膀胱移行细胞癌EphA2的表达及血管生成拟态的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:膀胱癌是泌尿系统最常见的恶性肿瘤,它的发病率占全身肿瘤的第8位,其中90%以上是移行细胞癌(transitionalcell carcinoma,TCC),虽然,在初次就诊时55%~60%的膀胱癌为浅表的分化较好的乳头状癌,但治疗后易复发,复发的肿瘤中有20%~30%转变为病理和临床级别更高的侵袭性恶性肿瘤,预后不良。对于侵犯肌层的膀胱癌,有50%患者最终因广泛侵润和远处转移而导致死亡。临床分期和病理分级是公认的判定预后的依据,但哪些标记或结构能预测哪些膀胱癌有向更高恶性和侵袭性转变?这些生物学标记是否能为膀胱癌的生物治疗提供新靶向和新思路呢?这些问题已成为膀胱癌的研究热点。
     EphA2(epithelial cell kinase,EphA2)是Eph酪氨酸激酶受体家族成员之一,最初是在成年人上皮细胞内发现的,虽然EphA2在正常细胞内的细胞学功能尚未被很好阐明,但在人类不同类型的肿瘤组织和细胞株中常常高表达,包括乳腺癌、恶性黑色素细胞瘤、前列腺癌、结肠癌和食管癌等,特别在高侵袭性的肿瘤中有更高水平的表达。对于一些肿瘤模型的研究也表明EphA2在调节细胞的生长、生存、迁移和血管发生中具有潜在的作用。近几年来,又发现它参与调控肿瘤血管生成拟态(vasculogenic mimicry VM)的形成。血管生成拟态最初是在1999年由Maniotis等提出的。他们发现在视网膜黑色素瘤内部可形成由恶性肿瘤细胞而非血管内皮细胞连接形成的、能为肿瘤提供血供的管网状结构。随后的进一步研究发现在其他一些高度恶性的肿瘤也中存在这种肿瘤微循环的新形式,这种由高度恶性肿瘤细胞通过细胞变形生成的被细胞外基质分割的微循环管道与恶性肿瘤的侵袭、转移和预后关系密切,也对以往认为肿瘤仅通过血管发生获得血流供应的机制提出了挑战。
     目前,对肿瘤组织EphA2表达和血管生成拟态的研究,虽然在国内外有少量文献报道,但涉及到膀胱癌的报道极少。本实验通过测定膀胱移行细胞癌中EphA2蛋白、磷酸化EphA2蛋白及基因的表达,探讨EphA2与膀胱癌生物学特性的关系,并对EphA2表达的分子机制和调控机制进行初步研究。同时在膀胱癌中寻找是否存在血管生成拟态,探讨血管生成拟态与EphA2的相关性。本研究分2部分:
     题目:EphA2在膀胱移行细胞癌中的表达情况及机制探讨
     研究目的:研究EphA2与膀胱癌生物学特性的关系,初步探讨EphA2表达的分子调控机制。
     研究方法:采用Western blotting和免疫沉淀技术分别测定20例膀胱移行细胞癌和10例正常膀胱粘膜EphA2蛋白和磷酸化EphA2蛋白的表达,应用RT-PCR技术对上述两组标本的EphA2 mRNA进行测定。
     结果:EphA2蛋白在膀胱移行细胞癌中的表达明显高于正常膀胱粘膜(P<0.001),在膀胱移行细胞癌低分化组表达强于高分化组;磷酸化EphA2蛋白在正常膀胱粘膜中的表达高于膀胱移行细胞癌(P<0.001);EphA2 mRNA在膀胱移行细胞癌中的表达高于正常膀胱粘膜(P<0.001),与膀胱移行细胞癌的分化程度无关(P=0.295)。
     题目:膀胱移行细胞癌中血管生成拟态及EphA2蛋白表达的实验分析
     研究目的:寻找在膀胱癌中是否存在血管生成拟态(VM),探讨VM、EphA2的生物学意义以及EphA2与VM、肿瘤微血管生成的相关性。
     研究方法:对85例膀胱移行细胞癌存档石蜡标本采用过碘酸雪夫氏反应(periodic acid schiff,PAS)和CD31双重染色,寻找血管生成拟态,同时行微血管密度(microvessel density,MVD)计数。应用免疫组织化学技术检测85例膀胱移行细胞癌及10例正常膀胱粘膜中EphA2的表达。
     结果:膀胱癌组织中大部分管道为内腔面有内皮细胞被覆的血管,这些血管呈现CD31、PAS染色阳性。在85例膀胱癌组织中有8例存在血管生成拟态,这些管道呈现PAS阳性、CD31阴性,其中2例为中分化膀胱癌,6例为低分化膀胱癌,包括T2期1例,T3期4例,T4期3例。8例中有6例出现淋巴结转移。在膀胱移行细胞癌中,EphA2表达阳性76例,阴性9例,阳性率为89.4%,在正常膀胱粘膜组,弱阳性4例,阴性6例,阳性率为40%。两组间差异有显著性意义(P<0.01);VM形成与EphA2表达程度有相关性(P<0.05),膀胱移行细胞癌EphA2阴性组与EphA2阳性组间肿瘤微血管密度(MVD)计数差异有显著性意义(P<0.05),EphA2不同阳性程度组之间MVD计数差异没有显著性意义(P>0.05)。VM存在与否、EphA2表达程度与膀胱癌的病理分级、临床分期和淋巴结转移均有相关性(P<0.05);
     结论:中低分化膀胱癌中存在血管生成拟态;EphA2与血管生成拟态、肿瘤血管生成均有相关性;VM和EphA2将成为判定膀胱癌恶性程度的指标和膀胱癌治疗的新靶向;EphA2 mRNA表达强度与EphA2蛋白表达强度不完全一致。提示转录后的调控机制干预了膀胱癌中EphA2的表达。
Background and objective: bladder carcinoma is the most common malignancy of urinary system, Approximately 90% of the urinary bladder cancers are transitional cell carcinomas that typically occur either as superficial (low-grade) or muscle-invasive (intermediate to high-grade) carcinoma. Superficial tumors can be surgically resected; however, local recurrence is common and 20% to 30% of recurrent lesions progress to higher grade or stage. Muscle-invasive cancers have the greatest propensity to metastasize and are fatal in~50% of the patients. Although the most reliable prognostic factors for recurrence and progression are tumor stage and grade. It is still necessary to search better prognostic markers, to improve clinical management of bladder carcinoma patients.
     The Eph family of kinases constitutes the largest group of transmembrane receptor tyrosine kinases (RTKs). EphA2 is primarily found in adult human epithelial cells. Lower level of EphA2 expression in epithelial cells are observed, while high levels of EphA2 expression have been reported in different human tumor tissues and cell lines, including breast cancer, metastatic melanoma, prostate cancer, colon cancer, and esophagealcancer, specially with higher expression in some aggressive tumors. Increasing evidence indicates that EphA2 overexpression is a common event during the progression of cancer. The study on tumor-based models suggests potential roles for EphA2 in the regulation of cell growth, survival, migration, and angiogenesis. EphA2 has been recently identified as an important mediator of vasculogenie mimicry in vitro. The patterned microcirculation characteristic of vasculogenic mimicry was first described in uveal (intraocular) melanoma. The de novo generation of vascular channels by aggressive and metastatic tumor cells is not strictly a vasculogenic event, therefore the name "vasculogenic mimicry" is assigned to the process by which aggressive tumor cells generate non-endothelial cell-lined charnnels delimited by extracelhlar matrix. Recent researchs discover that other malignant tumors also can generate the characteristic of vasculogenic mimicry. Tumors with vaseulogenic mimicry have a high-grade malignancy, early blood metastasis and poor clinical prognosis. Bissell has further noted that vaseulogenic mimicry poses challenges to the practice of surgical pathology and provides opportunities for the development of new imaging techniques and cancer treatment strategies.
     Although the researches about VM and EphA2 expression in tumor have been sporadically reported, the related study on bladder transitional cell carcinoma was seldom reported. We used Immunohistochemistry, Western blotting and immunoprecipitation to detect the expression of EphA2, EphA2-P and EphA2 mRNA in bladder transitional cell carcinoma and normal mucous membrane of urinary bladder; to investigate the relations between EphA2 and bladder transitional cell carcinoma biological characteristics;to explore the mechanism about EphA2 expression, at the same time, the possible vasculogenic mimicry(VM) presence in transitional cell carcinoma of bladder(TCCB) was investigated to explain the clinical significance of VM in bladder cancer. The relationship between Epha2 and VM, MVD was analysised.
     Experiment part one: Expression and molecular regulation of EphA2 in transitional cell carcinoma of bladder.
     Purpose: to study the relations between EphA2 and TCCB biological characteristics; to explore the molecular mechanism regulating EphA2 expression.
     Methods: Western blotting and Immunoprecipitation were used to detect the protein expression of EphA2 and EphA2-P in 20 cases of TCCB and 10 cases of normal bladder. The expression of EphA2 mRNA in these cases was determined by RT-PCR.
     Results: The EphA2 protein and EphA2 mRNA in TCCB were signigicantly higher expressed than those in normal mucous membrane of urinary bladder(P<0.001). The EphA2 protein was highly expressed in poorly differentiated group than that in well differentiated group, the EphA2-P expression in normal mucous membrane of urinary bladder was signigicantly higher than that in TCCB(P<0.001). The expression of EphA2 mRNA was not correlated with pathological grade of TCCB(P=0.295).
     Experiment part two: Vasculogenic mimicry and expression of EphA2 protein in transitional cell carcinoma of bladder.
     Purpose: to search whether vasculogenic mimicry(VM) exsits in TCCB, to explore the importment biological significances of VM and EphA2 in TCCB, to analyze the relations between EphA2 and VM, MVD in TCCB.
     Methods: the results demonstrated that endothelium-lined vessels were stained positively for CD31 and PAS and were in the majority of the tumor microvasculature.PAS-positive pattern of VM were found in 8 BTCC specimens among 85 TCCB specimens,the 8 specimens belong toⅡ~Ⅲgrade and T2~T4 stage, 6 of them with lymphatic metastasis, the positive rate of EphA2 in TCCB and normal bladder group was 89.1% and 40% ,and was significantly different between the two groups(P<0.01).VM correlate with the expression level of EphA2(P<0.01).the MVD was significantly different between the EphA2 positive group and the EphA2 negative group in TCCB(P<0.01), the MVD among the EphA2 positive groups was not different signigicantly (P>0.05). VM and the expression of EphA2 correlate with clinic stage, histological grading and lymphatic metastasis(P<0.01).
     Conclusion: our results suggest that VM exists in some moderately /poorly differentiated TCCB; EphA2 correlates with VM and angiogenesis in TCCB; VM and EphA2 will be some good markers to monitor the malignant degree and some novel targets for therapeutic intervention against TCCB. The inconformity in expression of EphA2 mRNA and protein in TCCB indicate that the posttranscriptional mechanism may play an important role in the reglation of EphA2.
引文
1 Cutler SJ, Heney NM, Friedell GH. Longitudinal study of patients with bladder cancer: factors associated with disease recurrence and progression. Bladder cancer, 1982, 1: 35-46.
    2 Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999, 155: 739-52.
    3 Bissell MJ. Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name?. Am J Pathol, 1999, 155: 675-9.
    4 Yarden Y, Ullrich A. Growht factor receptor tyrosine kinases. Annu Rev Biochem, 1988: 443-478.
    5 Zelinski DP, Zantek ND, Stewart JC, et al. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res, 2001, 61: 2301-6.
    6 Easty DJ, Bennett DC. Protein tyrosine kinases in malignant melanoma. Melanoma Res, 2000, 10: 401-11.
    7 Walker-Daniels J, Coffrnan K, Azimi M, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate, 1999, 41: 275-80.
    8 Rosenberg IM, Goke M, Kanai M, et al. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am J Physiol, 1997, 273: G824-32.
    9 Miyazaki T, Kato H, Fukuchi M, et al. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer, 2003, 103: 657-63.
    10 Andres AC, Reid HH, Zurcher G, et al. Expression of two novel eph-related receptor protein tyrosine kinases in mammary gland development and carcinogenesis. Oncogene, 1994, 9: 1461-7.
    11 Sood AK, Fletcher MS, Coffin JE, et al. Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. Am J Obstet Gynecol, 2004, 190: 899-909.
    12 Sharma N, Seftor RE, Seftor EA, et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate, 2002, 50: 189-201.
    13 Shirakawa K, Kobayashi H, Heike Y, et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res, 2002, 62: 560-6.
    14 Shirakawa K, Kobayashi H, Sobajima J, et al. Inflammatory breast cancer: vasculogenic mimicry and its hemodynamics of an inflammatory breast cancer xenograft model. Breast Cancer Res, 2003, 5: 136-9.
    15 郝希山,孙保存等.双向分化肿瘤血管生成拟态的分子机制初步观察.中华肿瘤杂志,2003,25:524—526.
    16 Hess AR, Seftor EA, Gardner LM, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res, 2001, 61: 3250-5.
    17 Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem, 1988, 57: 443-78.
    18 任芳,史惠.Epha2在肿瘤中的研究进展.国外医学妇产科分册,2006,33:40—43.
    19 Pandey A, Shao H, Marks RM, et al. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science, 1995, 268: 567-9.
    20 Pandey A, Lazar DF, Saltiel AR, et al. Activation of the Eck receptor protein tyrosine kinase stimulates phosphatidylinositol 3-kinase activity. J Biol Chem, 1994, 269: 30154-7.
    21 Ganju P, Shigemoto K, Brennan J, et al. The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development. Oncogene, 1994, 9: 1613-24.
    22 Miao H, Burnett E, Kinch M, et al. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol, 2000, 2: 62-9.
    23 Flanagan JG, Gale NW, Hunter T, et al. Tessier-Lavigue M. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell, 1997, 90: 403-404.
    24 Zantek ND, Azimi M, Fednr-Chaiken M, et al. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ, 1999, 10: 629-38.
    25 Zantek ND, Walker-Daniels J, Stewart J, et al. MCF-10A-NeoST: a new cell system for studying cell-ECM and cell-cell interactions in breast cancer. Clin Cancer Res, 2001, 7: 3640-8.
    26 D'Amico TA, Aloia TA, Moore MB, et al. Predicting the sites of metastases from lung cancer using molecular biologic markers. Ann Thorac Surg, 2001, 72: 1144-8.
    27 Fang WB, Brantley-Sieders DM, Parker MA, et al. A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene, 2005, 24: 7859-68.
    28 Wu D, Suo Z, Kristensen GB, et al. Prognostic value of EphA2 and EphrinA-1 in squamous cell cervical carcinoma. Gynecol Oncol, 2004, 94: 312-9.
    29 Thaker PH, Deavers M, Celestino J, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res, 2004, 10: 5145-50.
    30 Carles-Kinch K, Kilpatrick KE, Stewart JC, et al. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res, 2002, 62: 2840-7.
    31 Zetter BR. Adhesion molecules in tumor metastasis. Semin Cancer Biol, 1993, 4: 219-29.
    32 Kinch MS, Burridge K. Altered adhesions in ras-transformed breast epithelial cells. Biochem Soc Trans, 1995, 23: 446-50.
    33 Geiger B, Ayalon O, Ginsberg D, et al. Cytoplasmic control of cell adhesion. Cold Spring Harb Syrup Quant Biol, 1992, 57: 631-42.
    34 Shaji Abraham, Deborah W. Knapp, Liang Cheng, et al. Expression of EphA2 and Ephrin A-lin Carcinoma of the Urinary Bladder. Clin Cancer Res, 2006, 12: 353-360.
    35 Hock B, Bohme B, Karn T, et al. Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene, 1998, 17: 255-60.
    36 Zelinski DP, Zantek ND, Walker-Daniels J, et al. Estrogen and Myc negatively regulate expression of the EphA2 tyrosine kinase. J Cell Biochem, 2002, 85: 714-20.
    37 Zou JX, Wang B, Kalo MS, et al. An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci U S A, 1999, 96: 13813-8.
    38 Walker-Daniels J, Riese DJ 2nd, Kinch MS. c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res, 2002, 1: 79-87.
    39 Pratt RL, Kinch MS. Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene, 2002, 21: 7690-9.
    40 Ogawa K, Pasqualini R, Lindberg RA, et al. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene, 2000, 19: 6043-52.
    41 Zeng G, Hu Z, Kinch MS, et al. High-level expression of EphA2 receptor tyrosine kinase in prostatic intraepithelial neoplasia. Am J Pathol, 2003, 163: 2271-6.
    42 王伯云,李玉松,黄高升,等.病理学技术.北京:人民卫生出版社,2000.211-212.
    43 武海盐,陈大庆,唐英姿,等.小儿卵黄囊瘤临床病理及免疫组化分析.中国当代儿科杂志,2003,5:348-350.
    44 韩丽萍,董子明,乔玉环,等.卵巢癌组织中EphA2受体蛋白的表达.郑州大学学报(医学版),2005,40:308—401.
    45 Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst, 1992, 84: 1875-87.
    46 Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol, 2000, 156: 361-81.
    47 Folberg R, Maniotis AJ. Vasculogenic mimicry. APMIS, 2004, 112: 508-25.
    48 Shirakawa K, Wakasugi H, Heike Y, et al. Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer, 2002, 99: 821-8.
    49 Shirakawa K, Tsuda H, Heike Y, et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res, 2001, 61: 445-51.
    50 Sood AK, Seftor EA, Fletcher MS, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol, 2001, 158: 1279-88.
    51 Danny R, Gray I, Wendy J, et al. Shoa-Term Human Prostate Primary Xenografts:An in Vivo Model of Human Prostate Cancer Vasculature and Angiogenesis. Cancer Res, 2004, 64: 1712-1721.
    52 赵秀兰,杜静,张思武,等.肝细胞肝癌中血管生成拟态的研究.中华肝脏病杂志,2002,12:41-44.
    53 Sun B, Zhang S, Zhao X, et al. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol, 2004, 25: 1609-14.
    54 Cai XS, Jia YW, Mei J, et al. Tumor blood vessels formation in osteosarcoma: vasculogenesis mimicry. Chin Med J(Engl), 2004, 117: 94-8.
    55 Hao X, Sun B, Zhang S, et al. [Microarray study of vasculogenic mimicry in hi-directional differentiation malignant tumor]. Zhonghua Yi Xue Za Zhi, 2002, 82: 1298-302.
    56 Seflor EA, Meltzer PS, Kirschmann DA, et al. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis, 2002, 19: 233-46.
    57 张平,陈晓春,陈江,等.EphA2和E-cadherin在前列腺癌中的表达及其意义.华中科技大学学报(医学版),2005,34:51—54.
    58 冯延平,黄涛,高军,等.EphA2与E-cadherin在胰腺癌中的表达及其意义.中国普通外科杂志,2005,14:914—917.
    59 吴丹,李珊珊,乔玉环,等.宫颈鳞癌组织中EphA2基因的表达.郑州大学学报(医学版),2004,39:381—385.
    60 张立智,梅炯,菜宣松.肿瘤血管形成与相关的酪氨酸激酶受体.同济大学学报(医学版),2003,24:439—442.
    61 Brantley-Sieders DM, Fang WB, Hicks DJ, et al. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J, 2005, 19: 1884-6.
    62 Cheng N, Branfley DM, Liu H, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res, 2002, 1: 2-11.
    63 Dobrzanski P, Hunter K, Jones-Bolin S, et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res, 2004, 64: 910-9.
    64 van der Schaft DW, Seflor RE, Seflor EA, et al. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Nail Cancer Inst, 2004, 96: 1473-7.
    1. Yarden Y, Ullrich A. Growht factor receptor tyrosine kinases. Annu Rev Biochem, 1988, 57: 443-478.
    2. Gale NW, Yancopoulos GD. Ephrins and their receptors: a repulsive topic? Cell Tissue Res 1997, 290: 227-241.
    3. Dodelet VC, Pasquale EB. Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 2000, 19: 5614-5619.
    4. Gale NW, Holland SJ, Valenzuela DM, et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron, 1996, 17: 9-19.
    5. Bruckner K, Klein R. Signaling by Eph receptors and their ephrin ligands. Curr Opin Neurobiol, 1998, 8: 375-382.
    6. Zhou R. The Eph family receptors and ligands. Pharmacol Ther, 1998, 77: 151-181.
    7. Lackmann M, Oates AC, Dottori M, et al. Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem, 1998, 273: 20228-20237.
    8. Labrador JP, Brambilla R, Klein R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J, 1997, 16: 3889-3897.
    9. Bartley TD, Hunt RW, Welcher AA, et al. B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature, 1994, 368: 558-560.
    10. Flanagan JG, Gale NW, Hunter T, et al. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell, 1997, 90: 403-404.
    11. Himanen JP, Henkemeyer M, Nikolov DB. Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature, 1998, 396: 486-491.
    12. Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu Rev Neurosci, 1998, 21: 309-345.
    13. Drescher U, Bonhoeffer F, Muller BK. The Eph family in retinal axon guidance. Curr Opin Neurobiol, 1997, 7: 75-80.
    14. Orioli D, Klein R. The Eph receptor family: axonal guidance by contact repulsion. Trends Genet, 1997, 13: 354-359.
    15. Zisch AH, Pasquale EB. The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res, 1997, 290: 217-226.
    16. Binnis K, Taylor P, Sicheri F, et al. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol, 2000, 20: 4791-4805.
    17. Ciossek T, Monschau B, Kremoser C, et al. Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro. Eur J Neurosci, 1998, 10: 1574-1580.
    18. Holland SJ, Peles E, Pawson T, et al. Cell-contact-dependent signalling in axon growth and guidance: eph receptor tyrosine kinases and receptor protein tyrosine phosphatase β. Curr Opin Neurobiol, 1998, 8: 117-127.
    19. Xu Q, Mellitzer G, Robinson V, et al. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins[J]. Nature, 1999, 399(6733): 267-271.
    20. Donoghue MJ, Rakic P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex[J]. J Neurosci, 1999, 19(14): 5967-5979.
    21. Lindberg RA, Hunter T. cDNA cloning and characterization of eck, an epithelial cell receptor protein-tyrosine kinase in the eph/elk family of protein kinases. Mol Cell Biol, 1990, 10: 6316-6324.
    22. Andres AC, Reid HH, Zurcher G, et al. Expression of two novel eph-related receptor protein tyrosine kinases in mammary gland development and carcinogenesis. Oncogene, 1994, 9: 1461-1467.
    23. Rosenberg IM, Coke M, Kanai M, et al. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function. Am J Physiol, 1997, 273: 824-832.
    24. Pandey A, Shao H, Marks RM, et al. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-α-induced angiogenesis. Science, 1995, 268: 567-569.
    25. Pandey A, Lazar DF, Saltiel AR, et al. Activation of the Eck receptor protein tyrosine kinase stimulates phosphatidylinositol 3-kinase activity. J Biol Chem, 1994, 269: 30154-30157.
    26. Ganju P, Shigemoto K, Brennan J, et al. The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbraln segmentation and limb development. Oncogene, 1994, 9: 1613-1624.
    27. Walker-Daniels J, Riese DJ, Kinch MS. c-Cbl dependent EphA2 protein degradation is induced by ligand binding. Mol Cancer Res, 2002, 1: 79-87.
    28. Miao H, Burner E, Kinch MS, et al. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol, 2000, 2: 62-69.
    29. Pratt RL, Kinch MS. Activation of the EphA2 tyrosine kinase stimulates the MAP/ERK kinase signaling cascade. Oncogene, 2002, 21: 7690-7699.
    30. Pandey A, Duan H, Dixit VM. Characterization of a novel src-like adapter protein that associates with the Eck receptor tyrosine kinase. J Biol Chem, 1995, 270: 19201-19204.
    31. Zantek ND, Azimi M, Fedor-Chalken M, et al. E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ, 1999, 10: 629-638.
    32. Zelinski DP, Zantek ND, Stewart JC, et al. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res, 2001, 61: 2301-2306.
    33. Zantek ND, Walker-Daniels J, Stewart JC, et al. MCF-10A-NeoST: a new cell system for studying Cell-ECM and cell-cell interactions in breast cancer. Clin Cancer Res, 2001, 7: 3640-3648.
    34. Walker-Daniels J, Coffman K, Azimi M, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate, 1999, 41: 275-280.
    35. D'Amico TA, Aloia TA, Moore MB, et al. Predicting the sites of metastases from lung cancer using molecular biologic markers. Ann Thorac Surg, 2001, 72: 1144-1148.
    36. Walker-Daniels J, Hess AR, Hendrix MJ, et al. Differential regulation of EphA2 in normal and malignant cells. Am J Pathol, 2003, 162(4): 1037-1042.
    37. Fang WB, Branfley-Sieders DM, Parker MA, et al. A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene, 2005, 24(53): 7859-7868.
    38. Wu D, Suo Z, Kristensen GB, et al. Prognostic value of EphA2 and EphrinA-1 in squamous cell cervical carcinoma. Gynecol Oncol, 2004, 94(2): 312-319.
    39. Thaker PH, Deavers M, Celestino J, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res, 2004, 10(15): 5145-5150.
    40. Zetter BR. Adhesion molecules in tumor metastasis. Semin Cancer Biol, 1993, 4: 219-229.
    41. Kinch MS, Burridge K. Altered adhesions in ras-transformed breast epithelial cells. Biochem Soc Trans, 1995, 23: 446-450.
    42. Geiger B, Ayalon O, Ginsberg D, et al. Cytoplasmic control of cell adhesion. Cold Spring Harb Symp Quant Biol, 1992, 57: 631-642.
    43. Kikawa K, Vidale DR, Van Etten RL, et al. Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem, 2002, 277: 39274-39279.
    44. Hock B, Bohme B, Kam T, et al. Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene, 1998, 17: 255-260.
    45. Stapleton D, Balan I, Pawson T, et al. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol, 1999, 6: 44-49.
    46. Thanos CD, Goodwill KE, Bowie JU. Oligomeric structure of the human EphB2 receptor SAM domain. Science, 1999, 283: 833-836.
    47. Zelinski DP, Zantek ND, Peters MA, et al. Estrogen and myc negatively regulate expression of the EphA2 tyrosine kinase. J Cell Biochem, 2002, 85(4): 714-720.
    48. Hock B, Bohme B, Karn T, et al. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc Nail Acad Sci USA, 1998, 95: 9779-9784.
    49. Ogawa K, Pasqualini R, Lindberg RA, et al. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene, 2000, 19: 6043-6052.
    50. Carpenter G The EGF receptor: a nexus for trafficking and signaling. Bioessays, 2000, 22: 697-707.
    51. Carles-Kinch K, Kilpatrick KE, Stewart JC, et al. Antibody targeting of the EphA2 receptor tyrosine kinase on malignant carcinomas. Cancer Res, 2001, 62: 2840-2847.
    52. Wong A, Lamothe B, Li A, et al. FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc Nail Acad Sci USA, 2002, 99: 6684-6689.
    53. Joazeiro CA, Wing SS, Huang H, et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science, 1999, 286: 309-312.
    54. Klapper LN, Waterman H, Sela M, et al. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res, 2000, 60: 3384-3388.
    55. Levkowitz G, Waterman H, Zamir E, et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev, 1998, 12: 3663-3674.
    56. Waterman H, Katz M, Rubin C, et al. A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J, 2002, 21: 303-313.
    57. Belsches-Jablonski AP, Biscardi JS, Peary DR, et al. Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene, 2001, 20: 1465-1475.
    58. Miao H, Wei B, Li Q, et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol, 2001, 3: 527-530.
    59. Hess AR, Seftor EA, Gardner LM, et al. molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation, role of epithelial cell kinase (Eck/EphA2). Cancer Res 2001, 61: 3250-3255.
    60. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999, 155: 739-752.
    61. Seftor EA, Meltzer PS, Kirschmann DA, et al. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis, 2002, 19: 233-246.
    62. Shirakawa KW. Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer, 2002, 99: 821-828.
    63. Shirakawa K, Kobayashi H, Heike Y, et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res, 2002, 62: 560-566.
    64. Hendrix M J, Seftor RE, Seftor EA, et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res, 2002, 62: 665-668.
    65. Hendrix MJC, Seftor EA, Meltzer PS, et al. expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA, 2001, 98: 8018-80Z3.
    66. Hess AR, Seftor EA, Gruman LM, et al. Molecular regulation of melanoma tumor cell vasculogenic mimicry by EphA2 and VE-cadherin: a novel signaling pathway. Proc Am Assoc Cancer Res, 2002, 43: 36-41.
    67. Seflor EA, Mehzer PS, Schatteman GC, et al. Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol, 2002, 44(1): 17-27.
    68. Cheng N, Brantley DM, Liu H, et al. Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor induced angiogenesis. Mol Cancer Res, 2002, 1(1): 2-11.
    69. Brantley-Sieders DM, Fang WB, Hicks DJ, et al. Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression. FASEB J, 2005, 19(13): 1884-1886.
    70.张平,陈晓春,陈江,等.EphA2和E-cadherin在前列腺癌中的表达及其意义.华中科技大学学报(医学版),2005,34(1):51-54.
    71. Pratt R L, Kinch M S. Activation of the EphA2 tyrosine stimulates the MAP / ERK kinase signaling cascade. Oncogene, 2002, 21: 7690-7699.
    72.冯延平,黄涛,高军,等,EphA2与E-cadherin在胰腺癌中的表达及其意义.中国普通外科杂志,2005,14(12):914-917.
    73.韩丽萍,董子明,乔玉环,等。卵巢癌组织中EphA2受体蛋白的表达.郑州大学学报(医学版),2005,40(2):308-401.
    74.吴丹,李珊珊,乔玉环,等。宫颈鳞癌组织中EphA2基因的表达.郑州大学学报(医学版),2004,39(3):381-385.
    75. Easty DJ, Bennett DC. Protein tyrosine kinases in malignant melanoma. Melanoma Res, 2000, 10(5): 401-411.
    76. Miyazaki T, Kato H, Fukuchi M, et al. EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer. 2003, 103(5): 657-663.
    77. Kinch MS, Moore MB, Harpole DH Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res, 2003, 9(2): 613-618.
    78. Herrem CA, Tatsumi T, Olson KS, el al. Expression of EphA2 is prognostic of disease-bee interval and overall survival in surgically treated patients with renal cell carcinoma.Gin Cancer Res, 2005, 11(1): 226-231.
    79. Brantley DM, Chen N, Thompson FA. et al. Soluble EphA receprors inhibit tumor angiogenesis and progression in vivo [J]. Oncogene, 2002. 21(46): 7011-7026.
    80. Dobrzanski P, Hunter K, Jones Bolin S, et al. Antiangiogenie and anfitumor efficacy of EphA2 receptor antagonist. Cancer Res, 2004, 64(3): 910-919.
    81. Noblitt LW, Bangari DS, Shukla S, et al. Immunocompetent moil model of breast cancer for preclinical testing of EphA2--targeted therapy. Cancer Gene Ther, 2005, 12(1): 46-53.
    82. Koolpe M, Daft M, Pasquale EB. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem, 2002, 277: 46974-46979.
    1 Risau W. Mechanisms of angiogenesis. Nature, 1997, 386(6626): 671-4.
    2 Bissell MJ. Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? Am J Pathol, 1999, 155(3): 675-9.
    3 Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol, 1999, 155(3): 739-52.
    4 Folberg R, Maniotis AJ. Vasculogenic mimicry. APMIS, 2004, 112(8): 508-25.
    5 Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol, 2000, 156(2): 361-81.
    6 Shirakawa K, Kobayashi H, Heike Y, et al. Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft. Cancer Res, 2002, 62(2): 560-6.
    7 郝希山,孙保存,张诗武.双向分化肿瘤血管生成拟态组织微阵列的研究.中华医学杂志,2002,82:1298-1302.
    8 Sood AK, Fletcher MS, Coffin JE, et al. Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. Am J Obstet Gynecol, 2004, 190(4): 899-909.
    9 Braun RD, Abbas A. Orthotopic Model of Aggressive and Nonaggressive Human Choroidal Melanomas. Invest Ophthalmol Vissci, 2004, 45(2): 1202.
    10 Yue WY, Chen ZP. Does vasculogenic mimicry exist in astrocytoma?. J Histochem Cytochem, 2005, 53(8): 997-1002.
    11 Dopuy E, Hainaud P, Villemain A, et al. Tumoral angiogenesis and tissue factor expression during hepatocellular carcinoma progression in a transgenic mouse model. J Hepatol, 2003, 38(6): 793-802.
    12 Cai XS, Jia YW, Mei J, et al. Tumor blood vessels formation in osteosarcoma: vasculogenesis mimicry. Chin Med J(Engl), 2004, 117(1): 94-8.
    13 Seftor EA, Meltzer PS, Kirschmann DA, et al. Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastasis, 2002, 19(3): 233-46.
    14 Lee LM, Seftor EA, Bonde G, et al. The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn, 2005, 233(4): 1560-70.
    15 Hendrix MJ, Seftor EA, Kirschmann DA, et al. Molecular biology of breast cancer metastasis. Molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res JT-Breast cancer research: BCR, 2000, 2(6): 417-22.
    16 Fujimoto A, Onodera H, Mori A, et al. Tumour plasticity and extravascular circulation in ECV304 human bladder carcinoma cells. Anticancer Res JT Anticancer research, 2006, 26(1A): 59-69.
    17 Sharma N, Seftor RE, Seftor EA, et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate, 2002, 50(3): 189-201.
    18 van der Schaft DW, Hillen F, Pauwels P, et al. Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res, 2005, 65(24): 11520-8.
    19 Hazarika P, McCarty MF, Prieto VG, et al. Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1. Cancer Res, 2004, 64(20): 7361-9.
    20 Bagnato A, Rosano L, Spinella F, et al. Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res, 2004, 64(4): 1436-43.
    21 Bittner M, Meltzer P, Chen Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000, 406(6795): 536-40.
    22 Seftor RE, Seftor EA, Koshikawa N, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res, 2001, 61(17): 6322-6327.
    23 Hendrix MJ, Seftor EA, Hess AR, et al. Molecular plasticity of human melanoma cells. Oncogene, 2003, 22(20): 3070-5.
    24 Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer, 2003, 3(6): 411-21.
    25 Hess AR, Seftor EA, Gardner LM, et al. Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res, 2001, 61(8): 3250-5.
    26 Hendrix MJ, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A, 2001, 98(14): 8018-23.
    27 Sood AK, Seftor EA, Fletcher MS, et al. Molecular determinants of ovarian cancer plastidty. Am J Pathol, 2001, 158(4): 1279-88.
    28 Rangel LB, Sherman-Baust CA, Wernyj RP, et al. Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression. Oncogene, 2003, 22(46): 7225-32.
    29 Ruf W, Seflor EA, Pctrovan RJ, et al. Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry. Cancer Res, 2003, 63(17): 5381-9.
    30 Hendrix MJ, Seftor RE, Seftor EA, et al. Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res, 2002, 62(3): 665-8.
    31 Seftor RE, Seftor EA, Kirschmann DA, et al. Targeting the tumor microenvironment with chemically modified tetracyclincs: inhibition of laminin 5 gamma 2 chain promigratory fragments and vasculogenic mimicry. Mol Cancer Ther, 2003, 1: 1173-1179.
    32 Lloyd RV, Vidal S, Horvath E, et al. Angiogenesis in normal and neoplastic pituitary tissues. Microsc Res Tech JT-Microscopy research and technique, 2003, 60(2): 244-50.
    33 Danny R, Gray I, Wendy J, et al. Shoa-Term Human Prostate Primary Xenografts: An in Vivo Model of Human Prostate Cancer Vasculature and Angiogenesis. Cancer Res, 2004, 64(3): 1712-1721.
    34 Sun B, Zhang S, Zhao X, et al. Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol, 2004, 25(6): 1609-14.
    35 郝希山,孙保存,张诗武,等.双向分化肿瘤血管生成拟态的分子机制初步观察[J].中华肿瘤杂志,2003,25(6):524-526.
    36 孙保存,张诗武,倪春生,等.377例双向分化恶性肿瘤血管生成拟态临床意义分析.中国肿瘤临床,2005,32(2):64-67.
    37 岳伟英,陈忠平.星形胶质细胞瘤中有肿瘤血管生成拟态现象吗?中国神经肿瘤杂志,2004,2(4):247-252.
    38 赵晖,顾晓萌,丛波,等.恶性食管间质瘤的血管生成拟态研究.中华消化杂志, 2006,26(6):405-407.
    39 赵秀兰,杜静,张诗武,等.肝细胞肝癌中血管生成拟态的研究.中华肝脏病杂志,2006,14(1):41-44.
    40 Shirakawa K, Wakasugi H, Heike Y, et al. Vasculogenic mimicry and pseudo-comedo formation in breast cancer. Int J Cancer, 2002, 99(6): 821-8.
    41 Hao X, Sun B, Zhang S, et al. Microarray study of vasculogenic mimicry in bi-directional differentiation malignant tumor. Zhonghua Yi Xue Za Zhi, 2002, 82(19): 1298-302.
    42 Zhao XL, Du J, Zhang SW, et al. [A study on vasculogenic mimicry in hepatocellular carcinoma]. zhonghua Gan Zang Bing Za Zhi, 2006, 14(1): 41-4.
    43 van der Schaft DW, Seftor RE, Seftor EA, et al. Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst, 2004, 96(19): 1473-7.
    44 Yue WY, Chert ZP. Does vasculogenic mimicry exist in astrocytoma? J Histochem Cytochem JT-The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 2005, 53(8): 997-1002.
    45 Sanz L, Feijoo M, Blanco B, et al. Generation of non-permissive basement membranes by anti-laminin antibody fragments produced by matrix-embedded gene-modified cells. Cancer Immunol Immunother, 2003, 52(10): 643-7.
    46 Dome B, Raso E, Dobos J, et al. Parallel expression of alphaIIbbeta3 and alphavbeta3 integrins in human melanoma cells upregulates bFGF expression and promotes their angiogenic phenotype. Int J Cancer, 2005, 116(1): 27-35.
    47 Zhang S, Guo H, Zhang D, et al. Microcirculation patterns in different stages of melanoma growth. Oncol Rep JT-Oncology reports, 2006, 15(1): 15-20.
    48 McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol, 2000, 156(2): 383-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700