人β-干扰素和大肠杆菌O157:H7表面抗原EspA在乳酸乳球菌食品级诱导表达体系中表达及相关免疫活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸乳球菌是公认安全的食品级微生物(Generally Regard As Safe),对人畜无害,长期以来被广泛地用于各类乳制品发酵和生产中。近年来对乳酸乳球菌的研究日益受到重视。目前其全基因组测序工作业已完成,同时随着一些内部调控元件的发现,相继开发出一系列克隆、表达和整合载体,促进了乳酸乳球菌在分子生物学方面的大力发展,其中以NICE(Nisin Controlled Expression System)为代表的食品级诱导表达系统成为现今研究的热点。本文利用乳酸乳球菌食品级诱导表达系统重组表达人β-干扰素和大肠杆菌O157:H7表面抗原EspA蛋白,在这两方面开展相关研究工作。本文旨在利用乳酸乳球菌食品级诱导表达系统表达与疾病相关的免疫因子和抗原,从而开发相应的口服制剂,为预防和治疗疾病提供新途径。
     第一部分:人β-干扰素在乳酸乳球菌中分泌表达及生物活性测定
     炎症性肠病(inflammatory bowel disease,IBD)是一组病因不明的慢性肠道炎症性疾病,包括溃疡性结肠炎(ulcerative colitis,UC)和克罗恩病(Crohn's disease,CD)。其发病原因一般认为主要与遗传免疫、环境因素和细胞因子等多方面因素有关。人β-干扰素作为最先发现的细胞因子之一,具有抗病毒、抗增殖、免疫调控等一系列生物学效应,能够促进IL-10表达。Katakura等人发现,在先天免疫中,外源细菌入侵肠道时,其特异性的DNA会被体内树突状细胞Toll样受体-9所识别,激活一系列信号传导途径,最终诱导产生Ⅰ型干扰素(IFN-α/β),对肠道内环境平衡起到保护性作用。本实验首次利用乳酸乳球菌食品级诱导表达系统,将成功点突变改造之后的ifn-β1b(17 Ser取代Cys)基因连接入乳酸菌分泌表达载体pSec:Nuc中,同时设计另一对引物,在ifn-β基因前插入一段促进蛋白分泌的九个氨基酸的前导肽(LEISSTCDA),并对前导肽中部分密码子进行了优化,分别电转入Lactococcus lactis NZ9000中。在成功筛选到重组菌株后,加入Nisin诱导目的基因的表达,Western blot鉴定了重组蛋白的正确表达。ELISA定量实验发现,含有LEISSTCDA前导肽的重组菌株目的蛋白分泌量提高了三倍,分泌比率达到95%,最大表达量为20μg/L。进一步对于重组蛋白生物活性检测发现,重组菌株胞内外重组蛋白生物活性均达到了1×10~7 i.u./mg。基于乳酸乳球菌食品级诱导表达系统的诸多优势,体内递呈人β-干扰素不仅可以避免消化道对其的降解,而且乳酸乳球菌是非肠道内定植菌株,只能在肠道内存活一段时间,保证了其表达的细胞因子不会长时间刺激机体,减少了细胞因子的毒性,以上结果表明利用重组菌株治疗肠道炎症有望成为现有的治疗方法的有益补充。
     第二部分:大肠杆菌O157:H7 espA在乳酸乳球菌中的表达及小鼠免疫分析
     大肠杆菌O157:H7是一种危害严重的病原体,能够引起水样腹泻进而发展为出血性腹泻,易引起并发性溶血性尿毒综合症(HUS)和血栓形成性血小板减少性紫癜,病死率极高。粘附是大肠杆菌O157:H7感染的第一步。EspA蛋白在其粘附定植中起到关键性作用。它通过形成纤丝样管状结构,在细菌和宿主细胞之间架起一座桥梁,把效应蛋白转移至宿主细胞表面,对细菌粘附至宿主内皮细胞具有关键性启动作用。基于EspA具有良好的免疫原性及免疫反应性,可以作为候选免疫原,用于大肠杆菌O157的疫苗研制,在消除定植带来A/E(attaching/effacing)损伤,缩短感染周期方面具有较大的应用价值。本实验利用乳酸乳球菌食品级诱导表达系统首次将根据乳酸菌偏好密码子优化过的espA基因连接入乳酸乳球菌分泌表达载体,构建重组菌株。经过Nisin诱导之后,Westernblot实验证明了重组蛋白的正确表达。之后用重组菌株免疫小鼠,经过三次灌胃免疫之后,间接ELISA检测发现,与对照组相比,使用重组菌株免疫小鼠血清中特异性抗EspA IgG水平有显著提高,说明能够诱发小鼠体内特异性免疫应答,这一结果为将来利用重组菌株作为活疫苗来预防大肠杆菌O157:H7感染打下基础。
Lactococcus lactis is a Gram-positive,nonpathogenic,noninvasive,nonclonizing and generally regard as safe bacterium.It is mainly used for the production of fermented milk products and daily food industries for a long time.In the last 25 years,impressive progress has been made in the development of genetic engineering tools and the molecular characterization of lactococci.The tools include transformation,the availability of many different vectors,gene intergration,gene knock out,conjugation,and constitutive and regulated gene systems.At present the genome information of at least three strains of L.lactis is elucidated and publicly available.The availability of an easy-to-operate and strictly controlled food-grade expression system-nisin controlled expression system(NICE)has been developed and used for many application.
     This article is divided into two parts.It is mainly about expression of recombinant human interferon beta 1b and Escherichia coli O157:H7 EspA antigen in recombinant L.lactis strain using food-grade expression system.We aim to in situ delivery of heterologous cytokines and antigens by recombinant strains for preventing and treatment of related diseases.
     PartⅠsecretion of human interferon-beta 1b in Lactococcus lactis for intestinal immunotherapy
     Inflammatory bowel disease(IBD)is caused by excessive and tissue damaging chronic inflammatory responses in the gut wall,including Crohn's disease and ulcerative colitis.The cause of IBD involves genetic,enviromental and immune factors.Human interferon beta was one of the first discovered cytokines.It exerts many biological functions,such as antivirus,anti-proliferation and immuno-regulatory. Many evidences show that IFN-α/βis relevant to the protection against bacterial and parasitic infections.In 2005,Katakura et al.had discovered a protective role of IFN-α/βin a RAG1~(-/-)murine model of experimental colis,through the activation of a Toll-like receptor 9-dependent signal pathway.Moreover,IFN-βhas also been evaluated in pilot clinical trials in active ulcerative colitis.
     In this study,we successfully secreted bioactive human IFN-βlb in L.lactis using food-grade expression system.The site-direct mutagenesis was successfully introduced into the recombinant ifn-β1b gene in which 17 Cys was changed to Ser. The PCR product was double digested by restriction enzymes and cloned it into pSec:Nuc vector.In order to increase recombinant protein secretion,a nine-residue propeptide was inserted between usp45 signal peptide and ifn-β1b gene.The two expression plasmids were transferred by electroporation into L.lactis NZ9000 respectively.The recombinant IFN-βwas expression in the recombinant strains and the expression level and biological activity of recombinant proteins were both confirmed.The production of secreted form of IFN-βfrom recombinant strain L. lactis NZ9000/pSec-LEISS-IFNb and pSec-IFNb in culture was about 20μg L~(-1)and 6.2μg L~(-1).Moreover,about 95%of total recombinant protein from the L.lactis NZ9000/pSec-LEISS-IFNb was secreted into the culture medium.The biological activities of recombinant IFN-β1b in both strains were determined to be 1×10~7 i.u. mg~(-1).Since the in situ delivery of recombinant strains has many advantages on low cost,safety and fewer side effects,the use of L.lactis to deliver IFN-βwill provide an alternative or complementary option for the treatment of ulcerative colitis in future.
     PartⅡexpression of Escherichia coli O157:H7 espA gene in Lactococcus lactis and oral administration to induce systemic anti-EspA response in mice
     Enterohemorrhagic Escherichia coli O157:H7(EHEC)is an important zoonotic pathogen of humans,causing severe diarrhea(hemorrhagic colitis)and in a small percentage of cases,haemolytic-uremic syndrome(HUS).Unfortunately,antibiotics increase the risk of HUS,and there are currently no therapies for EHEC human infection other than general supportive measures.EspA,a protein also expressed from the LEE(locus of enterocyte effacement)pathogenity island and essential for A/E lesion formation,is one of the TTSS(TypeⅢsecretion system)translocator proteins and a major if not the only component of a filamentous structure which extends from the basic needle complex of the secretion apparatus and connects the pathogen to the plasma membrane of the host cell.Many experiments found that EspA protein can cause immune response in vivo.In this study,we successfully expressed the recombinant EspA protein in L.lactis using food-grade expression system.The espA gene was amplified by polymerase chain reaction(PCR)from the genomic DNA of E. coli O157:H7.The espA gene was optimized by lactic acid bacteria bias codons and cloned into pSec:Nuc vector.Western blot analysis demonstrated that the EspA protein was expressed in the L.lactis transformant.The oral administration of the transformants into mice significantly induced the anti-EspA antibody IgG in serum. These results suggest that recombinant L.lactis which expressed EspA can cause specific immune response and may be applicable as an oral vaccine to induce protective immunity against E.coli O157:H7 infection.
引文
[1] L.L. McKay, K.A. Baldwin, Applications for biotechnology: present and future improvements in lactic acid bacteria, FEMS Microbiol Rev 7 (1990) 3-14.
    
    [2] T.R. Klaenhammer, Bacteriocins of lactic acid bacteria, Biochimie 70 (1988) 337-349.
    
    [3] P.A. Vandenbergh, Lactic acid bacteria, their metabolic products and interference with microbial growth, FEMS Microbiology Reviews 12 (1993) 221-237.
    
    [4] S.E. Gilliland, Health and nutritional benefits from lactic acid bacteria, FEMS Microbiol Rev 7 (1990) 175-188.
    
    [5] S.L. Gorbach, Lactic acid bacteria and human health, Ann Med 22 (1990) 37-41.
    
    [6] M. Heyman, Effect of lactic acid bacteria on diarrheal diseases, J Am Coll Nutr 19 (2000) 137S-146S.
    
    [7] G.Perdigon, R. Fuller, R. Raya, Lactic acid bacteria and their effect on the immune system, Curr Issues Intest Microbiol 2 (2001) 27-42.
    
    [8] M.E. Stiles, W.H. Holzapfel, Lactic acid bacteria of foods and their current taxonomy, Int J Food Microbiol 36 (1997) 1-29.
    
    [9] W.M. de Vos, Gene expression systems for lactic acid bacteria, Curr Opin Microbiol 2 (1999) 289-295.
    
    [10] M.J. Gasson, Progress and potential in the biotechnology of lactic acid bacteria, FEMS Microbiology Reviews 12 (1993) 3-19.
    
    [11] O.P. Kuipers, P.G.de Ruyter, M. Kleerebezem, W.M. de Vos, Controlled overproduction of proteins by lactic acid bacteria, Trends Biotechnol 15 (1997) 135 - 140.
    
    [12] S.T. Hsu, E. Breukink, E. Tischenko, M.A. Lutters, B. de Kruijff, R. Kaptein, A.M. Bonvin, N.A. van Nuland, The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics, Nat Struct Mol Biol 11 (2004) 963-967.
    
    [13] J.N. Hansen, Nisin as a model food preservative, Crit Rev Food Sci Nutr 34 (1994) 69-93.
    
    [14] J. Delves-Broughton, P. Blackburn, R.J. Evans, J. Hugenholtz, Applications of the bacteriocin, nisin, Antonie Van Leeuwenhoek 69 (1996) 193-202.
    
    [15] P.G. de Ruyter, O.P. Kuipers, M.M. Beerthuyzen, I. van Alen-Boerrigter, W.M. de Vos, Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis, J Bacteriol 178 (1996) 3434-3439.
    
    [16] I. Mierau, M. Kleerebezem, 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis, Appl Microbiol Biotechnol 68 (2005) 705-717.
    
    [17] X.X. Zhou, W.F. Li, G.X. Ma, Y.J. Pan, The nisin-controlled gene expression system: Construction, application and improvements, Biotechnology Advances 24 (2006) 285-295.
    
    [18] O.P. Kuipers, M.M. Beerthuyzen, R.J. Siezen, W.M. De Vos, Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity, Eur J Biochem 216 (1993) 281-291.
    [19] O.P. Kuipers, P.GGA. de Ruyter, M. Kleerebezem, W.M. de Vos, Quorum sensing-controlled gene expression in lactic acid bacteria, Journal of Biotechnology 64(1998)15-21.
    
    [20] E.R. Kunji, D.J. Slotboom, B. Poolman, Lactococcus lactis as host for overproduction of functional membrane proteins, Biochim Biophys Acta 1610 (2003) 97-108.
    
    [21] M.J. Gasson, Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing, J Bacteriol 154 (1983) 1-9.
    
    [22] C. Platteeuw, I. van Alen-Boerrigter, S. van Schalkwijk, W.M. de Vos, Food-grade cloning and expression system for Lactococcus lactis, Appl EnvironMicrobiol 62 (1996) 1008-1013.
    
    [23] A. Lindholm, A. Smeds, A. Palva, Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis, Appl Environ Microbiol 70 (2004) 2061 - 2071.
    
    [24] B.J. Koebmann, D. Nilsson, O.P. Kuipers, P.R. Jensen, The membrane-bound H(+)-ATPase complex is essential for growth of Lactococcus lactis, Journal of Bacteriology 182 (2000) 4738 - 4743.
    
    [25] P. Curley, D. van Sinderen, Identification and characterisation of a gene encoding aminoacylase activity from Lactococcus lactis MG1363, FEMS Microbiology Letters 183(2000)177-182.
    
    [26] W. Sybesma, M. Starrenburg, M. Kleerebezem, I. Mierau, W.M. de Vos, J. Hugenholtz, Increased production of folate by metabolic engineering of Lactococcus lactis, Appl Environ Microbiol 69 (2003) 3069 - 3076.
    
    [27] J.A. Wouters, M. Mailhes, F.M. Rombouts, W.M. de Vos, O.P. Kuipers, T. Abee, Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363, Appl Environ Microbiol 66 (2000) 3756-3763.
    
    [28] F. Lopez de Felipe, M. Kleerebezem, W.M. de Vos, J. Hugenholtz, Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase, Journal of Bacteriology 180 (1998) 3804 - 3808.
    
    [29] M.C. Geoffroy, C. Guyard, B. Quatannens, S. Pavan, M. Lange, A. Mercenier, Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors, Appl Environ Microbiol 66 (2000) 383 - 391.
    
    [30] I. Mierau, P. Leij, I. Swam, B. Blommestein, E. Floris, J. Mond, E.J. Smid, Industrial-Scale Production and Purification of a Heterologous Protein in Lactococcus lactis using the Nisin-Controlled Gene Expression System NICE: The Case of Lysostaphin, Microbial Cell Factories (2005) submitted.
    
    [31] R.M. Hickey, R.P. Ross, C. Hill, Controlled autolysis and enzyme release in a recombinant lactococcal strain expressing the metalloendopeptidase enterolysin A,Appl Environ Microbiol 70 (2004) 1744-1748.
    
    [32] J.M. Blatny, H. Ertesvag, I.F. Nes, S. Valla, Heterologous gene expression in Lactococcus lactis; expression of the Azotobacter vinelandii algE6 gene product displaying mannuronan C-5 epimerase activity, FEMS Microbiol Lett 227 (2003) 229-235.
    
    [33] M. Monne, K.W. Chan, D.J. Slotboom, E.R. Kunji, Functional expression of eukaryotic membrane proteins in Lactococcus lactis, Protein Sci 14 (2005) 3048-3056.
    
    [34] P.G.de Ruyter, O.P. Kuipers, W.C. Meijer, W.M. de Vos, Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening, Nature Biotechnology 15 (1997)976-979.
    
    [35] R. Cibik, P. Tailliez, P. Langella, M.P. Chapot-Chartier, Identification of Mur, an atypical peptidoglycan hydrolase derived from Leuconostoc citreum, Appl Environ Microbiol 67 (2001) 858-864.
    
    [36] N. Horn, A. Fernandez, H.M. Dodd, M.J. Gasson, J.M. Rodriguez, Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains, Appl Environ Microbiol 70 (2004) 5030-5032.
    
    [37] L.A. Ribeiro, V. Azevedo, Y. Le Loir, S.C. Oliveira, Y. Dieye, J.C. Piard, A. Grass, P. Langella, Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis, Appl Environ Microbiol 68 (2002) 910-916.
    
    [38] A. Miyoshi, I. Poquet, V. Azevedo, J. Commissaire, L. Bermudez-Humaran, E. Domakova, Y. Leloir, S.C. Oliveira, A. Grass, P. Langella, Controlled production of stable heterologous proteins in Lactococcus lactis, Appl Environ Microbiol 68 (2002) 3141-3146.
    [39] S. Pavan, P. Hols, J. Delcour, M.C. Geoffroy, C. Grangette, M. Kleerebezem, A. Mercenier, Adaptation of the nisin-controlled expression system in Lactobacillus plantanun: a tool to study in vivo biological effects, Appl Environ Microbiol 66 (2000) 4427 - 4432.
    
    [40] A. Miyoshi, I. Poquet, V. Azevedo, J. Commissaire, L. Bermudez-Humaran, E. Domakova, Y. Le Loir, S.C. Oliveira, A. Gruss, P. Langella, Controlled production of stable heterologous proteins in Lactococcus lactis, Appl Environ Microbiol 68 (2002) 3141-3146.
    
    [41] V. Enouf, P. Langella, J. Commissaire, J. Cohen, G. Cormier, Bovine rotavirus nonstrucrural protein 4 produced by Lactococcus lactis is antigenic and immunogenic,Appl Environ Microbiol 67 (2001) 1423 -1428.
    
    [42] P. Langella, Y. Le Loir, Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system, Braz J Med Biol Res 32 (1999) 191-198.
    
    [43] L.G.Bermudez-Humaran, P. Langella, A. Miyoshi, A. Gruss, R.T. Guerra, R. Montes de Oca-Luna, Y. Le Loir, Production of human papillomavirus type 16 E7 protein in Lactococcus lactis, Appl Environ Microbiol 68 (2002) 917 - 922.
    
    [44] M.C. Martin, M. Fernandez, J.M. Martin-Alonso, F. Parra, J.A. Boga, M.A. Alvarez, Nisin-controlled expression of Norwalk virus VP60 protein in Lactobacillus casei, FEMS Microbiol Lett 237 (2004) 385-391.
    
    [45] S. Drouault, C. Juste, P. Marteau, P. Renault, G.Corthier, Oral treatment with Lactococcus lactis expressing Staphylococcus hyicus lipase enhances lipid digestion in pigs with induced pancreatic insufficiency, Appl Environ Microbiol 68 (2002) 3166-3168.
    [46]J.M.Chatel,P.Langella,K.Adel-Patient,J.Commissaire,J.M.Wal,G.Corthier,Induction of mueosal immune response after intranasal or oral inoculation of mice with Laetoeoccus lactis producing bovine beta-lactoglobulin,Clin Diagn Lab Immunol 8(2001)545-551.
    [47]L.G.Bermudez-Humaran,P.Langella,N.G.Cortes-Perez,A.Gruss,R.S.Tarnez-Guerra,S.C.Oliveira,O.Saucedo-Cardenas,R.Montes de Oca-Luna,Y.Le Loir,Intranasal immunization with recombinant Lactocoecus laetis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production,Infect Immun 71(2003)1887-1896.
    [48]L.G.Bermudez-Humaran,P.Langella,J.Commissaire,S.Gilbert,Y.Le Loir,R.L'Haridon,G.Corthier,Controlled intra-or extraeellular production of staphylococcal nuelease and ovine omega interferon in Lactococcus laetis,FEMS Mierobiol Lett 224(2003)307-313.
    [49]M.C.Martinez-Cuesta,M.J.Gasson,A.Narbad,Heterologous expression of the plant coumarate:CoA ligase in Lactococcus lactis,Lett Appl Microbiol 40(2005)44-49.
    [50]Y.Dieye,S.Usai,F.Clier,A.Gruss,J.C.Piard,Design of a protein-targeting system for lactic acid bacteria,J Bacteriol 183(2001)4157-4166.
    [51]Y.Le Loir,A.Gruss,S.D.Ehrlich,P.Langella,Direct screening of recombinants in gram-positive bacteria using the secreted staphylococcal nuclease as a reporter,J Bacteriol 176(1994)5135-5139.
    [52]M.Sibakov,T.Koivula,A.von Wright,I.Palva,Secretion of TEM beta-lactamase with sisal sequences isolated from the chromosome of Lactococcus lactis subsp,lactis,Appl Environ Microbiol 57(1991)341-348.
    [53]C.J.Pillidge,L.E.Pearce,Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp,lactis,J Appl Bacteriol 71(1991)78-85.
    [54]H.Israelsen,S.M.Madsen,A.Vrang,E.B.Hansen,E.Johansen,Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector,pAK80,Appl Environ Microbiol 61(1995)2540-2547.
    [55]M.van Asseldonk,W.M.de Vos,G Simons,Functional analysis of the Lactococeus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase,Mol Gen Genet 240(1993)428-434.
    [56]Y.Le Loir,A.Gruss,S.D.Ehrlich,P.Langella,A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis,J Baeteriol 180(1998)1895-1903.
    [57]G.Perez-Martinez,J.Kok,G.Venema,J.M.van Dijl,H.Smith,S.Bron,Protein export elements from Lactococcus lactis,Mol Gen Genet 234(1992)401-411.
    [58]T.Koivula,M.Sibakov,I.Palva,Isolation and characterization of Lactococcus lactis subsp,lactis promoters,Appl Environ Microbiol 57(1991)333-340.
    [59]J.C.Piard,I.Hautefort,V.A.Fischetti,S.D.Ehrlich,M.Fons,A.Gruss,Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria,J Bacteriol 179 (1997) 3068 - 3072.
    
    [60] G.Corthier, C. Delorme, S.D. Ehrlich, P. Renault, Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract, Appl Environ Microbiol 64 (1998) 2721 - 2722.
    
    [61] N.R. Waterfield, R.W. Le Page, P.W. Wilson, J.M. Wells, The isolation of lactococcal promoters and their use in investigating bacterial luciferase synthesis in Lactococcus lactis, Gene 165 (1995) 9-15.
    
    [62] L. Steidler, J. Viaene, W. Fiers, E. Remaut, Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A, Appl Environ Microbiol 64 (1998) 342 - 345.
    
    [63] A. Thompson, M.J. Gasson, Location effects of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae, Appl Environ Microbiol 67 (2001) 3434 - 3439.
    
    [64] M.H. Lee, Y. Roussel, M. Wilks, S. Tabaqchali, Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H. pylori infection in mice, Vaccine 19 (2001) 3927 - 3935.
    
    [65] J.M. Wells, P.W. Wilson, P.M. Norton, M.J. Gasson, R.W. Le Page, Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge, Mol Microbiol 8 (1993) 1155-1162.
    
    [66] M. Theisen, S. Soe, K. Brunstedt, F. Follmann, L. Bredmose, H. Israelsen, S.M. Madsen, P. Druilhe, A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies,Vaccine 22(2004)1188-1198.
    [67]N.G.Cortes-Perez,L.G.Bermudez-Humaran,Y.Le Loir,C.Rodriguez-Padilla,A.Gruss,O.Saucedo-Cardenas,P.Langella,R.Montes-de-Oca-Luna,Mice immunization with live lactococci displaying a surface anchored HPV-16 E7oncoprotein,FEMS Microbiol Lett 229(2003)37-42.
    [68]M.T.Gil,I.Perez-Arellano,J.Buesa,G.Perez-Martinez,Secretion of the rotavirus VP8~* protein in Lactococcus lactis,FEMS Microbiol Lett 203(2001)269-274.
    [69]L.Steidler,J.M.Wells,A.Raeymaekers,J.Vandekerckhove,W.Fiers,E.Remaut,Secretion of biologically active murine intedeukin-2 by Lactococcus lactis subsp.lactis,Appl Environ Microbiol 61(1995)1627-1629.
    [70]L.Steidler,K.Robinson,L.Chamberlain,K.M.Schofield,E.Remaut,R.W.Le Page,J.M.Wells,Mucosal delivery of murine interleukin-2(IL-2)and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine,Infect Immun 66(1998)3183-3189.
    [71]L.Steidler,W.Hans,L.Schotte,S.Neirynck,F.Obermeier,W.Falk,W.Fiers,E.Remaut,Treatment of murine colitis by Lactococcus lactis secreting intedeukin-10,Science 289(2000)1352-1355.
    [72]E.Bemasconi,J.E.Germond,M.Delley,R.Fritsche,B.Corthesy,Lactobacillus bulgaricus proteinase expressed in Lactococcus lactis is a powerful carder for cell wall-associated and secreted bovine beta-lactoglobulin fusion proteins,Appl Environ Microbiol 68(2002)2917-2923.
    [73] J.M. Chatel, S. Nouaille, K. Adel-Patient, Y. Le Loir, H. Boe, A. Gruss, J.M. Wal, P. Langella, Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice, Appl Environ Microbiol 69 (2003) 6620 - 6627.
    
    [74] B. Sinha, P. Francois, Y.A. Que, M. Hussain, C. Heilmann, P. Moreillon, D. Lew, K.H. Krause, G.Peters, M. Herrmann, Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells, Infect Immun 68 (2000) 6871 - 6878.
    
    [75] Y.A. Que, J.A. Haefliger, P. Francioli, P. Moreillon, Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector, Infect Immun 68 (2000) 3516 - 3522.
    
    [76] D. Karpman, Z.D. Bekassy, A.C. Sjogren, M.S. Dubois, M.A. Karmali, M. Mascarenhas, K.G.Jarvis, L.J. Gansheroff, A.D. O'Brien, G.S. Arbus, J.B. Kaper, Antibodies to intimin and Escherichia coli secreted proteins A and B in patients with enterohemorrhagic Escherichia coli infections, Pediatr Nephrol 17 (2002) 201-211.
    
    [77] C.L. Wells, E.A. Moore, J.A. Hoag, H. Hirt, G.M. Dunny, S.L. Erlandsen, Inducible expression of Enterococcus faecalis aggregation substance surface protein facilitates bacterial internalization by cultured enterocytes, Infect Immun 68 (2000) 7190-7194.
    
    [78] C. Gilbert, K. Robinson, R.W. Le Page, J.M. Wells, Heterologous expression of an immunogenic pneumococcal type 3 capsular polysaccharide in Lactococcus lactis, Infect Immun 68 (2000) 3251 - 3260.
    [79] S. Flynn, D. van Sinderen, G.M. Thornton, H. Holo, I.F. Nes, J.K. Collins, Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118, Microbiology 148 (2002) 973 - 984.
    
    [80] J.M. Martinez, J. Kok, J.W. Sanders, P.E. Hernandez, Heterologous coproduction of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodies, Appl Environ Microbiol 66 (2000) 3543 - 3549.
    
    [81] M.J. van Belkum, R.W. Worobo, M.E. Stiles, Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis, Mol Microbiol 23 (1997) 1293-1301.
    
    [82] M. Giuliano, C. Schiraldi, M.R. Marotta, J. Hugenholtz, M. De Rosa, Expression of Sulfolobus solfataricus alpha-glucosidase in Lactococcus lactis, Appl Microbiol Biotechnol 64 (2004) 829 - 832.
    
    [83] S. Gaeng, S. Scherer, H. Neve, M.J. Loessner, Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis, Appl Environ Microbiol 66 (2000) 2951 - 2958.
    
    [84] M. van de Guchte, J.M. van der Vossen, J. Kok, G. Venema, Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis, Appl Environ Microbiol 55 (1989) 224 - 228.
    
    [85] M. van de Guchte, J. Kodde, J.M. van der Vossen, J. Kok, G.Venema, Heterologous gene expression in Lactococcus lactis subsp. lactis: synthesis, secretion, and processing of the Bacillus subtilis neutral protease, Appl Environ Microbiol 56 (1990)2606-2611.
    
    [86] M. Kahala, A. Palva, The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria, Appl Microbiol Biotechnol 51 (1999) 71 - 78.
    
    [87] H. Neubauer, A. Bauche, B. Mollet, Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures, Microbiology 149 (2003) 973 - 982.
    
    [88] R. Wolinowska, P. Ceglowski, J. Kok, G.Venema, Isolation, sequence and expression in Escherichia coli, Bacillus subtilis and Lactococcus lactis of the DNase (streptodornase)-encoding gene from Streptococcus equisimilis H46A, Gene 106 (1991)115-119.
    
    [89] G.Simons, G.Rutten, M. Homes, M. Nijhuis, M. van Asseldonk, Production of prochymosin in lactococci, Adv Exp Med Biol 306 (1991) 115 -119.
    
    [90] S. Drouault, G. Corthier, S.D. Ehrlich, P. Renault, Expression of the Staphylococcus hyicus lipase in Lactococcus lactis, Appl Environ Microbiol 66 (2000) 588 - 598.
    
    [91] J. Arnau, E. Hjerl-Hansen, H. Israelsen, Heterologous gene expression of bovine plasmin in Lactococcus lactis, Appl Microbiol Biotechnol 48 (1997) 331 - 338.
    
    [92] Y. Le Loir, V. Azevedo, S. Oliveira, D. Freitas, A. Miyoshi, L. Bermudez-Humaran, S. Nouaille, L. Ribeiro, S. Leclercq, J. Gabriel, V. Guimaraes, M. Oliveira, C. Charlier, M. Gautier, P. Langella, Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production, Microbial Cell Factories 4 (2005) 2.
    
    [93] A.R. Raha, N.R. Varma, K. Yusoff, E. Ross, H.L. Foo, Cell surface display system for Lactococcus lactis: a novel development for oral vaccine, Appl Microbiol Biotechnol 68 (2005) 75-81.
    
    [94] K.H. van Wely, J. Swaving, R. Freudl, A.J. Driessen, Translocation of proteins across the cell envelope of Gram-positive bacteria, FEMS Microbiol Rev 25 (2001) 437-454.
    
    [95] L. Steidler, J. Viaene, W. Fiers, E. Remaut, Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A, Appl Environ Microbiol 64 (1998) 342-345.
    
    [96] P. Duwat, S. Sourice, B. Cesselin, G.Lamberet, K. Vido, P. Gaudu, Y. Le Loir, F. Violet, P. Loubiere, A. Gruss, Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival, J Bacteriol 183 (2001)4509-4516.
    
    [97] R.S. Bongers, J.W. Veening, M. Van Wieringen, O.P. Kuipers, M. Kleerebezem, Development and characterization of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by addition of subtilin, Appl Environ Microbiol 71 (2005) 8818-8824. B
    
    [98] A. Fuglsang, Lactic acid bacteria as prime candidates for codon optimization, Biochem Biophys Res Commun 312 (2003) 285-291.
    
    [99] S. Uthaisangsook, N.K. Day, S.L. Banna, R.A. Good, S. Haraguchi, Innate immunity and its role against infections, Ann Allergy Asthma Immunol 88 (2002) 253-264; quiz 265-256, 318.
    
    [100] L.S. Murillo, S.A. Morre, A.S. Pena, Toll-like receptors and NOD/CARD proteins: pattern recognition receptors are key elements in the regulation of immune response, Drugs Today (Barc) 39 (2003) 415-438.
    
    [101] K. Takeda, T. Kaisho, S. Akira, Toll-like receptors, Annu Rev Immunol 21 (2003) 335-376.
    
    [102] S. Akira, K. Takeda, T. Kaisho, Toll-like receptors: critical proteins linking innate and acquired immunity, Nat Immunol 2 (2001) 675-680.
    
    [103] N. Inohara, G.Nunez, The NOD: a signaling module that regulates apoptosis and host defense against pathogens, Oncogene 20 (2001) 6473-6481.
    
    [104] L. Franchi, C. McDonald, T.D. Kanneganti, A. Amer, G. Nunez, Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense, J Immunol 177 (2006) 3507-3513.
    
    [105] S. Janssens, R. Beyaert, Role of Toll-like receptors in pathogen recognition, Clin Microbiol Rev 16 (2003) 637-646.
    
    [106] Y. Delneste, C. Beauvillain, P. Jeannin, [Innate immunity: structure and function of TLRs], Med Sci (Paris) 23 (2007) 67-73.
    
    [107] A.N. Theofilopoulos, R. Baccala, B. Beutler, D.H. Kono, Type I interferons (alpha/beta) in immunity and autoimmunity, Annu Rev Immunol 23 (2005) 307-336.
    
    [108] L.L. Bourhis, C. Werts, Role of Nods in bacterial infection, Microbes Infect 9 (2007) 629-636.
    
    [109] R.B. Sartor, Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis, Nat Clin Pract Gastroenterol Hepatol 3 (2006) 390-407.
    
    [110] M.T. Abreu, M. Fukata, M. Arditi, TLR signaling in the gut in health and disease, J Immunol 174 (2005) 4453-4460.
    
    [111] T.T. Macdonald, G.Monteleone, Immunity, inflammation, and allergy in the gut, Science 307 (2005) 1920-1925.
    
    [112] E. Cario, D.K. Podolsky, Toll-like receptor signaling and its relevance to intestinal inflammation, Ann N Y Acad Sci 1072 (2006) 332-338.
    
    [113] D.K. Podolsky, Inflammatory bowel disease, N Engl J Med 347 (2002) 417-429.
    
    [114] T. Hisamatsu, M. Suzuki, H.C. Reinecker, W.J. Nadeau, B.A. McCormick, D.K. Podolsky, CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells, Gastroenterology 124 (2003) 993-1000.
    
    [115] L. Eckmann, M. Karin, NOD2 and Crohn's Disease: Loss or Gain of Function?, Immunity 22 (2005) 661-667.
    
    [116] J.P. Hugot, CARD15/NOD2 mutations in Crohn's disease, Ann N Y Acad Sci 1072(2006)9-18.
    
    [117] K.S. Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara, G.Nunez, R.A. Flavell, Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract, Science 307 (2005) 731-734.
    
    [118] S. Maeda, L.C. Hsu, H. Liu, L.A. Bankston, M. Iimura, M.F. Kagnoff, L. Eckmann,M.Karin,Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-lbeta processing,Science 307(2005)734-738.
    [119]S.Schreiber,Experimental immunomodulatory therapy of inflammatory bowel disease,Neth J Med 53(1998)S24-31.
    [120]G.Rogler,T.Andus,Cytokines in inflammatory bowel disease,World J Surg 22(1998)382-389.
    [121]C.Stevens,G.Walz,C.Singaram,M.L.Lipman,B.Zanker,A.Muggia,D.Antonioli,M.A.Peppercorn,T.B.Strom,Tumor necrosis factor-alpha,interleukin-1beta,and interleukin-6 expression in inflammatory bowel disease,Dig Dis Sci 37(1992)818-826.
    [122]E.J.Breese,C.A.Michie,S.W.Nicholls,S.H.Murch,C.B.Williams,P.Domizio,J.A.Walker-Smith,T.T.MacDonald,Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease,Gastroenterology 106(1994)1455-1466.
    [123]W.Y.Almawi,M.L.Lipman,A.C.Stevens,B.Zanker,E.T.Hadro,T.B.Strom,Abrogation of glucocorticoid-mediated inhibition of T cell proliferation by the synergistic action of IL-1,IL-6,and IFN-gamma,J Immunol 146(1991)3523-3527.
    [124]J.Willems,M.Joniau,S.Cinque,J.van Damme,Human granulocyte chemotactic peptide(IL-8)as a specific neutrophil degranulator:comparison with other monokines,Immunology 67(1989)540-542.
    [125]L.Mazzucchelli,C.Hauser,K.Zgraggen,H.Wagner,M.Hess,J.A.Laissue,C.Mueller,Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation,Am J Pathol 144(1994)997-1007.
    [126]O.H.Nielsen,T.Koppen,N.Rudiger,T.Horn,J.Eriksen,I.Kirman,Involvement of interleukin-4 and-10 in inflammatory bowel disease,Dig Dis Sci 41(1996)1786-1793.
    [127]S.Pestka,C.D.Krause,D.Sarkar,M.R.Walter,Y.Shi,P.B.Fisher,Interleukin-10 and related cytokines and receptors,Annu Rev Immunol 22(2004)929-979.
    [128]I.Lalani,K.Bhol,A.R.Ahrned,Intedeukin-10:biology,role in inflammation and autoimmunity,Ann Allergy Asthma Immunol 79(1997)469-483.
    [129]A.Tagore,W.M.Gonsalkorale,V.Pravica,A.H.Hajeer,R.McMahon,P.J.Whorwell,P.J.Sinnott,I.V.Hutchinson,Interleukin-10(IL-10)genotypes in inflammatory bowel disease,Tissue Antigens 54(1999)386-390.
    [130]R.J.Farrell,M.A.Peppercorn,Ulcerative colitis,Lancet 359(2002)331-340.
    [131]A.Isaacs,J.Lindenmann,Virus interference.I.The interferon,Proc R Soc Lond B Biol Sci 147(1957)258-267.
    [132]J.Bekisz,H.Schmeisser,J.Hemandez,N.D.Goldman,K.C.Zoon,Human interferons alpha,beta and omega,Growth Factors 22(2004)243-251.
    [133]K.Katakura,J.Lee,D.Rachmilewitz,G.Li,L.Eckmann,E.Raz,Toll-like receptor 9-induced type I IFN protects mice from experimental colitis,J Clin Invest 115(2005)695-702.
    [134]S.Wirtz,M.F.Neurath,Illuminating the role of type I IFNs in colitis,J Clin Invest 115(2005)586-588.
    [135]S.Nikolaus,P.Rutgeerts,R.Fedorak,A.H.Steinhart,G.E.Wild,D.Theuer,J.Mohrle,S.Schreiber,Interferon beta-la in ulcerative colitis:a placebo controlled,randomised,dose escalating study,Gut 52(2003)1286-1290.
    [136]X.Zhang,E.Deriaud,X.Jiao,D.Braun,C.Leclerc,R.Lo-Man,Type I interferons protect neonates from acute inflammation through intedeukin 10-producing B cells,J Exp Med 204(2007)1107-1118.
    [137]M.Karpusas,M.Nolte,C.B.Benton,W.Meier,W.N.Lipscomb,S.Goelz,The crystal structure of human interferon beta at 2.2-A resolution,Proc Natl Acad Sci U S A94(1997)11813-11818.
    [138]Joseph Sambrook,Peter MacCallum,D.Russell.,Molecular Cloning:A Laboratory Manual(Third Edition),third ed.,Cold Spring Harbor Laboratory Press,2001.
    [139]D.F.Mark,S.D.Lu,A.A.Creasey,R.Yamamoto,L.S.Lin,Site-specific mutagenesis of the human fibroblast interferon gene,Proc Natl Acad Sci U S A 81(1984)5662-5666.
    [140]H.Holo,I.F.Nes,High-Frequency Transformation,by Electroporation,of Lactococcus lactis subsp,cremoris Grown with Glycine in Osmotically Stabilized Media,Appl Environ Microbiol 55(1989)3119-3123.
    [141]O.Schneewind,P.Model,V.A.Fischetti,Sorting of protein A to the staphylococcal cell wall,Cell 70(1992)267-281.
    [142]C.E.Ballou,Isolation,characterization,and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects,Methods Enzymol 185(1990)440-470.
    [143]H.Braat,P.Rottiers,D.W.Hommes,N.Huyghebaert,E.Remaut,J.P.Remon,S.J.van Deventer,S.Neirynck,M.P.Peppelenbosch,L.Steidler,A phase I trial with transgenic bacteria expressing interleuldn-10 in Crohn's disease,Clin Gastroenterol Hepatol 4(2006)754-759.
    [144]D.A.Freitas,S.Leclerc,A.Miyoshi,S.C.Oliveira,P.S.Sommer,L.Rodrigues,A.Correa Junior,M.Gautier,P.Langella,V.A.Azevedo,Y.Le Loir,Secretion of Streptomyces tendae antifungal protein 1 by Lactococcus lactis,Braz J Med Biol Res 38(2005)1585-1592.
    [145]L.W.Riley,R.S.Remis,S.D.Helgerson,H.B.McGee,J.G.Wells,B.R.Davis,R.J.Hebert,E.S.Olcott,L.M.Johnson,N.T.Hargrett,P.A.Blake,M.L.Cohen,Hemorrhagic colitis associated with a rare Escherichia coli serotype,N Engl J Med 308(1983)651-655.
    [146]J.G.Wells,B.R,Davis,I.K.Waehsmuth,L.W.Riley,R.S.Remis,R.Sokolow,G.K.Morris,Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype,J Clin Microbiol 18(1983)512-520.
    [147]P.M.Griffin,S.M.Ostroff,R.V.Tauxe,K.D.Greene,J.G.Wells,J.H.Lewis,P.A.Blake,Illnesses associated with Escherichia coli O157:H7 infections.A broad clinical spectrum,Ann Intern Med 109(1988)705-712.
    [148]M.M.Levine,Escherichia coli that cause diarrhea:enterotoxigenic,enteropathogenic,enteroinvasive,enterohemorrhagic,and enteroadherent,J Infect Dis 155(1987)377-389.
    [149] P. Orr, B. Lorencz, R. Brown, R. Kielly, B. Tan, D. Holton, H. Clugstone, L. Lugtig, C. Pim, S. MacDonald, et al., An outbreak of diarrhea due to verotoxin-producing Escherichia coli in the Canadian Northwest Territories, Scand J Infect Dis 26 (1994) 675-684.
    
    [150] K.S. McKeegan, M.I. Borges-Walmsley, A.R. Walmsley, The structure and function of drug pumps: an update, Trends Microbiol 11 (2003) 21-29.
    
    [151] F. Ebel, T. Podzadel, M. Rohde, A.U. Kresse, S. Kramer, C. Deibel, C.A. Guzman, T. Chakraborty, Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages, Mol Microbiol 30 (1998) 147-161.
    
    [152] N.T. Perna, G.F. Mayhew, G.Posfai, S. Elliott, M.S. Donnenberg, J.B. Kaper, F.R. Blattner, Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7, Infect Immun 66 (1998) 3810-3817.
    
    [153] J.L. Mellies, S.J. Elliott, V. Sperandio, M.S. Donnenberg, J.B. Kaper, The Per regulon of enteropathogenic Escherichia coli : identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler), Mol Microbiol 33 (1999) 296-306.
    
    [154] V. Sperandio, J.L. Mellies, W. Nguyen, S. Shin, J.B. Kaper, Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli, Proc Natl Acad Sci U S A 96(1999)15196-15201.
    
    [155] S. Tzipori, F. Gunzer, M.S. Donnenberg, L. de Montigny, J.B. Kaper, A. Donohue-Rolfe, The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection, Infect Immun 63 (1995) 3621-3627.
    
    [156] M. Louie, J.C. de Azavedo, M.Y. Handelsman, C.G.Clark, B. Ally, M. Dytoc, P. Sherman, J. Brunton, Expression and characterization of the eaeA gene product of Escherichia coli serotype O157:H7, Infect Immun 61 (1993) 4085-4092.
    
    [157] T.K. McDaniel, K.G.Jarvis, M.S. Donnenberg, J.B. Kaper, A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens, Proc Natl Acad Sci U S A 92 (1995) 1664-1668.
    
    [158] S.J. Elliott, L.A. Wainwright, T.K. McDaniel, K.G.Jarvis, Y.K. Deng, L.C. Lai, B.P. McNamara, M.S. Donnenberg, J.B. Kaper, The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69, Mol Microbiol 28(1998)1-4.
    
    [159] B. Kenny, R. DeVinney, M. Stein, D.J. Reinscheid, E.A. Frey, B.B. Finlay, Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells, Cell 91 (1997) 511-520.
    
    [160] C. Deibel, S. Kramer, T. Chakraborty, F. Ebel, EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein, Mol Microbiol 28 (1998) 463-474.
    
    [161] K.G.Jarvis, J.A. Giron, A.E. Jerse, T.K. McDaniel, M.S. Donnenberg, J.B. Kaper, Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation, Proc Natl Acad Sci U S A 92 (1995) 7996-8000.
    
    [162] K.G. Jarvis, J.B. Kaper, Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system, Infect Immun 64 (1996) 4826-4829.
    
    [163] C. Wolff, I. Nisan, E. Hanski, G.Frankel, I. Rosenshine, Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli, Mol Microbiol 28 (1998) 143-155.
    
    [164] S. Knutton, I. Rosenshine, M.J. Pallen, I. Nisan, B.C. Neves, C. Bain, C. Wolff, G. Dougan, G. Frankel, A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells, Embo J 17 (1998) 2166-2176.
    
    [165] J. Konowalchuk, J.I. Speirs, S. Stavric, Vero response to a cytotoxin of Escherichia coli, Infect Immun 18 (1977) 775-779.
    
    [166] A.D. O'Brien, V.L. Tesh, A. Donohue-Rolfe, M.P. Jackson, S. Olsnes, K. Sandvig, A.A. Lindberg, G.T. Keusch, Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis, Curr Top Microbiol Immunol 180 (1992) 65-94.
    
    [167] M.P. Jackson, Structure-function analyses of Shiga toxin and the Shiga-like toxins, Microb Pathog 8 (1990) 235-242.
    
    [168] Y. Endo, K. Tsurugi, T. Yutsudo, Y. Takeda, T. Ogasawara, K. Igarashi, Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins, Eur J Biochem 171 (1988)45-50.
    
    [169] R.P. Cherla, S.Y. Lee, P.L. Mees, V.L. Tesh, Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line, J Leukoc Biol 79 (2006) 397-407.
    
    [170] T.G.Obrig, T.P. Moran, J.E. Brown, The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis, Biochem J 244 (1987) 287-294.
    
    [171] C.A. Lingwood, Verotoxins and their glycolipid receptors, Adv Lipid Res 25 (1993)189-211.
    
    [172] S. Zhao, J. Meng, M.P. Doyle, R. Meinersman, G.Wang, P. Zhao, A low molecular weight outer-membrane protein of Escherichia coli O157:H7 associated with adherence to INT407 cells and chicken caeca, J Med Microbiol 45 (1996) 90-96.
    
    [173] T.G.Obrig, Shiga toxin mode of action in E. coli O157:H7 disease, Front Biosci 2 (1997) d635-642.
    
    [174] M.S. Donnenberg, T.S. Whittam, Pathogenesis and evolution of virulence inenteropathogenic and enterohemorrhagic Escherichia coli, J Clin Invest 107 (2001) 539-548.
    
    [175] M.A. Karmali, M. Petric, C. Lim, P.C. Fleming, G.S. Arbus, H. Lior, The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli, J Infect Dis 151 (1985) 775-782.
    
    [176] V.L. Tesh, J.A. Burris, J.W. Owens, V.M. Gordon, E.A. Wadolkowski, A.D. O'Brien, J.E. Samuel, Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice, Infect Immun 61 (1993) 3392-3402.
    [177] C.B. Louise, T.G. Obrig, Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells, J Infect Dis 172(1995)1397-1401.
    
    [178] P. Boerlin, Evolution of virulence factors in Shiga-toxin-producing Escherichia coli, Cell Mol Life Sci 56 (1999) 735-741.
    
    [179] I. Muhldorfer, J. Hacker, G.T. Keusch, D.W. Acheson, H. Tschape, A.V. Kane, A. Ritter, T. Olschlager, A. Donohue-Rolfe, Regulation of the Shiga-like toxin II operon in Escherichia coli, Infect Immun 64 (1996) 495-502.
    
    [180] S.J. Cavalieri, G.A. Bohach, I.S. Snyder, Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity, Microbiol Rev 48 (1984) 326-343.
    
    [181] H. Schmidt, L. Beutin, H. Karch, Molecular analysis of the plasmid-encodedhemolysin of Escherichia coli O157:H7 strain EDL 933, Infect Immun 63 (1995) 1055-1061.
    
    [182] E. Konadu, J.B. Robbins, J. Shiloach, D.A. Bryla, S.C. Szu, Preparation, characterization, and immunological properties in mice of Escherichia coli O157 O-specific polysaccharide-protein conjugate vaccines, Infect Immun 62 (1994) 5048-5054.
    
    [183] E.Y. Konadu, J.C. Parke, Jr., H.T. Tran, D.A. Bryla, J.B. Robbins, S.C. Szu, Investigational vaccine for Escherichia coli 0157: phase 1 study of 0157 O-specific polysaccharide-Pseudomonas aeruginosa recombinant exoprotein A conjugates in adults, J Infect Dis 177 (1998) 383-387.
    
    [184] J.G.Howard, Observations on the intoxication produced in mice and rabbits by the neurotoxin of Shigella shigae, Br J Exp Pathol 36 (1955) 439-446.
    
    [185] D.L. MacLeod, C.L. Gyles, Immunization of pigs with a purified Shiga-like toxin II variant toxoid, Vet Microbiol 29 (1991) 309-318.
    
    [186] I. Harari, R. Arnon, Carboxy-terminal peptides from the B subunit of Shiga toxin induce a local and parenteral protective effect, Mol Immunol 27 (1990) 613-621.
    
    [187] I. Harari, A. Donohue-Rolfe, G.Keusch, R. Arnon, Synthetic peptides of Shiga toxin B subunit induce antibodies which neutralize its biological activity, Infect Immun 56 (1988) 1618-1624.
    
    [188] B. Boyd, S. Richardson, J. Gariepy, Serological responses to the B subunit of Shiga-like toxin 1 and its peptide fragments indicate that the B subunit is a vaccine candidate to counter action of the toxin, Infect. Immun. 59 (1991) 750-757.
    
    [189] D.W. Acheson, M.M. Levine, J.B. Kaper, G.T. Keusch, Protective immunity to Shiga-like toxin I following oral immunization with Shiga-like toxin I B-subunit-producing Vibrio cholerae CVD 103-HgR, Infect Immun 64 (1996) 355-357.
    
    [190] T. Fukuda, T. Kimiya, M. Takahashi, Y. Arakawa, Y. Ami, Y. Suzaki, S. Naito, A. Horino, N. Nagata, S. Satoh, F. Gondaira, J. Sugiyama, Y. Nakano, M. Mori, S. Nishinohara, K. Komuro, T. Uchida, Induction of protection against oral infection with cytotoxin-producing Escherichia coli O157:H7 in mice by shiga-like toxin-liposome conjugate, Int Arch Allergy Immunol 116 (1998) 313-317.
    
    [191] M.A. Karmali, The nature of immunity to the Escherichia coli Shiga toxins (verocytotoxins)and options for toxoid immunization,Jpn J Med Sci Biol 51 Suppl (1998)S26-35.
    [192]M.Carneiro-Sampaio,M.da Silva,S.Carbonare,Breast-feeding protection against enteropathogenic Escherichia coli,Rev Microbiol Sao Paulo 27(1996)120-125.
    [193]L.J.Gansheroff,M.R.Wachtel,A.D.O'Brien,Decreased Adherence of Enterohemorrhagic Escherichia coli to HEp-2 Cells in the Presence of Antibodies That Recognize the C-Terminal Region of Intimin,Infect.Immun.67(1999)6409-6417.
    [194]B.C.Neves,R.K.Shaw,G.Frankel,S.Knutton,Polymorphisms within EspA filaments of enteropathogenic and enterohemorrhagic Escherichia coli,Infect Immun 71(2003)2262-2265.
    [195]S.J.Daniell,E.Kocsis,E.Morris,S.Knutton,F.P.Booy,G.Frankel,3D structure of EspA filaments from enteropathogenic Escherichia coli,Mol Microbiol 49(2003)301-308.
    [196]V.F.Crepin,R.Shaw,C.M.Abe,S.Knutton,G.Frankel,Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion,J Bacteriol 187(2005)2881-2889.
    [197]S.J.Elliott,E.O.Krejany,J.L.Mellies,R.M.Robins-Browne,C.Sasakawa,J.B.Kaper,EspG,a novel type Ⅲ system-secreted protein from enteropathogenic Eseherichia coli with similarities to VirA of Shigella flexneri,Infect Immun 69(2001)4027-4033.
    [198] S. Gruenheid, I. Sekirov, N.A. Thomas, W. Deng, P. O'Donnell, D. Goode, Y. Li, E.A. Frey, N.F. Brown, P. Metalnikov, T. Pawson, K. Ashman, B.B. Finlay, Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7, Mol Microbiol 51 (2004) 1233-1249.
    
    [199] R. Mundy, L. Petrovska, K. Smollett, N. Simpson, R.K. Wilson, J. Yu, X. Tu, I. Rosenshine, S. Clare, G.Dougan, G.Frankel, Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection, Infect Immun 72 (2004) 2288-2302.
    
    [200] X. Tu, I. Nisan, C. Yona, E. Hanski, I. Rosenshine, EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli, Mol Microbiol 47 (2003) 595-606.
    
    [201] A.J. Roe, H. Yull, S.W. Naylor, M.J. Woodward, D.G.Smith, D.L. Gaily, Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level, Infect Immun 71 (2003) 5900-5909.
    
    [202] R.K. Shaw, S. Daniell, F. Ebel, G.Frankel, S. Knutton, EspA filament-mediated protein translocation into red blood cells, Cell Microbiol 3 (2001) 213-222.
    
    [203] K. Nagano, K. Taguchi, T. Hara, S. Yokoyama, K. Kawada, H. Mori, Adhesion and colonization of enterohemorrhagic Escherichia coli O157:H7 in cecum of mice, Microbiol Immunol 47 (2003) 125-132.
    
    [204] B.C. Neves, S. Knutton, L.R. Trabulsi, V. Sperandio, J.B. Kaper, G.Dougan, G. Frankel, Molecular and ultrastructural characterisation of EspA from different enteropathogenic Escherichia coli serotypes, FEMS Microbiol Lett 169 (1998) 73-80.
    
    [205] M. Noguera-Obenza, T.J. Ochoa, H.F. Gomez, M.L. Guerrero, I. Herrera-Insua, A.L. Morrow, G.Ruiz-Palacios, L.K. Pickering, C.A. Guzman, T.G.Cleary, Human milk secretory antibodies against attaching and effacing Escherichia coli antigens, Emerg Infect Dis 9 (2003) 545-551.
    
    [206] A.A. Potter, S. Klashinsky, Y. Li, E. Frey, H. Townsend, D. Rogan, G. Erickson, S. Hinkley, T. Klopfenstein, R.A. Moxley, D.R. Smith, B.B. Finlay, Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins, Vaccine 22 (2004) 362-369.
    
    [207] V.F. Crepin, R. Shaw, S. Knutton, G.Frankel, Molecular basis of antigenic polymorphism of EspA filaments: development of a peptide display technology, J Mol Biol 350 (2005) 42-52.
    
    [208] S.A. Kuhne, W.S. Hawes, R.M. La Ragione, M.J. Woodward, G.C. Whitelam, K.C. Gough, Isolation of recombinant antibodies against EspA and intimin of Escherichia coli O157:H7, J Clin Microbiol 42 (2004) 2966-2976.
    
    [209] Y. Li, E. Frey, A.M. Mackenzie, B.B. Finlay, Human response to Escherichia coli O157:H7 infection: antibodies to secreted virulence factors, Infect Immun 68 (2000) 5090-5095.
    
    [210] L. Steidler, K. Robinson, L. Chamberlain, K.M. Schofield, E. Remaut, R.W. Le Page, J.M. Wells, Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine, Infect Immun 66 (1998) 3183-3189.
    
    [211] L.G. Bermudez-Humaran, N.G. Cortes-Perez, F. Lefevre, V. Guimaraes, S. Rabot, J.M. Alcocer-Gonzalez, J.J. Gratadoux, C. Rodriguez-Padilla, R.S. Tamez-Guerra, G.Corthier, A. Gruss, P. Langella, A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors, J Immunol 175 (2005) 7297-7302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700