基于高通量测序技术的药用植物表达序列标签系统的构建与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表达序列标签(Expressed sequence tag, EST)技术是分离与克隆新基因、研究基因表达谱的有效方法。本研究利用EST分析方法,建立药用植物转录组的研究方法体系,通过新一代高通量测序技术454 GS FLX Titanium获得的ESTs,发掘药用植物生物活性成分的合成相关的关键酶基因。本研究以甘草、丹参、蛇足石杉和龙骨马尾杉为例,分析了高通量测序技术及转录组分析方法在药用植物中的应用。
     甘草(Glycyrrhiza uralensis Fisch. ex DC.)是世界上使用最为广泛的药用植物之一,被广泛应用于食品和烟草添加剂。由于缺乏甘草的基因组和转录组数据,甘草酸生物合成途径尚不明确。本研究应用高通量测序技术454 GS FLX Titanium对甘草的营养器官的转录组进行测序,构建EST文库。获得59219条EST序列,平均长度409 bp。将454测序所得EST与GenBank中50666条甘草EST进行合并拼接,获得27229条unigene(11694条contig,1 5535条singleton)。将这些unigene与公共数据库(SwissProt, KEGG, TAIR, Nr和Nt)进行比对注释(阈值E≤le-5),其中20229条序列获得注释,注释结果大约包括10000独立的转录本。甘草酸骨架合成共涉及18个酶,在对EST文库的分析整理中获得了其中的16个酶的候选基因。本研究还发现了125个细胞色素P450候选基因和172个糖基转移酶候选基因。根据CYP家族,125个细胞色素P450候选基因被分为32类;根据GO基因功能分类,172个糖基转移酶候选基因被分为45类。最后根据Real-time PCR器官特异性表达分析,发现最有可能参加甘草酸合成的基因,包括3个细胞色素P450和6个糖基转移酶。
     丹参(Salvia miltiorrhiza Bge.)为唇形科(Labiatae)鼠尾草属常用中药,以根和根茎入药。现代化学及药理学研究表明丹参含有两类生理活性物质:脂溶性的丹参酮类化合物和水溶性的丹酚酸类化合物,目前丹参基因组学和转录组学的研究较少。本研究应用新一代高通量测序技术454 GS FLX Titanium对2年生丹参根的转录组进行测序,研究其基因表达谱,挖掘其功能基因。获得46722表达序列标签(express sequence tags, EST),序列平均长度414 bp,与Sanger测序的长度相当。所得序列与GenBank丹参EST合并拼接,获得18235条unigene,其中,454高通量测序发现了13980条新的unigene。数据库中的序列同源性比较表明,其中73.0%(13308条)与其他生物的已知基因具有不同程度的同源性。通过BLAST与GeneOntology分析获得了可能参与丹参酮合成的序列27条(编码15个关键酶),参与丹酚酸合成的序列29条(编码11个关键酶),细胞色素P450序列70条,转录因子序列577条。
     石杉属植物蛇足石杉(Huperzia serrata)和龙骨马尾杉(Phlegmariuruscarinnatuas)均含有石松类生物碱——石杉碱甲。石杉碱甲是治疗早老性痴呆症新药的主要成分,具有良好的应用前景。虽然石杉科药用植物具有重要的药用价值,但是对于其基因组和转录组的研究却极为有限,严重制约了新药的研发利用。在蛇足石杉和龙骨马尾杉的454-EST数据中,分别获得140930和79920条ESTs,拼接为36763和31812个转录本。其中,共注释到115个蛇足石杉和98个龙骨马尾杉的转录本与生物碱、萜类、黄酮/类黄酮等化合物的生物合成相关。在蛇足石杉和龙骨马尾杉中共同表达的CYP450s有63个,利用real-time PCR检测了蛇足石杉中的编码CYP450s的转录本在根和叶中的表达差异,发现有20个转录本是在叶中高丰度表达而在根中表达较低。这与石杉碱甲在蛇足石杉中的器官特异性分布即叶中含量最高、根中含量较低相一致。我们推测它们是参与石松碱生物合成的候选基因。此外,在蛇足石杉中发现2729个SSR位点,龙骨马尾杉中发现1573个SSR位点。
     454高通量测序技术作为药用植物功能基因组研究的重要手段可在甘草、丹参、蛇足石杉和龙骨马尾杉功能基因的发现中发挥重要作用。本研究获得了重要药用植物甘草、丹参、蛇足石杉和龙骨马尾杉的大量ESTs,研究了它们的转录组信息,发现了许多可能参与次生代谢产物生物合成、调节植物生长发育及环境响应的基因。这将为鉴定参与有效成分生物合成的功能基因提供极为丰富的基因资源,近而为实现利用生物技术生产甘草酸、丹参酮、丹酚酸、石松碱奠定理论基础。
EST analysis is a cost-effective and rapid tool used for the isolation of novel genes and characterization of the gene expressed profile. We used a cDNA library construction method and massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate EST datasets of medicinal plants for transcriptome analysis. The EST labraries of Glycyrrhiza uralensis, Salvia miltiorrhiza, H. serrata and P. carinatus were constructed in our studies.
     Glycyrrhiza uralensis is one of the most popular medicinal plants in the world and is also widely used in the flavoring of food and tobacco. Due to limited genomic and transcriptomic data, the biosynthetic pathway of glycyrrhizin, the major bioactive compound in G. uralensis, is currently unclear. We used the 454 GS FLX platform and Titanium regents to produce a substantial expressed sequence tag (EST) dataset from the vegetative organs of G. uralensis. A total of 59,219 ESTs with an average read length of 409 bp were generated.454 ESTs were combined with the 50,666 G. uralensis ESTs in GenBank. The combined ESTs were assembled into 27,229 unique sequences (11,694 contigs and 15,535 singletons). A total of 20,437 unique gene elements representing approximately 10,000 independent transcripts were annotated using BLAST searches (e-value≤le-5) against the SwissProt, KEGG, TAIR, Nr and Nt databases. The assembled sequences were annotated with gene names and Gene Ontology (GO) terms. With respect to the genes related to glycyrrhizin metabolism, genes encoding 16 enzymes of the 18 total steps of the glycyrrhizin skeleton synthesis pathway were found. To identify novel genes that encode cytochrome P450 enzymes and glycosyltransferases, which are related to glycyrrhizin metabolism, a total of 125 and 172 unigenes were found to be homologous to cytochrome P450s and glycosyltransferases, respectively. The cytochrome P450 candidate genes were classified into 32 CYP families, while the glycosyltransferase candidate genes were classified into 45 categories by GO analysis. Finally,3 cytochrome P450 enzymes and 6 glycosyltransferases were selected as the candidates most likely to be involved in glycyrrhizin biosynthesis through an organ-specific expression pattern analysis based on real-time PCR.
     To investigate the profile of gene expression in Salvia miltiorrhiza and discover its functional gene, we used the 454 GS FLX platform and Titanium regent to produce a substantial expressed sequence tags (ESTs) dataset from the root of S. miltiorrhiza. A total of 46 722 ESTs with an average read length of 414 bp were generated. The 454 ESTs were combined with the S. miltiorrhiza ESTs from GenBank. These ESTs were assembled into 18 235 unigenes. Of these unigenes,454 sequencing identified 13 980 novel unigenes.73% of these unigenes (13 308) were annotated using BLAST searches (e-value≤le-5) against the SwissProt, KEGG, TAIR, Nr and Nt databases. We found 27 unigenes (encoding 15 enzymes) involved in tanshinones biosynthesis, and 29 unigenes (encoding 11 enzymes) involved in phenolic acids biosynthesis. We also found 70 putative genes encoding cytochromes P450 and 577 putative transcription factor genes.
     Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids. The lycodine type alkaloid of Huperzine A (Hup A) has been used as an anti-Alzheimer's disease drug candidate, possessing good market prospects. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family, which seriously hampered the development and use of new drugs. For H. serrata and P. carinatus 454-EST datasets,36763 and 31812 unigenes were generated from 140930 and 79920 reads, respectively. Approximately 115 H. serrata and 98 P. carinatus unigenes associated with the biosynthesis of triterpenoids, alkaloids and flavone/flavonoids were located in the 454-EST datasets. A total of 63 unigenes encoding cytochrome P450s (CYP450s) were present in both of H. serrata and P. carinatus. In particular,20 H. serrata CYP450s candidate genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were identified based on the comparison of H. serrata and P. carinatus 454-ESTs and real-time PCR analysis. The expressed profiles of these candidate genes were consistent with the organ-specific accumulation pattern of Hup A, which is accumulated higher in H. serrata leaves and lower in roots. In addition,2729 and 1573 potential SSR-motif microsatellite loci were identified from the H. serrata and P. carinatus 454-ESTs, respectively.
     The 454-EST resource allowed for the first large-scale EST project and transcriptome analysis for G. uralensis,S. miltiorrhiza,H. serrata and P. carinnatuas. We identified many candidate genes involved in the biosynthesis of bioactive compounds and developmental regulation. These results establish an essential resource for understanding secondary metabolite biosynthesis. This study will lay the foundation for the production of glycyrrhizin, Tanshinone, Salvianolic acid and Hup A using biotechnologies.
引文
1. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF et al: Complementary DNA sequencing: expressed sequence tags and human genome project. Science 1991, 252(5013):1651-1656.
    2. Parkinson J:Expressed Sequence Tags (ESTs) Generation and Analysis. Humana Press 2009.
    3. Zhang Y, Eberhard DA, Frantz GD, Dowd P, Wu TD, Zhou Y, Watanabe C, Luoh SM, Polakis P, Hillan KJ et al: GEPIS--quantitative gene expression profiling in normal and cancer tissues. Bioinformatics 2004,20(15):2390-2398.
    4. 胡松年:基因表达序列标签(EST)数据分析手册,浙江大学出版社2005.
    5. Luo H, Sun C, Li Y, Wu Q, Song J, Wang D, Jia X, Li R, Chen S:Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. Physiol Plant 2010
    6. Wu Q, Song J, Sun Y, Suo F, Li C, Luo H, Liu Y, Li Y, Zhang X, Yao H et al: Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Physiol Plant 2010,138(2):134-149.
    7. Putney SD, Herlihy WC, Schimmel P:A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. Nature 1983, 302(5910):718-721.
    8.454 Life Sciences Website [http://www.454.com/products-solutions/system-features.asp#titanium]
    9. Life technologies Website [http://www.lifetechnologies.com/home.htmll
    10. Illumina Website [http://www.illumina.com/]
    11. Suzuki Y, Sugano S:Construction of full-length-enriched cDNA libraries. The oligo-capping method. Methods Mol Biol 2001,175:143-153.
    12. Maruyama K, Sugano S:Oligo-capping:a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 1994, 138(1-2):171-174.
    13. SMARTTM cDNA Library Construction Kit User Manuals [http://www.clontech.com/products/detail.asp?tabno=2&product id=1650821
    14. Trimmer and Trimmer-Direct cDNA normalization kits User Manuals [http://www.evrogen.com/products/Trimmer/Trimmer.shtml
    15. Hara E, Kato T, Nakada S, Nakajima T, Tsurui H, Oda K:Constraction of a subtracted cDNA library using oligo(dT)-latex. Nucleic Acids Symp Ser 1990(22):29-30.
    16. Kenyon F, Welsh M, Parkinson J, Whitton C, Blaxter ML, Knox DP:Expressed sequence tag survey of gene expression in the scab mite Psoroptes ovis--allergens, proteases and free-radical scavengers. Parasitology 2003,126(Pt 5):451-460.
    17. Philippe H, Lartillot N, Brinkmann H:Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 2005,22(5):1246-1253.
    18.王伟,朱平,程克棣:药用植物基因组及EST研究.中国生物工程杂志2004,24(1):1-5.
    19.陈士林,孙永巧,宋经元,李滢,李晨吉,胡松年,李西文,姚辉,张晓伟:西洋参cDNA文库构建及表达序列标签(EST)分析.药学学报2008,43(6):657-663.
    20. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EM, Chen S:De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics,11:262.
    21. Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM et al: The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 2010, 327(5963):328-331.
    22. Qiu D, Pan X, Wilson IW, Li F, Liu M, Teng W, Zhang B:High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene 2009, 436(1-2):37-44.
    23. Brautigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE, Weber AP:Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species:comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. JBiotechnol 2008,136(1-2):44-53.
    24. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH:Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008,17(7):1636-1647.
    25. Zhang HC, Liu JM, Lu HY, Gao SL:Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 2009, 28(8):1205-1213.
    26. Shibata S:A drug over the millennia:pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi 2000,120(10):849-862.
    27. van Rossum TG, Vulto AG, de Man RA, Brouwer JT, Schalm SW:Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther 1998,12(3):199-205.
    28. He JX, Akao T, Nishino T, Tani T:The influence of commonly prescribed synthetic drugs for peptic ulcer on the pharmacokinetic fate of glycyrrhizin from Shaoyao-Gancao-tang. Biol Pharm Bull 2001,24(12):1395-1399.
    29. Matsui S, Matsumoto H, Sonoda Y, Ando K, Aizu-Yokota E, Sato T, Kasahara T: Glycyrrhizin and related compounds down-regulate production of inflammatory chemokines IL-8 and eotaxin 1 in a human lung fibroblast cell line. Int Immunopharmacol 2004,4(13):1633-1644.
    30. Li W, Asada Y, Yoshikawa T:Flavonoid constituents from Glycyrrhiza glabra hairy root cultures. Phytochemistry 2000,55(5):447-456.
    31. Pompei R, Flore O, Marccialis MA, Pani A, Loddo B:Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979,281(5733):689-690.
    32. Ito M, Nakashima H, Baba M, Pauwels R, De Clercq E, Shigeta S, Yamamoto N: Inhibitory effect of glycyrrhizin on the in vitro infectivity and cytopathic activity of the human immunodeficiency virus [HIV (HTLV-Ⅲ/LAV)]. Antiviral Res 1987, 7(3):127-137.
    33. Ito M, Sato A, Hirabayashi K, Tanabe F, Shigeta S, Baba M, De Clercq E, Nakashima H, Yamamoto N:Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus (HIV). Antiviral Res 1988, 10(6):289-298.
    34. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW:Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003,361(9374):2045-2046.
    35. Hanrahan C:Gale Encyclopedia of Alternative Medicine:Licorice [book on CD-ROM]. Farmington Hills, Thomson Gale 2001.
    36. Lu H-Y, Liu J-M, Zhang H-C, Yin T, Gao S-L:Ri-mediated Transformation of Glycyrrhiza uralensis with a Squalene Synthase Gene (GuSQS1) for Production of Glycyrrhizin. Plant Mol Biol Rep 2008,26:1-11.
    37. Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T:Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci USA 2008,105(37):14204-14209.
    38. Hayashi H, Hirota A, Hiraoka N, Ikeshiro Y:Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase. Biol Pharm Bull 1999, 22(9):947-950.
    39. Hayashi H, Huang P, Kirakosyan A, Inoue K, Hiraoka N, Ikeshiro Y, Kushiro T, Shibuya M, Ebizuka Y:Cloning and characterization of a cDNA encoding beta-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. Biol Pharm Bull 2001,24(8):912-916.
    40. Nagashima S, Inagaki R, Kubo A, Hirotani M, Yoshikawa T:cDNA cloning and expression of isoflavonoid-specific glucosyltransferase from Glycyrrhiza echinata cell-suspension cultures. Planta 2004,218(3):456-459.
    41. Sudo H, Seki H, Sakurai N, Suzuki H, Shibata D, Toyoda A, Totoki Y, Sakaki Y, Iida O, Shibata T et al: Expressed sequence tags from rhizomes of Glycyrrhiza uralensis. Plant Biotechnology 2009,26(1):105-107.
    42. Fu YJ:GANCAO:The Chinese Licorice. Beijing/New York, Science Press 2004.
    43. Yan YH, Duan TX, Wang WQ:Studies on the HPLC fingerprint of Radix Glycyrrhizae. Chin J Nat Med 2006,14(12):116-120.
    44. Sun L, Yu JG, Li DY, Luo XZ, Zhao CJ, Yang SL:Comparison of the content of glycyrrhizin and liquiritin of wild and cultivated root of Glycyrrhiza uralensis Fisch. Journal of Chinese Medicinal Materials 2001,24(8):550-552.
    45. Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM:Shedding light on an extremophile lifestyle through transcriptomics. New Phytol 2009,183(3):764-775.
    46. Basic Local Alignment Search Tool [ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.17/1
    47. The UniProt-SwissProt Database [http://www.uniprot.org/downloads]
    48. The KEGG Database [ftp://ftp.genome.jp/pub/kegg/release/archive/kegg/50/1
    49. The TAIR Database [ftp://ftp.arabidopsis.org/home/tair/Sequences/blast datasets/TAIR9 blastsets/]
    50. NCBI Nr Database [ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.g
    51. NCBI Nt Database [ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nt.gz]
    52. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Jr., Hannick LI, Maiti R,
    Ronning CM, Rusch DB, Town CD et al: Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 2003, 31(19):5654-5666.
    53. Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G et al: Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant Physiol 2004, 135(2):745-755.
    54. Dewick PM:Medicinal Natural Products:A Biosynthetic Approach. Wiley 2009.
    55. Danielson PB:The cytochrome P450 superfamily:biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 2002,3(6):561-597.
    56. Sigel A, Sigel H, Sigel RKO:The Ubiquitous Roles of Cytochrome P450 Proteins: Metal Ions in Life Sciences. Wiley 2007.
    57. Kim GT, Tsukaya H:Regulation of the biosynthesis of plant hormones by cytochrome P450s. J Plant Res 2002,115(3):169-177.
    58. Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB:The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 2003,131(1):335-344.
    59. Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y:Identification of beta-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. Febs J 2006,273(5):948-959.
    60. Winkler RG, Helentjaris T:The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. Plant Cell 1995, 7(8):1307-1317.
    61. Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y:The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 1999,96(4):1761-1766.
    62. Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, Mizutani M:Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols. Plant J 2006,45(5):765-774.
    63. Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S:Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 2001,126(2):770-779.
    64. Gachon CM, Langlois-Meurinne M, Saindrenan P:Plant secondary metabolism glycosyltransferases:the emerging functional analysis. Trends Plant Sci 2005, 10(11):542-549.
    65. Zhou L, Zuo Z, Chow MS:Danshen:an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. JClin Pharmacol 2005,45(12):1345-1359.
    66. Gao W, Hillwig ML, Huang L, Cui G, Wang X, Kong J, Yang B, Peters RJ:A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Org Lett 2009,11(22):5170-5173.
    67. Shu-Juan Z, Zhi-Bi H, Di L, Frederick CCL:Two Divergent Members of 4-Coumarate:Coenzyme A Ligase from Salvia miltiorrhiza Bunge:cDNA Cloning and Functional Study. Journal of Integrative Plant Biology 2006, 48(11):1355-1364.
    68. Huang B, Duan Y, Yi B, Sun L, Lu B, Yu X, Sun H, Zhang H, Chen W: Characterization and expression profiling of cinnamate 4-hydroxylase gene from Salvia miltiorrhiza in rosmarinic acid biosynthesis pathway. Russian Journal of Plant Physiology 2008,55(3):390-399.
    69. Huang B, Yi B, Duan Y, Sun L, Yu X, Guo J, Chen W:Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 2008, 35(4):601-612.
    70. Song J, Wang Z:Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 2009,36(5):939-952.
    71. Xiao Y, Di P, Chen J, Liu Y, Chen W, Zhang L:Characterization and expression profiling of 4-hydroxyphenylpyruvate dioxygenase gene (Smhppd) from Salvia miltiorrhiza hairy root cultures. Mol Biol Rep 2009,36(7):2019-2029.
    72. Boguski MS, Tolstoshev CM, Bassett DE, Jr.:Gene discovery in dbEST. Science 1994,265(5181):1993-1994.
    73. Bouchez D, Hofte H:Functional genomics in plants. Plant Physiol 1998, 118(3):725-732.
    74. Ewing RM, Ben Kahla A, Poirot O, Lopez F, Audic S, Claverie JM:Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 1999,9(10):950-959.
    75. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005,437(7057):376-380.
    76.邓科君,张勇,熊丙全,彭金华,张韬,赵晓楠,任正隆:药用植物丹参EST-SSR标记的鉴定.药学学报2009,44(10):1165-1172.
    77.段艳冰:丹参中迷迭香酸生物合成途径的苯丙氨酸支路基因的克隆及研究.2006.
    78. Ma X, Tan C, Zhu D, Gang DR:Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of Huperziaceae species in China. J Agric Food Chem 2005,53(5):1393-1398.
    79. Shi H, Li ZY, Guo YW:A new serratane-type triterpene from Lycopodium phlegmaria. Nat Prod Res 2005,19(8):777-781.
    80. Tong XT, Tan CH, Ma XQ, Wang BD, Jiang SH, Zhu DY:Miyoshianines A and B, two new lycopodium alkaloids from Huperzia miyoshiana. Planta Med 2003, 69(6):576-579.
    81.谭昌恒,朱大元:石松生物碱研究进展.中国天然药物2003,5:1-7.
    82. Ma X, Gang DR:The Lycopodium alkaloids. Nat Prod Rep 2004,21(6):752-772.
    83. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A et al: Metagenomics to paleogenomics:large-scale sequencing of mammoth DNA. Science 2006,311(5759):392-394.
    84. Livak KJ, Schmittgen TD:Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
    85. Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV:Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 2009,10:219.
    86. Novaes E, Drost DR, Farmerie WG, Pappas GJ, Jr., Grattapaglia D, Sederoff RR, Kirst M:High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 2008,9:312.
    87. Ellis JR, Burke JM:EST-SSRs as a resource for population genetic analyses. Heredity 2007,99(2):125-132.
    88. Emrich SJ, Barbazuk WB, Li L, Schnable PS:Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 2007,17(1):69-73.
    89. Schuler MA, Werck-Reichhart D:Functional genomics of P450s. Annu Rev Plant Biol 2003,54:629-667.
    90. Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A:The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 1998,5(9):R221-233.
    91. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J:Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001,508(2):215-220.
    92. Irmler S, Schroder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schroder J:Indole alkaloid biosynthesis in Catharanthus roseus:new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 2000,24(6):797-804.
    93. Li L, Cheng H, Gai J, Yu D:Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. Planta 2007,226(1):109-123.
    94. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S:Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 2004,135(2):756-772.
    95.孙远明,余红英,杨跃生:HPLC法测定蛇足石杉中石杉碱甲.中草药2002,33:1080-1087.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700