用户名: 密码: 验证码:
电化学技术在处理油田采出水中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原油开发的进程,我国的油田大多已到了开采的中后期,油田开采加工过程中产生的油田污水也日益增多,如不加以治理,不但会污染生态环境,还会影响注水开发油田的水平,使油田不能正常运转。对油田污水处理并回注使用,是油田开发和解决水资源短缺的正确途径。从保护环境和合理利用资源的角度出发,如何经济、有效地处理油田污水,是目前油田良性循环发展的关键和研究重点。
     目前,国内外各大油田正在寻求有效的污水处理技术。与其他的污水处理方法相比,电化学方法因其不需要添加药剂,避免了二次污染问题,通过控制电位,可使电极反应具有高度的选择性,处理效果好等优点,开始受到人们的重视。
     本研究采用热分解法制备钛基二氧化钌电极,采用热丝化学气相沉积法(HFCVD)在钽基底上沉积掺硼金刚石薄膜电极。综合考虑电化学污水处理对电极性能的要求,分析了目前常见的几类电极,并将钛基二氧化钌电极与掺硼金刚石薄膜电极进行实验对比,最终选取钛基二氧化钌电极为电化学实验的阳极。
     本文以油田采出水为研究对象,采用电化学氧化法处理油田污水,研究了电解时间、电流密度及电极间距对铁去除率的影响;并对其工作参数进行优化,以提高处理效率。实验结果表明,电化学氧化法除铁具有很好的氧化能力和处理效果。
     对油田采出水进行电解除油实验,考察其除油效果。电化学工艺在不投加药剂的条件下,具有较好的除油效果;与此同时可以在进行油田污水处理的时候,从中分离出石油,不但经济环保,而且还具有巨大的社会和经济效益。
     采用电解阳极催化氧化技术处理石油污水,研究试样COD去除率。实验结果表明,该法具有较强的氧化降解能力,工作过程中电极自身不溶解,对水体无二次污染,COD去除效果明显。
     利用钛基二氧化钌电极对采油废水进行电解杀菌,通过测试,说明不但杀菌效果可靠,并且还有持续杀菌作用。
With the oil extraction, many oilfields have entered the mid or late mining, more and more oilfield wastewater emits in the process of oilfield development and production. Without Governance, it will not only impact the ecological environment, but also decrease the level of oilfield development, so that oilfield can’t operate normally. Oilfield wastewater treatment and re-injection is the right way to develop the oilfield and make good use of the water resource. For environmental protection and conserving resource considerations, how to economically and effectively deal with oilfield wastewater is the key to sustainable development of oilfield and research focus.
     At present, domestic and international oilfields are looking for effective wastewater treatment technologies. Compared to other wastewater treatment technologies, electrochemical technology doesn’t need to add the additive, so that it avoids secondary pollution problems; by controlling the potential, electrode reaction can be highly selective, and has good treatment effect, so it attracts people's attention.
     In this study, we prepared Ti/RuO_2 electrode by thermal decomposition and deposited boron-doped diamond(BDD) thin film electrode by hot-filament chemical vapor deposition (HFCVD) on tantalum substrate. Comprehensively consider the requirements of electrochemical wastewater treatment to the electrode performance, analysing the current common types of electrodes, and compared Ti/RuO_2 electrode with boron-doped diamond thin film electrode by experiment and ultimately select Ti/RuO_2 electrode for the electrochemical experiment anode.
     In this thesis, taking oilfield produced water as the research object, using electrochemical oxidation method to treat oil wastewater to study the electrolysis time, current density and electrode distance on the impact of iron removal; and optimized operating parameters to improve the treatment efficiency. The experiment results show that the electrochemical oxidation of iron has good oxidation ability and treatment effect.
     Using the electrolysis technology to treat the oilfield produced water and study the effectiveness of oil removal. Even if without dosing pharmacy, the electrochemical technology also has certain effect of oil removal; at the same time, we can extract oil by treating the oilfield wastewater. It is not only good to environment, but also has enormous social and economic benefits.
     Using electrochemical oxidation technology to treat oilfield produced water, research COD removal. Experimental results show that this method has strong capacity of oxidative degradation, in the reaction process eletrode isn’t dissolved in the water and without secondary pollution. The effect of COD removal is clear.
     Using Ti/RuO_2 anode to treat oilfield produced water by electrolysis technology to sterilize bacteria, through the residual chlorine test found that this method doesn’t only have reliable sterilization effect, but also has continuous sterilization action.
引文
[1]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002,5.
    [2] Brillas.E.,Sauleda R. Degradation of 4-chlorophenol by anodic oxidation,electro-Fenton, photoelectro-Fenton and peroxicoagulation processes[J]. Electrochem.Soc,1998,145:759- 765.
    [3] Robertson,P.M., Gnehm,W.,Ponto,L. High efficiency hypochlorite generation[J]. Journal of Applied Electrochemistry,1983,13(3):307-315.
    [4] Drogui,P.,Elmaleh S. Hydrogen peroxide production by water electrolysis:Application to disinfection[J]. Journal of Applied Electrochemistry,2001,31(8):877-882.
    [5]刘斌,王大为.油田废水处理及回注工程的研究和展望[J].石油实验地质,2000,22(2):189-192.
    [6]邹决贤,陆正禹.油田废水处理综述[J].工业水处理,2001,21(8):1-3.
    [7]冈秦麟.论我国的三次采油技术[J].油气收率技术,1998,5(4):1-7.
    [8] Ali S. A.,Henry L. R.,Darlington J. W.,et al. New filtration process cuts contaminants from offshore produced water[J]. Oil and Gas Journal,1998,96(44):73-78.
    [9]北京市环境技术与设备研究中心等.三废处理工程技术手册—废水卷[M].北京:化学工业出版社,2000,178-186.
    [10]国家环境保护局.石油石化工业废水治理[M].北京:中国环境科学出版社,1992.
    [11]马文成,易绍金.石油开发中污水的环境危害[J].石油与开然气化工,1997,26(2),125-127.
    [12] Reis R.C. An overview of the environmental issues facing the upstream petroleum industry[J].SPE 26336, 1993.
    [13]郭维璋.油田采出水组分及其对环境的影响[J].油气田环境保护,1994,4(4):56-58. [l4] Joyce E. The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions[J]. Ultrasonics Sonochemistry,2003,10(4-5):231-234.
    [15]桑义敏,李发生,何绪文,等.含油废水性质及其处理技术[J].化工环保,2004,24(增刊):94-97. [l6]李发永,等.含油污水的超滤法处理[J].水处理技术,1995,2l(3):145-148.
    [17]丁永寿.精细过滤技术在吐哈油田的应用[J].华北石油设计,1997(4):8-12,17.
    [18]李书光,刘冰,胡松青.超声波处理石油污水的实验研究[J].石油学报(石油加工),2003,19(3):99-102.
    [19]李晶晶,唐晓东.超声波在石油加工中的应用进展[J].化工技术与开发,2005,34(2):22-25.
    [20] Samdani G,Gilges K. Electrosynthesis:positivelycharged[J]. Chemical Engineering, 1991,98(5):37-51.
    [21] Wang J,Feng Y J. Progress in electro-catalyzed electrodes and application of electrochemical technology in wastewater treatment[J]. Journal of Natural Science of Heilongjiang University,2004,21(1):126-131.
    [22] Allen.J.B,Lorry.R.F. Principle and Application of electrochemical technology[M]. Beijing:Chemical Industry Press of Chemistry and Applied Chemistry Publication Center, 2005.
    [23] Naumczyk,J. Electrochemical treatment of textile wastewater[J]. Water Science and Technology,1996,34(11):17-24.
    [24] Torres,R.A. Electrolytic oxygen generation for subsurface delivery:Effects of precipitation at the cathode and an assessment of side reactions[J]. Water Research,2002,36(3):2243–2254.
    [25]冯敏.工业水处理技术[M].北京:海洋出版社,1992.
    [26]张林生,HahnH.铂电极电解气浮的研究[J].中国给水排水,1993,9(6):4-9.
    [27]孙红营.电化学方法处理含油废水及焦化废水的研究初探[D].同济大学理学硕士学位论文,2008,3.
    [28]曲久辉,刘会娟,等.水处理电化学原理与技术[M].科学出版社,2007,3.
    [29]陈延禧.支持叙碱工业的电化学基础研究[J].氛碱工业,1996,24(10):55-59.
    [30]宋卫锋,吴斌,李久义,等.形稳阳极电解处理有机废水的机理研究[J].重庆环境科学,2000,22(6):60-63.
    [31]王雪峰,李建宏,马宇翔,等.微电解水处理器的杀菌作用研究[J].给水排水,2001,27(11):40-42.
    [32] Wang Chenli,Li Xiaoming,Cai Zhiqiang,et al. Disinfection of oilfield sewage by electrolysis process[J]. Industrial Water Treatment,2003,23(5):29-31.
    [33] Tan Li,Li Bengao. Development of electrochemical disinfection applied to water treatment[J]. Industrial Water Treatment,2006,26(2):1-5.
    [34] Feng Chuangping,Sugiura Norio,Shimada Satoru,et al. Development of a high performance electrochemical wastewater treatment system[J]. Journal of Hazardous Materials,2003, 103(1-2):65-78.
    [35] Drogui P,Elmaleh S,Rumeau M,et al. Oxidising and disinfection by hydrogen peroxide produced in a two-electrode cell[J]. Water Research,2001,35(13):3235-3241.
    [36]姜佳丽,苟社全,达建文,等.原油破乳研究进展[J].化工进展,2009,28(2):214-221.
    [37] Pletcher D,Walsh F C. Industrial Electrochemistry.2nd ed[M]. London:Chapmam&Hall,1990.
    [38] Pinhedo.L.,Pelegrini.R.,Bertazzoli.R.,et al. Photoelectrochemical degradation of humic acid on a (TiO2)(0.7)(RuO2)(0.3) dimensionally stable anode[J]. Applied Catalysis B-Environmental,2005,57(2):75-81.
    [39] Chen,X.M.,Chen,G.H.,Yue,P.L. Novel electrode system for electroflotation of wastewater[J]. Environmental Science & Technology,2002,36(4):778-783.
    [40] Motheo,A.J.,Gonzalez,E.R.,Tremiliosi,G.,et al. The oxidation of formaldehyde on high overvoltage DSA type electrodes[J].Water Research,2000,2(5)35-37.
    [41] Swain,G.M. Electrochemical activity of boron-doped polycrystalline diamond thin film electrodes[J]. Analytical Chemistry,1993,65(4):345-351.
    [42] Perret,A.,Haenni,W.,Skinner,N,et al. Electrochemical behavior of synthetic diamond thin film electrodes[J]. Diamond and Related Materials,1999,8(2-5):820-823.
    [43] Yanagisawa,M.,Jiang,L.,Tryk,D.A,et al. Surface morphology and electrochemical properties of highly boron-doped homoepitaxial diamond films[J]. Diamond and Related Materials,1999,8(11):2059-2063.
    [44] Foti,G.,Gandini,D.,Comninellis,C.,et al. Electrochemical Solid-State Letles[J]. J.Electrochem.Soc,1999,2:228.
    [45] Rajeshwar,K.,Ibanez,J G.,Swain,G M. Electrochemistry and the environment[J]. Journal of Applied Electrochemistry,1994,24(11):1007-1091.
    [46]吴辉煌.电化学工程基础[M].北京:化学工业出版社,2008,3.
    [47]曲久辉、刘会娟.水处理电化学原理与技术[M].北京:科学出版社,2007,3.
    [48] Comninellis C,Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. Journal of Applied Electrochemistry,1995,25:23-28.
    [49] Stucki S, Kotz R, Carcer B,et al. Electrochemical waste water treatment using high over-voltage anodes[J]. PartⅡ:Anode performance and applications. Journal of Applied Electrochemistry,1991,21:99-104.
    [50]张招贤.钛电极工学[M].北京:冶金工业出版社,2003.
    [51] Mousty C,Foti G,Comninellis C,et al. Electrochemical behaviour of DSA type electrodes prepared by induction heating[J]. Electrochimica Acta,1999,45(3):451-456.
    [52] Foti G,Mousty C,Reid V,et al. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor[J]. Electrochimica Acta,1998,44(5):813-818.
    [53] Terezo,A J,Pereira,E C,et al. Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes[J]. Materials Letters,2002,53(4-5):339-345.
    [54]向前,等.改性二氧化铱电极研制[J].无机盐工业,1998,30(3):16.
    [55]梁镇海,等. Ti/SnO2+Sb2O3/PbO2电极的电催化性[J].材料科学与工程,1996,14(1):62.
    [56] Terezo A J,et al. Fractional factorial design applied to investigate properties of Ti:IrO2-Nb2O5 electrodes[J]. Electrochimica Acta,2000,45(4):352.
    [57] Kawano, Y.,Chiba,S.,Inoue,A. Application of diamond window for infrared laser diagnostics in a tokamak device[J]. Review of Scientific Instruments,2004,75(1):279-280.
    [58] Choi,W.S.,Kim,K.Yi,J.,et al. Diamond-like carbon protective anti-reflection coating for Si solar cell[J]. Materials Letters,2008,62(4-5):577-580.
    [59] Klyui,N.I.,Litovchenko,V.G.,Rozhin,A.G.,et al. Silicon solar cells with antireflection diamond-like carbon and silicon carbide films[J]. Solar Energy Materials and Solar Cells,2002,72(1-4):597-603.
    [60] Klibanov, L.,Croitoru,N.,Seidman,A.,et al. Diamond-like carbon thin films as antireflective and protective coatings of GaAs elements and devices[J]. Optical Engineering,2000,39(4):989-992.
    [61] Rajeshwar K, Ibanez J G, Swain G M. Electrochemistry and environment[J]. Journal of Applied Electrochemistry,1994,24:1077-1091.
    [62]胡陈果.高硼掺杂金刚石膜电极的电化学应用研究[J].物理,2002,31(2):93-97.
    [63]周志刚.金刚石膜电极在处理有机废水中的研究[D].天津理工大学学报,2006.
    [64]全国文献工作标准化技术委员会第七分委员会.中华人民共和国石油天然气行业标准SY/T5523-2000.油气田水分析方法[S].北京:中国标准出版社,2000.
    [65]李圭白,刘超.地下水除铁除锰[M].北京:中国建筑工业出版社,1989.
    [66]许建华,杨人隽,王嘉宝.水的特种处理[M].北京:同济大学出版社,1989.
    [67]庞娟娟.电解法处理采油废水的研究[J].电力环境保护,2008,24(1):57-60.
    [68]李长海,王元瑞,赵丽丽.导流电凝聚法印染废水脱色电解槽结构设计[J].吉林工学院学报, 1998,19(3):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700