质工程中的应用 [M].北京:地质出版社,1994
    [13]. 孙玉科,李建国.岩质边坡稳定性的工程地质研究.地质科学,1965,(4)
    [14]. 谷德振等.岩体工程地质力学基础.北京:科学出版社,1979
    [15]. 孙玉科,古迅.赤平极射投影在岩体工程地质力学中的应用.北京:科学出版社,1980
    [16]. 王思敬.赤平极射投影方法及其在岩体工程中的应用.岩体工程地质力学问题(一).北京:科学出版社,1976
    [17]. 黄昌乾,丁恩保.边坡工程常用稳定性分析方法.水电站设计,1999,15(1):53~58
    [18]. 王 泳 嘉 , 冯 夏 庭 . 关 于 计 算 岩 石 力 学 发 展 的 几 点 思 考 . 岩 土 工 程 学报.1996,18(4):103~104
    [19]. 崔政权,李宁.边坡工程――理论与实践最新发展[M],中国水利水电出版社,1999
    [20]. 孙玉科,姚宝魁,许兵.矿山边坡稳定怀研究的回顾与展望.工程地质学报,1998,6(4)
    [21]. R. E. Goodman. Methods of Geological Engineering in Discontinuous Rock. West Publishing Company,1976
    [22]. 殷坤龙,韩再生,李志中.国际滑坡研究的新进展.水文地质工程地质.2000,(5):1-4
    [23]. 夏元友,朱瑞赓,李新平.边坡稳定性研究的综述与展望.金属矿山,1995(12):9-12
    [24]. 胡柳青 , 李夕兵 , 温世游 . 边坡稳定性研究及其发展趋势 . 矿业研究与开发,2000,20(5):7-9
    [25]. 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980
    [26]. 祝玉学,沈大用.可靠性指标法在双滑面破坏模式分析中的应用.矿山技术.1989,(3):1-4
    [27]. 鲁兆明 , 祝玉学 . 边坡工程可靠性评价方法及运用 . 有色金属:矿山部分.1989,(3):12-17
    [28]. 祝玉学. 岩石工程系统理论与应用, 金属矿山 2000,(9)
    [29]. 祝玉学.边坡工程的可靠性分析.矿山技术,1991(1):71-76
    [30]. 罗文强,晏同珍.斜坡稳定系数的概率分析.地球科学:中国地质大学学报.1996,21(6):653-655
    [31]. 彭德红.浅谈边坡稳定性分析方法.上海地质.2005,(3):44-47
    [32]. 吴 刚 , 夏 艳 华 , 陈 静 曦 等 . 可 行 性 理 论 在 边 坡 反 分 析 中 的 运 用 . 岩 土 力学.2003,24(5):809-812
    [33]. 谢贤平,李芳成.灰色聚类法在边坡稳定性评价中的应用.1990,(3):58-61
    [34]. Feng X.,Wang Y.Yao J.A neural network model for real-time roof pressure prediction in coalmines[J].Int.J.Rock Mech.Min.Sci.&Geomech.Abstr.1996,33(6):647-653
    [35]. 谢和平 , 陈至达 . 岩石类材料裂纹分叉非则性几何的分形效应 . 力学学报.1989,21(5):613-617
    [36]. 邓跃进,王葆元,张正禄.边坡变形分析与预报的模糊人工神经网络方法.武汉测绘科技大学学报.1998,23(1):26-31
    [37]. 黄润秋,许强.突变理论在工程地质中的应用.工程地质学报.1993,1(1):65-73
    [38]. 秦四清.非线性工程地质学导引[M].成都:西南交通大学出版社,1993
    [39]. 王兰生,李天斌.浅生时效变形结构.地质灾害与环境保护.1991,2(1):1-15
    [40]. V.Ferrara,G.Pappalardo,Kinematic analysis of rock fall in an urban area: the case of Castelmola hill near Taormina(Sicily,Italy)[J],Geomorphology,2005,66,373-383
    [41]. W.S.Yoon,U.J.Jeong,J.H.Kim,Kinematic analysis for sliding failure of multi-faced rock slopes[J],Engineering Geology,2002,67,51-61
    [42]. 杜景灿,陈祖煜、弥宏亮等,三维条件下应用遗传算法与 MonteCarlo 法确定节理岩栓的综合抗剪强度,岩石力学与工程学报,2004,23(13),P2157-2163
    [43]. 陈剑平、卢波、谷宪民、范建华,节理岩体三维综合抗剪强度数值模拟研究,岩石力学与工程学报,2006,25(7),P1463-1468
    [44]. 孙广忠,岩体结构力学,北京:科学出版社,1988
    [45]. 王兰生,李天斌,赵其华,浅生时效构造与人类工程,北京:地质出版社,1994
    [46]. Wang Lansheng, Chen Mingdong, Li Tianbin. On the turning sliding-cracking slope deformation and failure. Proceedings of 6th ISL, A, A, Balkema Publisher,1992
    [47]. 孙广忠,工程地质与地质工程,冰京:地震出版社,1993
    [48]. 赵长海等,预应力锚固技术,北京:中国水利水电出版社,2001
    [49]. R.E Goodman ,D.S. Kieffer, Behavior of roch in slopes Joumal of Geotechnical ang Geoenvironmental Engineering.2000,8:674-684
    [50]. 王在泉,复杂边坡工程系统稳定性研究,徐州:中国矿业大学出版社,2000
    [51]. Brown E T. Analytical and computational methods in engineering rock mechanics, New York: John Willy &Sonltd,1987
    [52]. Genhua Shi, R. E. Goodman.Generalization of two-dimensional discontinuous deformation analysis for forward modeling, Int. J. for Num, and AnalyMethods in Geomech, 1989,13:359-380.
    [53]. 周维垣等,岩石高边坡的稳定与治理,岩土工程 的回顾与前瞻,北京:人民交通出版社,2001
    [54]. 刘式达,刘式适,非线性动力学与复杂现象,北京:气象出版社,1989
    [55]. 黄建平,衣育红,利用观测资料反演非线性动力模型,中国科学(B),1991,21(3)
    [56]. 周翠英,滑坡灾害复杂性探索,中国地质大学博士论文,1992
    [57]. 秦四清,张倬元,黄润秋,非线性工程地地学导引,成都:西南交通大学出版社,1993
    [58]. 田野,徐平,岩体蠕变位移数据的处理与预测,岩石力学与工程学报,1991,10(4)
    [59]. 吴中如。分形几何理论在岩土边坡稳定性分析中的应用,水利学报,1996,(4)
    [60]. 易顺民,滑坡定量预测非线性理论方法,地学前缘,1996,3(1-2)
    [61]. 夏元友,朱瑞 ,基于人工神经网络的边坡稳定性工程地质评价方法,岩土力学,1996,13(3)
    [62]. 曾开华、陆兆溱,边坡变形破坏预测的混沌与分形研究[J],河海大学学报,1999,27(3),9-13
    [63]. 谭文辉、蔡美峰、乔兰,边坡岩体系统演化的非线性动力学模拟研究[J],中国地质灾害防治学报,2003,14(2),98-102
    [64]. 高玮、郑颖人,采用快速遗传算法进行岩土工程反分析[J],岩土工程学报,2001,23(1),120-122
    [65]. 袁景;张秀丽,基于Monte-Carlo方法的边坡可靠性分析[J],辽宁工程技术大学学报 2005(2)
    [66]. 罗文强等,边坡系统稳定性的可靠性研究,地质科技情报,1999,(2)
    [67]. 罗文强,斜坡稳定性概率理论和方法研究,岩石力学与工程学报,1999,18(2),240-243
    [68]. Hyuck-Jin Park,Terry R.West,IK Woo,Probabilistic analysis of rock slop stability and random properties of discontinuity parameters,Interstate Highway 40,Western North Carolina,USA[J],Engineering Geology,2005,79,230-250
    [69]. C.Gokceoglu,H,Sonmez,M.Ercanoglu,Discontinuity controlled probabilistic slope failure risk maps of the Altindag(settlement)region in Turkey[J],Engineering Geology,2000,55,277-296
    [70]. C.Sagaseta,J.M.Sanchez,J.Canizal, General solution for the requied anchor force in rock slopes with toppling failure[J],international journal of rock mechanics ﹠Mining Sciences,2001(38),421-435
    [71]. 范中原,岩质高边坡勘测及监测技术方法研究,水力发电,1998,(1)
    [72]. 陈祖煜,冯小刚,水电建设中的高边坡工程,水力发电,1999,(10)
    [73]. 李天斌,陈明东,王兰生,滑坡实时跟踪预报,成都:成都科技大学出版社,1999
    [74]. 黄润秋,许强.斜坡失稳时间的协同预测模型.山地研究,1997(20)
    [75]. 黄润秋,许强.工程地质广义系统科学分析原理及应用.北京:地质出版社,1997
    [76]. 韩力群.人工神经网络理论、设计及应用[M].化学工业出版社,2001.
    [77]. 刘宝琛,矿山岩体力学概论湖南科学出版社 1982
    [78]. 中国科学院地质研究所编岩土工程力学问题,科演出 版社 1985,4
    [79]. 刘锦华等,埠体理论在工程岩体稳定性分析分析中的应用,水利电力出版社1988,5
    [80]. 李天斌,陈明东.滑坡预报几个基本问题,工程地质学报,1999,7(3)
    [81]. 张咸恭,王思敬,张倬元等,《中国工程地质学》,科学出版社,2000:3
    [82]. 殷跃平,康宏达,《地质工程设计支持系统与链子崖锚固设计》,地质出版社,1995:50~96;
    [83]. 张有天主编,岩石边坡的变形与稳定,北京:中国水利水电出版社,1999(5):26~30;
    [84]. 戚蓝,马启超,李广远,对坝基开挖工程岩体稳定性有影响的几个因素,天津大学学报,1999,32(1):30~34;
    [85]. 辽宁红沿河核电厂工程建设信息公告。
    [86]. 李玶,任金卫,杨美娥,辽宁瓦房店温坨子原核电站场址东岗断裂的活动,地震地质,2000,22(4):337~343;
    [87]. 钟以章,辽宁核电站温坨子厂址的地震地质研究,地震工程与工程振动 ,2003,(4);
    [88]. 东北电力设计院,辽宁红沿河核电厂一期工程一、二号机组循环泵房岩土工程勘察报告,内部资料;
    [89]. 黄润秋,许强,陶连金、林峰,《地质灾害过程模拟和过程控制研究》,科学出版社,2002.11:1~95;
    [90]. Chen Zuyu,Wang Jian,Wang Yujie.etc.A three-dimensional slope stability analysismethodusing the upper bound theorem Part II:numerical approaches,applications and extensions.International Journal of Rock Mechanics and Mining Sciences.2001,38(3):379-397
    [91]. Duncan J M.State of the art:limit equilibrium and finite element analysis of slope.Journal of Geotechnical Engineering,ASCE,1996,122(7):577-596.
    [92]. Griffiths D V,Lane P A.Slpoe stability analysis by finite element, Geotechnique,1999, 49(3):387-406.
    [93]. Dawson E M,Roth W H,Ihescher A.Slope stability analysis by strength reduction.Geotechnique,1999,49(6):835-840
    [94]. Manzari M T,Nour M A.Significance of soil dilatancy in slope stability analysis.Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(1):75-80
    [95]. 贾东远.岩质边坡稳定性有限元综合分析方法研究[D].重庆:重庆大学.2003,6
    [96]. 张鲁渝,郑颖人,赵尚毅等.有限元强度折减系数法计算土坡稳定安全系数的精度研究.水利学报.2003,(1):21-27
    [97]. 许江,尹光志,鲜学福等.煤与瓦斯突出潜在危险区预测的研究.重庆:重庆大学出版社.2004,6
    [98]. 李国会.地下洞室岩体力学参数反分析研究[D].华北水利水电学院硕士学位论文,2005.5:24~46.
    [99]. 冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [100]. 徐佩华.基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D]吉林大学博士学位论文,2006.6.
    [101]. 焦 李 成 著 . 神 经 网 络 系 统 理 论 [M]. 西 安 : 西 安 电 子 科 技 大 学 出 版社,1990.12:1~60.
    [102]. Neural Network Toolbox. Math Works, 2004.
    [103]. The Math Works. Inc. http://www.mathworkscom, 2004.`
    [104]. 飞思科技产品研发中心编著.MARLAB6.5 辅助神经网络分析与设计[M].北京:电子工业出版社,2003.
    [105]. 董长虹编著.Matlab 神经网络与应用[M].北京:国防工业出版社,2005:64~104.
    [106]. [106]飞思科技产品研发中心著.神经网络理论与 MARLAB7 实现[M].北京:电子工业出版社,2005.7:1~321.
    [107]. 从爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001:19~30.
    [108]. 从爽.面向 MATLAB 工具箱的神经网络理论与应用[M].中国科学技术大学出版社,1998.11:59~70.
    [109]. Rumelhart D.,McCelland J. Parallel Distributed Processing, Explorations in the Microstructure of Cognition. Cambridge: Bradford Books, MIT Press. pp.Vo1-Vo2. 1986.
    [110]. 袁 曾 任 . 人 工 神 经 元 网 络 及 其 应 用 [M]. 北 京 : 清 华 大 学 出 版社,1999.10:88~130.
    [111]. 周开利,康耀红.神经网络模型及其 MATLAB 仿真程序设计[M]北京:清华大学出版社,2005.7:70~85.
    [112]. Dennis J. E, Schnabe R. B. L. Numericl Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, NJ : Prentice-Hall, 1983.
    [113]. 陆金桂,王石刚,胡于进等.多层神经网络 BP 算法的研究[J].计算机工程,1994,20(1):17~19.
    [114]. 王双红 , 蔡美峰 . 利用神经网络对地应力测量的结果进行分析 [J].黄金,1998,19(11):16~19.
    [115]. 阎慈琳. 关于用主成分分析做综合评价的若干问题. 数理统计与管理, 1998,17(2):22- 25
    [116]. 袁 曾 任 . 人 工 神 经 元 网 络 及 其 应 用 [M]. 北 京 : 清 华 大 学 出 版社,1999.10:88~130.
    [117]. 张治国.BP 神经网络的数学模型和计算方法及其计算机程序实现[D].吉林大学硕士论文,2003.6:8~15.
    [118]. 张兴会,杜升之,陈增强,等.主成分分析法在神经网络经济预测中的应用. 数量经济技术经济研究, 2002(4):122- 125
    [119]. 许东,吴铮.基于 MATLAB6.x 的系统分析与设计-神经网络[M].西安:西安电子科技大学出版社,2002.9.
    [120]. R.P.Lippmann.An Introduction to Computing With Neural Nets[M], IEEE ASSP Magazine,1989, 11:4~45.
    [121]. Cyberko,G.. Approximations by Super positions of a Sigmoidal Function[A]. Math Control Sin gual System[C],1989:45~89.
    [122]. Hecth-Nielsen R. Theory of back propagation neural network[J]. Proc of IJCNN,1989,1:593-603.
    [123]. 张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1995.3.
    [124]. 王国栋,刘相华等.金属轧制过程人工智能优化[M].北京:冶金工业出版社,2000.
    [125]. Hecth-Nielsen R. Application of Back Propagation Neural Nets[J].Neural Networks, 1988,(1):131~139.
    [126]. Kuarychi. On Hidden Nodes for Neural Nets[J]. IEEE Transactions on Crircuits and Systems, 1989,36(5): 661~664.
    [127]. 韩力群.人工神经网络理论、设计及应用[M].化学工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700