用户名: 密码: 验证码:
乳腺癌相关基因异常甲基化的临床实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:Sox17基因在乳腺癌中的表达、异常甲基化及其与Wnt/β-Catenin通路关系的研究
     目的:Sox17是一种转录因子,具有广泛的生物学功能,可以在经典Wnt/β-catenin信号传导通路中担当拮抗因子的作用。本研究的目的是在乳腺癌细胞株及组织标本中探讨Sox17基因表达、甲基化状态及其潜在的临床意义。初步研究Sox17与β-catenin基因表达之间的关系,探讨Sox17基因在Wnt/β-catenin信号通路中的作用。
     方法:运用RT-PCR和实时定量RT-PCR检测乳腺癌细胞株在去甲基化药物5-aza-dC处理前后的Sox17、β-catenin基因mRNA的表达水平,Western blot检测其蛋白表达情况。运用小干扰RNA(small interfering RNA,siRNA)技术对两株正常表达Sox17mRNA的乳腺癌细胞株SK-BR-3和Bacp-37进行Sox17和β-catenin RNA干扰。运用亚硫酸氢盐测序(BSP)和甲基化特异性PCR(MSP)法对Sox17基因甲基化状态进行分析。此外,在31例配对的乳腺癌组织和癌旁标本中,对Sox17、β-catenin基因mRNA的表达水平进行定量检测,并对Sox17基因mRNA的表达水平与其甲基化状态之间的相互关系进行分析。最后,在113例乳配对腺癌组织和的癌旁标本中,运用MSP法对Sox17基因甲基化状态进行了检测,分析Sox17基因甲基化与乳腺癌主要临床病理特征参数之间的关系。
     结果:在5株不同的乳腺癌细胞株中和23/31乳腺癌组织标本中,Sox17mRNA的表达水平显著减少,且与Sox17基因在这些细胞和组织标本中的甲基化状态显著相关。在经去甲基化药物5-aza-dC处理后,5株细胞株的Sox17 mRNA的表达水平显著升高;去甲基化药物在使Sox17表达恢复的同时,使β-cateninmRNA表达水平呈下降趋势。此外,在正常表达Sox17的SK-BR-3和Bacp-37细胞株中,siRNA介导的Sox17表达降低可提高β-catenin的表达水平。在31例配对组织样本中,Sox17和β-catenin mRNA表达水平也存在着显著性差异(P<0.001)。Sox17甲基化可在74.3%(84/113)的乳腺癌组织和31.9%(36/113)的配对癌旁组织中检测到,两者存在显著差异(P<0.0001)。分析Sox17甲基化与乳腺癌主要临床病理特征显示,Sox17甲基化与乳腺癌临床肿瘤分期(P=0.028)及淋巴结转移(P=0.013)密切相关。
     结论:结果表明,在乳腺癌中,启动子甲基化是导致Sox17基因表达沉默的一个重要机制,而且Sox17基因的功能失活可能有助于Wnt信号通路的异常激活。在乳腺癌发生和发展过程中,Sox17甲基化可能是一个有价值的分子标志。
     第二部分:EphA5基因在乳腺癌中的表达及异常甲基化的研究
     目的:为了鉴别在乳腺癌中因基因甲基化状态改变而发生功能变化的新基因,根据我们先前的甲基化芯片结果分析表明,EphA5基因在乳腺癌组织标本中呈现高甲基化状态。本研究的目的是在乳腺癌细胞株、乳腺癌组织及其配对的癌旁组织中进一步探讨EphA5基因的表达情况、甲基化状态以及潜在的临床意义。
     方法:运用RT-PCR和实时定量RT-PCR检测乳腺癌细胞株在去甲基化物5-aza-dC处理前后的EphA5基因mRNA表达水平变化,运用western blot检测其蛋白表达变化情况。运用亚硫酸氢盐测序(BSP)和甲基化特异性PCR(MSP)对EphA5基因甲基化状态进行分析。此外,在31例乳腺癌组织和配对的癌旁标本中,对EphA5基因mRNA的表达水平进行定量检测,并对其表达水平和甲基化状态之间的相互关系进行分析。最后,在117例乳腺癌组织和配对的癌旁标本中,运用MSP法对EphAS基因甲基化状态进行了检测,分析EphA5基因甲基化与乳腺癌主要临床病理特征参数之间的关系。
     结果:EphA5基因在5株乳腺癌细胞株表达缺失。在去甲基化药物5-aza-dC处理后,EphA5基因的mRNA和蛋白表达水平显著上升。BSP和MSP检测表明,EphA5基因表达减少与其甲基化显著相关。在31例乳腺癌组织及其配对的癌旁标本中,21/31(67.7%)癌旁组织EphA5mRNA表达高于其在癌组织中表达2倍以上(P<0.001)。并且Epha5甲基化与其mRNA表达变化显著相关(P=0.017)。在117例配对组织标本中,EphA5基因甲基化可在64.1%(75/117)的乳腺癌组织和28.2%(33/117)的配对癌旁组织检测到(P<0.001),EphA5甲基化状态与乳腺癌组织学分级、淋巴结转移与否、孕激素受体阳性与否显著相关(P=0.024,0.004,0.008).
     结论:我们的研究结果表明,在乳腺癌中EphA5基因是一个潜在的,因启动子区CpG岛甲基化而发生表达沉默的基因。在乳腺癌发生和发展过程中,EphA5甲基化可能是一个有价值的分子标志。
     第三部分:多基因异常甲基化与乳腺癌主要临床病理特征关系的初步研究
     目的:基因启动子区异常甲基化导致的分子生物学特性改变是乳腺癌的一个普遍现象。但是,其对乳腺癌进展的影响及潜在的预测作用仍未完全明了。我们此研究的目的是分析乳腺癌中8个重要的、具有不同致癌机制的相关基因甲基化情况,评价这些基因甲基化与乳腺癌主要临床病理特征之间的关系,并在此基础上进一步探讨在血浆循环DNA中检测这些基因甲基化对乳腺癌潜在的诊断价值。
     方法:在106例配对的乳腺癌及癌旁组织及另96例血浆标本中,运用多重巢式甲基化特异性PCR法,对RASFF1A,APC,MGMT,GSTP1,p16,ESR1,RAR-β_2,BRCA1这8个抑癌基因的甲基化状况进行检测、分析。
     结果:这8个基因的甲基化频率从MGMT基因的18.9%到RASSF1A基因的77.4%。在乳腺癌患者组织标本中,至少有一个基因发生甲基化的为94.3%;每个标本的平均甲基化数在乳腺癌及其配对的癌旁组织中分别为3.53和1.32,具有显著差异;与乳腺癌临床病理特征关系最为密切的为组织学分级,APC,MGMT,p16和RAR-β_2四个基因甲基化均与其显著相关(P=0.014,0.025,0.002和0.026);乳腺癌中同时存在的多个基因甲基化与肿瘤较大、具有较高的组织学分级、伴有淋巴结转移和雌激素受体阴性等显著相关。在血浆标本中,86.2%(50/58)的肿瘤患者至少存在一个基因甲基化;同没有基因甲基化的患者相比,有1~3个基因甲基化的患者诊断为乳腺癌的风险为4.3倍(95%CI 1.4~13.4,P=0.01):当超过3基因甲基化时,风险升至20.1(95%CI 5.9-69.2,P<0.0001)。
     结论:本组8个基因的甲基化情况与乳腺癌重要的临床病理特征显著相关,同时存在多个基因甲基化预示着乳腺癌具有侵袭性表型。在血浆循环DNA中联合检测这些表观遗传学标志对乳腺癌风险预测具有重要价值。
Part 1:The Canonical Wnt Antagonist Sox17 Is Epigenetically Inactivated by Promoter Methylation in Human Breast Cancer
     Objective:Sox17 is a transcription factor involved in many developmental processes and can act as an antagonist of canonical Wnt/β-catenin signaling pathway. This study was aimed to investigate the relationship between Sox17 gene expression and its methylation status,and its potential role in Wnt/β-catenin signaling in breast cancer.
     Methods:The expression levels of Sox17 andβ-catenin were examined by RT-PCR and real-time PCR in seven breast cancer cell lines treated with or without demethylation agent 5-aza-dC and 31 paired breast tissue samples.Methylation status was detected by bisulfite sequencing and methylation-specific PCR.Correlation of Sox17 methylation status with clinicopathologic characteristics was evaluated in 113 breast cancers.
     Results:The expression level of Sox17 mRNA was dramatically decreased in five different breast cancer cell lines and 23 of 31 primary breast tumor samples, which significantly correlated with its methylation status.Aider treated with 5-aza-2'-deoxycytidine(5-aza-dC,a demethylation agent),the expression levels of Sox17 mRNA and protein were obviously increased.Restored expression of Sox17 by 5-aza-dC treatment decreased the expression level ofβ-catenin in breast cancer cell lines.Furthermore,small interfering RNA(siRNA)-mediated knockdown of Sox17 in SK-BR-3 and Bacp-37 cells enhancedβ-catenin expression.In 31 paired tissue samples,a significant difference between the expression level of Sox17 andβ-catenin was also observed(P<0.001).Clinically,Sox17 methylation was detected in 74.3% breast tumors(84/113) and 31.9%(36/113) paired normal tissues respectively (P<0.0001).Sox17 methylation was also associated with tumor stage(P=0.028) and lymph node metastasis(P=0.013).
     Conclusion:These findings indicate that silencing of Sox17 due to promoter hypermethylation is a frequent event and may contribute to aberrant activation of Wnt signaling in breast cancer.Sox17 may be a valuable biomarker for the study of breast cancer carcinogenesis and progression.
     Part 2:Frequent Epigenetic Inactivation of Receptor Tyrosine Kinase EphA5 by Promoter Methylation in Human Breast Cancer
     Objective:In an effort to identify new genes that are functionally affected by altered methylation status in breast cancer,a microarray based methylation analysis showed that EphA5 gene is higher hypermethylated in tumor samples.The aim of the present study was to investigate EphA5 gene expression profiles,methylation status, and clinical significances in breast cancer.
     Methods:Gene expression level of EphA5 was detected by RT-PCR and realtime RT-PCR with or without 5-aza-2'-deoxycytidine treated in breast cancer cell lines. Methylation status was tested by Bisulfite genomic sequencing and MSP.Further, correlation between expression level and methylation status of EphA5 gene were assessed in 31 paired tissue samples.Finally,the methylation status of EphA5 gene was examined in total of 117 paired tissue samples by MSP assay and the correlation with patients' clinicopathologic features were also evaluated.
     Results:The expression level of EphA5 mRNA was dramatically decreased in five different breast cancer cell lines.Aider treated with 5-aza-2'-deoxycytidine (5-aza-dC,a demethylation agent),the expression levels of EphA5 mRNA and protein were obviously increased.Bisulfate sequencing and methylation-specific PCR detection showed that decreased expression of EphA5 was associated with its methylation status.We also found a significant correlation(P=0.017) between reduction of EphA5 mRNA abundance and aberrant methylation of EphA5 in 31 paired tissue samples.In clinical samples,EphA5 methylation was detected in 64.1% breast tumors(75/117) and 28.2%(33/117) paired normal tissues respectively (P<0.001),which was associated with higher tumor grade(P=0.024),lymph node metastasis(P=0.004),and PR negative status(P=0.008).
     Conclusion:Our findings indicate that EphA5 is likely a potential target for epigenetic silencing in primary breast cancer.EphA5 may be a valuable molecular marker of breast cancer carcinogenesis and progression.
     Part 3:Multiple Gene Methylation in Chinese women with Sporadic Breast Cancer
     Objective:Multiple gene methylation is common in breast cancer and may be a useful biomarker for breast cancer detecting.However,the correlation between multiple genes methylation status and clinicopathological parameters,and diagnostic value in Chinese breast cancer women are unknown.
     Material and Methods:Using mutiplex nested methylation specific PCR,we analyzed methylation status of eight critical genes:RASFF1A,APC,MGMT,GSTP1, p16,ESR1,RAR-β_2 and BRCA1,in 106 paired breast tumors and corresponding normal tissues,and 96 plasma DNA samples including 38 benign breast diseases and 58 breast cancer patients.
     Results:The frequency of methylation of these genes varied from 18.9%for MGMT to 77.4%for RASSF1A.Methylation in at least one of the genes was found in 94.3%of the breast cancer.And the mean number of genes hypermethylated in each tumor and paired normal breast tissues was 3.53 and 1.32 respectively.The strongest and most consistent association observed of specific gene methylation was with higher tumor grade,there are four genes APC,MGMT,RAR-β2 and p16 reached statistical significance.High frequency simultaneous methylation of multiple genes was more often in these with higher tumor grade,lymph node metastasis,or ER negative patients.In plasma samples,86.2%(50/58) tumors DNA showed hypermethylation of at least one of the eight genes.Logistic regression models analysis showed that the odds ratio for diagnosis of breast cancer was 4.3(95%CI 1.4~13.4,P=0.01) in patients with 1~3 methylated gene and 20.1 in patients with more than 3 genes methylation(95%CI was 5.9-69.2,P<0.0001).
     Conclusions:Hypermethylation of these genes may be linked to various known clinicopathological features of breast cancer in Chinese women,and increasing multiple gene methylation in tumors may indicate a aggressive phenotype for breast cancer.Detection of hypermethylation in plasma DNA using a combination of these epigenetic markers may be useful for identifying patients at high risk for breast cancer.
引文
1.Parkin DM,Bray F,Ferlay J,et al.Global cancer statistics.CA Cancer J Clin.2005;55:74-108.
    2.Jones PA,Baylin SB.The epigenomics of cancer.Cell.2007;128:683-92.
    3.Szyf M,Pakneshan P,Rabbani SA.DNA methylation and breast cancer.Biochem Pharmacol.2004;68:1187-97.
    4. Shames DS, Minna JD, Gazdar AF. DNA methylation in health, disease, and cancer.Curr Mol Med. 2007; 7:85-102.
    
    5. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004; 15;22:4632-42.
    
    6. Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism.Annu Rev Pharmacol Toxicol. 2005; 45:629-56.
    
    7. Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum.Cancer Res. 2000; 60:5954-8.
    
    8. Munot K, Bell SM, Lane S, et al. Pattern of expression of genes linked to epigenetic silencing in human breast cancer. Hum Pathol. 2006; 37:989-999.
    
    9. Chekhun VF, Kulik GI, Yurchenko OV, et al. Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett. 2006; 231:87-93.
    
    10.Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol. 2007; 20:711-21.
    
    11. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, et al.Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006; 8:R38.
    12.Elstrodt F, Hollestelle A, Nagel JHA, et al. BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res. 2006; 66:41-45.
    13.Ross JS, Linette GP, Stec J, et al. Breast cancer biomarkers and molecular medicine. Expert Rev Mol Diagn. 2003; 3:573-585.
    14.Fackler MJ, Malone K, Zhang Z, et al. Quantitative multiplex methylation specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res. 2006; 12:3306-3310.
    15.Hoque MO, Febg O, Toure P, et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol. 2006; 24:4262-4269.
    16.Yang B, House MC, Guo M, et al. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma.Mod PathoL. 2005; 18:412-20.
    1.Jemal A,Siegel R,Ward E,Murray T,Xu J,Thun MJ.Cancer statistics,2007.CA Cancer J Clin 2007;57:43-66.
    2.Herman JG,Baylin SB.Gene silencing in cancer in association with promoter hypermethylation.N Engl J Med 2003;349:2042-54.
    3.Das PM,Singal R.DNA methylation and cancer.J Clin Oncol 2004;22:4632-42.
    4.Jones PA,Baylin SB.The epigenomics of cancer.Cell 2007;128:683-92.
    5.Szyf M,Pakneshan P,Rabbani SA.DNA methylation and breast cancer.Biochem Pharmacol 2004;68:1187-97.
    6.Agrawal A,Murphy RF,Agrawal DK.DNA methylation in breast and colorectal cancers.Mod Pathol 2007;20:711-21.
    7.Kamachi Y,Uchikawa M,Kondoh H.Pairing SOX off:with partners in the regμlation of embryonic development.Trends Genet 2000;16:182-7.
    8.Wegner M.From head to toes:the mμltiple facets of Sox proteins.Nucleic Acids Res 1999;27:1409-20.
    9.Kiefer JC.Back to basics:Sox genes.Dev Dyn 2007;236:2356-66.
    10.Lefebvre V,Dumitriu B,Penzo-Mendez A,Han Y,Pallavi B.Control of cell fate and differentiation by Sry-related high-mobility-group box(Sox) transcription factors.Int J Biochem Cell Biol 2007;39:2195-214.
    11.Dong C,Wilhelm D,Koopman P.Sox genes and cancer.Cytogenet Genome Res 2004;105:442-7.
    12.Sohn J,Natale J,Chew LJ,et al.Identification of Sox17 as a transcription factor that regμlates oligodendrocyte development.J Neurosci 2006;26:9722-35.
    13.Matsui T,Kanai-Azuma M,Hara K,et al.Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice.J Cell Sci 2006;119:3513-26.
    14.Park KS,Wells JM,Zorn AM,Wert SE,Whitsett JA.Sox17 influences the differentiation of respiratory epithelial cells.Dev Biol 2006;294:192-202.
    15.Shimoda M,Kanai-Azuma M,Hara K,et al.Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro.J Cell Sci 2007;120:3859-69.
    16.Sinner D,Kordich JJ,Spence JR,et al.Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells.Mol Cell Biol 2007;27:7802-15.
    17.Zhang W,Gl(o|¨)ckner SC,Guo M,et al.Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 2008; 68:2764-72.
    
    18.de Jong J, Stoop H, Gillis AJ, et al. Differential expression of Sox17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol 2008;215:21-30.
    
    19.Kim I, Saunders TL, Morrison SJ. Sox 17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 2007; 130:470-83.
    
    20. Jang YY, Sharkis SJ. Fetal to adult stem cell transition: knocking Sox 17 off. Cell 2007; 130:403-4.
    
    21. Liu Y, Asakura M, Inoue H, et al. Sox 17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc Natl Acad Sci USA 2007; 104:3859-64.
    
    22. Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of Wnt signaling by Sox proteins: XSox 17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell 1999; 4:487-98.
    
    23.Kanai-Azuma M, Kanai Y, Gad JM, et al. Depletion of definitive gut endoderm in Sox 17-nμll mutant mice. Development 2002; 129:2367-79.
    
    24. Morin PJ, Weeraratna AT. Wnt signaling in human cancer. Cancer Treat Res 2003;115:169-87.
    
    25. Karim R, Tse G, Putti T, Scolyer R, Lee S. The significance of the Wnt pathway in the pathology of human cancers. Pathology 2004; 36:120-8.
    
    26.Brantjes H, Barker N, van Es J, Clevers H. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol Chem 2002; 383:255-61.
    
    27. Li Y, Welm B, Podsypanina K, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003; 100:15853-8.
    
    28. Howe LR, Brown AM. Wnt signaling and breast cancer. Cancer Biol Ther 2004; 3:36-41.
    
    29. Veeck J, Niederacher D, An H, et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 2006; 25:3479-88.
    
    30. Lo PK, Mehrotra J, D'Costa A, et al. Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biol Ther 2006; 5:281-6.
    31.Veeck J, Geisler C, Noetzel E, et al. Epigenetic inactivation of the secreted frizzled-related protein-5 (SFRP5) gene in human breast cancer is associated with unfavorable prognosis. Carcinogenesis 2008; 29:991-8.
    
    32.Ai L, Tao Q, Zhong S, et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 2006; 27:1341-8.
    
    33. Suzuki H, Toyota M, Caraway H, et al. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer 2008;98:1147-56.
    
    34.Akiyama H, Lyons JP, Mori-Akiyama Y, et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004; 18:1072-87.
    
    35. Takash W, Ca(?)izares J, Bonneaud N, et al. SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling. Nucleic Acids Res 2001; 29:4274-83.
    
    36. Sinner D, Rankin S, Lee M, Zorn AM. Sox 17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 2004; 131:3069-80.
    
    37. Katoh M. Molecular cloning and characterization of human Sox 17. Int J Mol Med 2002;9:153-7.
    
    38. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA 2003; 100:12253-8.
    
    39. Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 2005; 5: 23-31.
    
    40. Kimelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 2006; 25:7482-91.
    
    41. Lin SY, Xia W, Wang JC, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 2000; 97:4262-6.
    
    42.Turashvili G, Bouchal J, Burkadze G, Kolar Z. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 2006; 73:213-23.
    
    43.Dolled-Filhart M, McCabe A, Giltnane J, Cregger M, Camp RL, Rimm DL. Quantitative in situ analysis of beta-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Cancer Res 2006; 66:5487-94.
    
    44. Candidus S, Bischoff P, Becker KF, H(o|¨)fler H. No evidence for mutations in the alpha- and beta-catenin genes in human gastric and breast carcinomas. Cancer Res 1996;56:49-52.
    45.Kawano Y,Kypta R.Secreted antagonists of the Wnt signalling pathway.J Cell Sci 2003;116:2627-34.
    1. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349:2042-2054.
    
    2. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004; 22:4632-4642.
    3.Szyf M, Pakneshan P, Rabbani SA. DNA methylation and breast cancer. Biochem Pharmacol 2004; 68:1187-1197.
    4. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signaling. Nat Rev Mol Cell Biol 2002; 3:475-486.
    5.Holmberg J, Clarke DL, Frisén J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 2000; 408:203-206.
    
    6. Merlos-Suárez A, Batlle E. Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol 2008; 20:194-200.
    
    7. Liu W, Ahmad SA, Jung YD, et al. Coexpression of ephrin-Bs and their receptors in colon carcinoma. Cancer 2002; 94:934-939.
    
    8. Kinch MS, Moore MB, Harpole DH Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 2003; 9:613-618.
    
    9. Walker-Daniels J, Coffman K, Azimi M, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 1999; 41:275-280.
    
    10. Andres AC, Reid HH, Zürcher G, et al. Expression of two novel eph-related receptor protein tyrosine kinases in mammary gland development and carcinogenesis. Oncogene 1994; 9:1461-1467.
    
    11.Noren NK, Foos G, Hauser CA, et al. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 2006;8:815-825.
    
    12. Fang WB, Brantley-Sieders DM, Parker MA, et al. A kinase-dependent r.ole for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 2005;24:7859-7868.
    
    13. Ireton RC, Chen J. EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets 2005; 5:149-157.
    
    14. Fox BP, Kandpal RP. Invasiveness of breast carcinoma cells and transcript profile: Eph receptors and ephrin ligands as molecular markers of potential diagnostic and prognostic application. Biochem Biophys Res Commun 2004; 318:882-892.
    
    15. Brantley-Sieders DM, Zhuang G, Hicks D, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 2008;118:64-78.
    16. Lu M, Miller KD, Gokmen-Polar Y, et al. EphA2 overexpression decreases estrogen dependence and tamoxifen sensitivity. Cancer Res 2003; 63:3425-3429.
    17.Dottori M, Down M, Hüttmann A, et al. Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. Blood 1999; 94:2477-2486.
    
    18.Wang J, Kataoka H, Suzuki M, et al. Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene 2005; 24:5637-5647.
    
    19.Wang J, Li G, Ma H, Bao Y, et al. Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol 2007; 38:1649-1656.
    
    20. Dawson DW, Hong JS, Shen RR, et al. Global DNA methylation profiling reveals silencing of a secreted form of Epha7 in mouse and human germinal center B-cell lymphomas. Oncogene 2007; 26:4243-4252.
    
    21. Fox BP, Kandpal RP. Transcriptional silencing of EphB6 receptor tyrosine kinase in invasive breast carcinoma cells and detection of methylated promoter by methylation specific PCR. Biochem Biophys Res Commun 2006; 340:268-276.
    
    22. Yue Y, Chen ZY, Gale NW, et al. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci USA 2002; 99:10777-10782.
    
    23. Feltus FA, Lee EK, Costello JF, et al. Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA 2003; 100:12253-12258.
    
    24. Matros E, Wang ZC, Lodeiro G, et al. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles. Breast Cancer Res Treat 2005; 91: 179-186.
    
    25. Hoist CR, Nuovo GJ, Esteller M, et al. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 2003 ;63:1596-1601.
    
    26. Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer. Cancer Res 2000; 60:4346-8.
    
    27. Ottaviano YL, Issa JP, Parl FF, et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 1994; 54:2552-2555.
    28.Fackler MJ,McVeigh M,Evron E,et al.DNA methylation of RASSF1A,HIN-1,RAR-beta,Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma.Int J Cancer 2003;107:970-975.
    29.Carter CL,Allen C,Henson DE.Relation of tumor size,lymph node status,and survival in 24,740 breast cancer cases.Cancer 1989;63:181-187.
    30.Lehmann U,Langer F,Feist H,et al.Quantitative assessment of promoter hypermethylation during breast cancer development.Am J Pathol 2002;160:605-612.
    1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007; 57:43-66.
    
    2. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349:2042-54.
    
    3.Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004; 22: 4632-42.
    
    4. Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene 2002; 21:5462-82.
    
    5.Agrawal A, Murphy RF, Agrawal DK. DNA methylation in breast and colorectal cancers. Mod Pathol 2007; 20:711-21.
    
    6. Widschwendter M, Menon U. Circulating methylated DNA: a new generation of tumor markers. Clin Cancer Res 2006; 12:7205-8.
    
    7. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977; 37:646-50.
    
    8. Garcia JM, Silva JM, Dominguez G, Silva J, Bonilla F. Heterogeneous tumor clones as an explanation of discordance between plasma DNA and tumor DNA alterations. Genes Chromosomes Cancer 2001; 31:300-1.
    
    9. Silva JM, Dominguez G, Garcia JM, et al. Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res 1999 1;59:3251-6.
    
    10. Silva JM, Silva J, Sanchez A, et al. Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clin Cancer Res 2002;8:3761-6.
    
    11. Huang ZH, Li LH, Hua D. Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Lett 2006; 243:64-70.
    
    12. Silva JM, Dominguez G, Villanueva MJ, et al. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br J Cancer 1999;80:1262-4.
    
    13. Müller HM, Widschwendter A, Fiegl H, et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res 2003 15;63:7641-5.
    
    14. Chen X, Bonnefoi H, Diebold-Berger S, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res 1999;5:2297-303.
    15.Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 2004;10:6189-93.
    
    16.Hoque MO, Feng Q, Toure P, et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 2006;24:4262-9.
    17.Fackler MJ, McVeigh M, Mehrotra J, et al. Quantitative multiplex methylation specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res 2004;64:4442-52.
    
    18. Shinozaki M, Hoon DS, Giuliano AE, et al. Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 2005;11:2156-62.
    
    19. Li S, Rong M, Iacopetta B. DNA hypermethylation in breast cancer and its association with clinicopathological features.Cancer Lett 2006;237:272-80.
    
    20.Tao MH, Shields PG, Nie J, et al. DNA hypermethylation and clinicopathological features in breast cancer: the Western New York Exposures and Breast Cancer (WEB) Study. Breast Cancer Res Treat 2009;114:559-68.
    
    21. Mehrotra J, Ganpat MM, Kanaan Y, et al. Estrogen receptor/progesterone receptor-negative breast cancers of young African-American women have a higher frequency of methylation of multiple genes than those of Caucasian women. Clin Cancer Res 2004;10:2052-7.
    
    22. Bae YK, Brown A, Garrett E, et al. Hypermethylation in histologically distinct classes of breast cancer. Clin Cancer Res 2004; 10:5998-6005.
    
    23. Porter P. "Westernizing" women's risks? Breast cancer in lower-income countries. N Engl J Med 2008;358:213-6.
    
    24. Dammann R, Yang G, Pfeifer GP. Hypermethylation of the cpG island of Ras association domain family 1A (RASSFl A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 2001;61:3105-9.
    
    25.Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG Inactivation of glutathione S-transferase PI gene by promoter hypermethylation in human neoplasia. Cancer Res 1998;58:4515-8.
    
    26. Lehmann U, Langer F, Feist H, Gl(o|¨)ckner S, Hasemeier B, Kreipe H. Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol 2002; 160:605-12.
    27.Jin Z, Tamura G, Tsuchiya T, et al. Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br J Cancer 2001 ;85:69-73.
    
    28. Munot K, Bell SM, Lane S, Horgan K, Hanby AM, Speirs V. Pattern of expression of genes linked to epigenetic silencing in human breast cancer. Hum Pathol. 2006 Aug;37(8):989-99.
    
    29. Widschwendter M, Siegmund KD, Müller HM, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 2004;64:3807-13.
    
    30. Lewis CM, Cler LR, Bu DW, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res 2005;11:166-72.
    
    31. Mehrotra J, Vali M, McVeigh M, et al. Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 2004; 10:3104-9.
    
    32. Carraway HE, Wang S, Blackford A, et al. Promoter hypermethylation in sentinel lymph nodes as a marker for breast cancer recurrence. Breast Cancer Res Treat 2009;114:315-25.
    
    33.Martínez-Galán J, Torres B, Del Moral R, et al. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol Ther 2008;7:958-65.
    
    34.Mirza S, Sharma G, Prasad CP, et al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 2007;81:280-7.
    
    35.Taback B, Giuliano AE, Lai R, et al. Epigenetic analysis of body fluids and tumor tissues: application of a comprehensive molecular assessment for early-stage breast cancer patients. Ann N Y Acad Sci 2006;1075:211-21.
    
    36.Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 2000;60:5954-8.
    
    37. van Engeland M, Weijenberg MP, Roemen GM, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 2003;63:3133-7.
    38. House MG, Guo M, Iacobuzio-Donahue C, Herman JG Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis 2003;24:193-8.
    
    39.Guo M, Ren J, House MG, Qi Y, Brock MV, Herman JG Accumulation of promoter methylation suggests epigenetic progression in squamous cell carcinoma of the esophagus. Clin Cancer Res 2006;12:4515-22.
    
    40. Brock MV, Hooker CM, Ota-Machida E, et al. DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med 2008;358:1118-28.
    41.Burbee DG, Forgacs E, Z(o|¨)chbauer-Müller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 2001;93:691-9.
    
    42.Honorio S, Agathanggelou A, Schuermann M, et al. Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene 2003;22:147-50.
    
    43. Widschwendter M, Berger J, Hermann M, et al. Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 2000;92:826-32.
    
    44. Yang Q, Mori I, Shan L, et al. Biallelic inactivation of retinoic acid receptor beta2 gene by epigenetic change in breast cancer. Am J Pathol 2001 ;158:299-303.
    
    45. Parrella P, Poeta ML, Gallo AP, et al. Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res 2004;10:5349-54.
    
    46. Yan PS, Perry MR, Laux DE, Asare AL, Caldwell CW, Huang TH. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin Cancer Res 2000;6:1432-8.
    
    47. Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 2000; 92:564-9.
    
    48.Xu X, Gammon MD, Zhang Y, et al. BRCA1 promoter methylation is associated with increased mortality among women with breast cancer. Breast Cancer Res Treat 2008 Jun 3.
    
    49.Mirza S, Sharma G, Prasad CP, et al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 2007;81:280-7.
    50.Matros E,Wang ZC,Lodeiro G,Miron A,Iglehart JD,Richardson AL.BRCA1promoter methylation in sporadic breast tumors:relationship to gene expression profiles.Breast Cancer Res Treat 2005;91:179-86.
    51.Hilakivi-Clarke L.Estrogens,BRCA1,and breast cancer.Cancer Res 2000;60:4993-5001.
    52.Fan S,Ma YX,Wang C,et al.Role of direct interaction in BRCA1 inhibition of estrogen receptor activity.Oncogene 2001;20:77-87.
    53.Lee WH,Morton RA,Epstein JI,et al.Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis.Proc Natl Acad Sci U S A 1994;91:11733-7.
    54.Arai T,Miyoshi Y,Kim SJ,Taguchi T,Tamaki Y,Noguchi S.Association of GSTP1 CpG islands hypermethylation with poor prognosis in human breast cancers.Breast Cancer Res Treat.2006;100:169-76.
    55.Issa JP.Methylation and prognosis:of molecular clocks and hypermethylator phenotypes.Clin Cancer Res 2003;9:2879-81.
    56.Toyota M,Ahuja N,Ohe-Toyota M,Herman JG,Baylin SB,Issa JP.CpG island methylator phenotype in colorectal cancer.Proc Natl Acad Sci U S A 1999;96:8681-6.
    1.Das PM,Singal R.DNA methylation and cancer.J Clin Oncol.2004;22:4632-42.
    2.Gardiner-Garden M,Frommer M.CpG islands in vertebrate genomes.J Mol Biol.1987;196:261-82.
    3.Riggs A D,Jones P D.5-methylcytosine,gene regulation and cancer.Adv Cancer Res,1984;40:1-30.
    4.Bird A P.CpG-rich islands and the function of DNA methylation.Nature.1986,321:209-213.
    5.Cottrell S E.Molecular diagnostic applications of DNA methylation technology.Clin Biochem.2004;37:595-604.
    6.Jones P A,Baylin S B.The fundamental role of epigenetic events in cancer.Nat Rev Genet.2002;Jun.3:415-28.
    7.Attwood JT,Yung RL,Richardson BC,et al.DNA methylation and the regulation of gene transcription.Cell Mol Life Sci.2002;59:241-257.
    8.Yan L, Yang X, Davidson NE, et al. Role of DNA methylation and histone acetylation in steroid receptor expression in breast cancer. J Mammary Gland Biol Neoplasia. 2001; 6:183-192.
    
    9.Esteller M. DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol. 2005; 17:55 - 60.
    
    10. Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene 2002; 21:5462-82.
    
    11. Jackson K, Yu MC, Arakwa K, et al. DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther. 2004; 12:1225-1231.
    
    12. Szyf M, Pakneshan P, Rabbani SA. DNA methylation and breast cancer. Biochem Pharmacol. 2004; 68:1187-1197.
    
    13. Gupta A, Godwin AK, Vanderveer L, et al. Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma.Cancer Res. 2003; 63:664-73.
    
    14. Paredes J, Albergaria A, Oliveira JT, et al. P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res. 2005; 11:5869-5877.
    
    15.Ross JS, Linette GP, Stec J, et al. Breast cancer biomarkers and molecular medicine. Expert Rev Mol Diagn. 2003; 3:573-585.
    
    16.Wischnewski F, Pantel K, Schwarzenback H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res. 2006; 4:339-349.
    
    17.Narayan A, Ji W, Zhang X-Y, et al. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer. 1998; 77:833-838.
    
    18.Yuan J, Luo RZ, Fujii S et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res. 2003; 63:4174-4180.
    
    19. Van den Eynden GG, Van Laere SJ, Van der Auwera I et al. Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat. 2006; 95:219-228.
    
    20.Kim SJ, Kang HS, Chang HL et al. Promoter hypomethylation of the N-acetyltransferase 1 gene in breast cancer. Oncol Rep. 2008; 19:663-668.
    21.Pakneshan P, Tetu B, Rabbani SA. Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin Cancer Res. 2004;10:3035-3041.
    
    22. Jackson K, Yu MC, Arakawa K et al. DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther. 2004; 3:1225-1231.
    
    23. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract. 2005; 2: S4-S11.
    
    24. Miyamoto K, Fukutomi T, Akashi-Tanaka S, et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int J Cancer. 2005; 116:407-414.
    25.Caldeira JRF, Prando EC, Quevedo FC, et al. CDH1 promotor hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer. 2006;6:48.
    
    26.Fackler MJ, McVeigh M, Evron E, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 2003; 107:970-975.
    
    27. Prasad GL, Valverius EM, McDuffie E, et al. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be downregulated in neoplastic mammary cells. Cell Growth Differ. 1992; 3:507-513.
    
    28.Fenton H, Carlile B, Montgomery EA, et al. LKB1 protein expression in human breast cancer. Appl Immunohistochem Mol Morphol. 2006; 14:146-153.
    
    29. Hesson L, Dallol A, Minna JD, et al. NORE1 A, a homologue of RASSF1A tumor suppressor gene is inactivated in human cancer. Oncogene. 2003; 22:947-954.
    
    30. Silva J, Silva JM, Dominguez G, et al. Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J Path. 2003; 199:289-297.
    
    31. Kobatake T, Yano M, Toyooka S, et al. Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep.2004;12:1087-1092.
    
    32. Chen ST, Lin SY, Yeh KT et al. Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med. 2004; 14:577-582.
    
    33. Widschwendter M, Siegmund KD, Muller HM et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004; 64:3807-3813.
    34. Miyamoto K, Fukutomi T, Akashi-Tanaka S et al. Identification of 20 genes aberrantly methylated in human breast cancers. Int J Cancer. 2005; 116:407-414.
    
    35. Dulaimi E, Hillinck J, Ibanez de Caceres I, et al. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004; 10: 6189-6193
    
    36. Ikeda JI, Morii E, Kimura H et al. Epigenetic regulation of the expression of the novel stem cell marker CDCP1 in cancer cells. J Pathol. 2006; 210:75-84.
    37.Toyooka KO, Toyooka S, Virmani AK et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res. 2001; 61:4556-4560.
    
    38.Kobatake T, Yano M, Toyooka S et al. Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep. 2004; 12: 1087-1092
    
    39.Tang D, Sivko GS, DeWille JW. Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat. 2006; 95:161-170.
    
    40. Bachman KE, Herman JG, Corn PG et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res. 1999; 59:798-802.
    
    41. Li X, Cowell JK, Sossey-Alaoui K. CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene. 2004; 23:1474-1480.
    
    42. Tan LW, Bianco T, Dobrovic A. Variable promoter region CpG island methylation of the putative tumor suppressor gene Connexin 26 in breast cancer. Carcinogenesis. 2002; 23:231-236.
    
    43.Dote H, Toyooka S, Tsukuda K et al. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin Cancer Res. 2004;10:2082-2089.
    
    44. Heller G, Geradts J, Ziegler B et al. Downregulation of TSLC1 and DAL-1 expression occurs frequently in breast cancer. Breast Cancer Res Treat. 2007; 103:283-291.
    
    45. Seng TJ, Low JS, Li H et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene. 2007;26: 934 - 944.
    46.Agoston AT, Argani P, Yegnasubramanian S, et al. Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J Biol Chem. 2005;280: 18302-18310.
    
    47. Zochbauer-Muller S, Fong KM, Maitra A et al. 5'CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res. 2001; 61:3581-3585.
    
    48. Xiang YY, Ladeda V, Filmus J. Glypican-3 expression is silenced in human breast cancer. Oncogene. 2001; 20:7408-7412.
    
    49. Suzuki M, Shigematsu H, Shames DS et al. DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br J Cancer. 2005; 93:1029-1037.
    
    50. Raman V, Martensen SA, Reisman D et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature. 2000; 405:974-978.
    
    51. Miyamoto K, Asada K, Fukutomi T et al. Methylation-associated silencing of heparan sulfate d-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene. 2003; 22:274-280.
    
    52. Umetani N, Mori T, Koyanagi K et al. Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene. 2005; 24:4721-4727.
    
    53.Tomii K, Tsukuda K, Toyooka S et al. Aberrant promoter methylation of insulin-like growth factor binding protein-3 gene in human cancers. Int J Cancer. 2007; 120:566-573.
    
    54. Sathyanarayana UG, Padar A, Huang CX et al. Aberrant promoter methylation and silencing of laminin-5-encoding genes in breast carcinoma. Clin Cancer Res. 2003; 9:6389-6394.
    
    55. Palmisano WA, Crume KP, Grimes MJ et al. Aberrant promoter methylation of the transcription factor genes PAX5 alpha and beta in human cancers. Cancer Res. 2003; 63:4620-4625.
    
    56. Lapidus RG, Ferguson AT, Ottaviano YL et al. Methylation of estrogen and progesterone receptor gene 5'CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res. 1996;2:805-810.
    57. Abdollahi A, Pisarcik D, Roberts D, et al. LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24-25, is epigenetically regulated in cancer. J Biol Chem. 2003; 278:6041-6049.
    
    58. Khan S, Kumagai T, Vora J et al. PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer. 2004; 112:407-410.
    
    59. Widschwendter M, Berger J, Hermann M et al. Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst. 2000;92:826-832.
    
    60. Youssef EM, Chen XQ, Higuchi E et al (2004) Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res 64(7):2411-2417
    
    61.Esteller M, Guo M, Moreno V et al. Hypermethylation-associated Inactivation of the Cellular Retinol-Binding-Protein 1 Gene in Human Cancer. Cancer Res. 2002; 62:5902-5905.
    
    62. Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily.Cancer Res. 2001; 61:8094-8099.
    
    63.Dallol A, Forgacs E, Martinez A et al. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene. 2002; 21:3020-3028.
    
    64. Shigematsu H, Suzuki M, Takahashi T et al. Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies. Int J Cancer. 2005;113:600-604.
    
    65.Domann FE, Rice JC, Hendrix MJ, Futscher BW. Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer. 2000; 85:805-810.
    
    66. Dallol A, Da Silva NF, Viacava P et al. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res. 2002; 62:5874-5880.
    
    67. Xu XL, Wu LC, Du F et al. Inactivation of human SRBC, located within the 11 p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res. 2001; 61:7943-7949.
    
    68.Kwon MS, Kim SJ, Lee SY, et al. Epigenetic silencing of the sulfotransferase 1A1 gene by hypermethylation in breast tissue. Oncol Rep. 2006; 15:27-32.
    69. Yuan Y, Mendez R, Sahin A, Dai JL. Hypermethylation leads to silencing of the SYK gene in human breast cancer. Cancer Res. 2001; 61:5558-5561.
    
    70. Varga AE, Stourman NV, Zheng Q et al. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene. 2005;24:5043-5052.
    
    71. Esteller M, Silva JM, Dominguez G et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000; 92:564-569.
    
    72. Chan KY, Ozcelik H, Cheung AN, et al. Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res. 2002; 62:4151-4156.
    73.Birgisdottir V, Stefansson OA, Bodvarsdottir SK, et al. Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006;8:R38.
    
    74. Jiang WG, Sampson J, Martin TA et al. Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer. 2005; 41:1628-1636.
    
    75.Ai L, Tao Q, Zhong S et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis. 2006; 27:1341-1348.
    
    76. Agrelo R, Cheng WH, Setien F et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA. 2006; 103:8822-8827.
    
    77. Esteller M. Epigenetic lesions causing genetic lesions in human cancer: promoter hypermethylation of DNA repair genes. Eur J Cancer. 2000; 36:2294-2300.
    
    78.Fujii H, Biel MA, Zhou W, et al. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene. 1998; 16:2159 - 2164.
    
    79. Oshiro MM, Kim LJ, Wozhiak RJ, et al. Epigenetics silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res. 2005; 7:R669-R680.
    80.Ying J, Li H, Seng TJ et al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene. 2006; 25:1070-1080
    81.Pampalakis G, Sotiropoulou G. Multiple mechanisms underlie the aberrant expression of the human kallikrein 6 gene in breast cancer. Biol Chem. 2006;387:773-782.
    82. Dammann R, Yang G, Pfeifer GP. Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1 A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res. 2001;61:3105-3109.
    
    83.Takahashi Y, Miyoshi Y, Takahata C et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res. 2005;11:1380-1385.
    
    84. Cheng CK, Chow LWC, Loo WTY, et al. The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res. 2005; 65:8646-8654.
    
    85. Laux DE, Curran EM, Welshons WV, et al. Hypermethylation of the Wilms' tumor suppressor gene CpG island in human breast carcinomas. Breast Cancer Res Treat. 1999; 56(1):35-43
    
    86.Ai L, Kim WJ, Kim TY et al. Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res. 2006; 66:7899-7909.
    
    87. Schagdarsurengin U, Pfeifer GP, Dammann R. Frequent epigenetic inactivation of cystatin M in breast carcinoma. Oncogene. 2007; 26:3089-3094.
    
    88. Devereux TR, Horikawa I, Anna CH, et al. DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res. 1999; 59:6087-6090.
    
    89. Conway KE, McConnell BB, Bowring CE, et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000; 60:6236-6242.
    
    90. Levine JJ, Stimson-Crider KM, Vertino PM. Effects of methylation on expression of TMS/ASC in human breast cancer cells. Oncogene. 2003; 22:3475-3488.
    
    91. Esteller M, Corn PG, Urena JM, et al. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58:4515-4518.
    
    92. Baylin SB, Herman JG, Graff JR. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998; 72:141-196.
    
    93. Ferguson AT, Evron E, Umbricht CB et al. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA. 2000; 97:6049-6054.
    94.Umbricht CB, Evron E, Gabrielson E, et al. Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene. 2001; 20:3348-3353.
    
    95. Yang X, Yan L, Davidson NE. DNA methylation in breast cancer. Endocr Relat Cancer. 2001; 8:115-127.
    
    96. Lo PK, Mehrotra J, D'Costa A et al. Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biol Ther. 2006; 5:281-286.
    
    97. Veeck J, Niederacher D, An H et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene. 2006; 25:3479-3488.
    
    98. Li B, Goyal J, Dhar S et al. CpG methylation as a basis for breast tumor-specific loss of NES1/kallikrein 10 expression. Cancer Res. 2001; 61:8014-8021.
    
    99. Sidiropoulos M, Pampalakis G, Sotiropoulou G, et al. Downregulation of human kallikrein 10 (KLK10/NES1) by CpG island hypermethylation in breast, ovarian and prostate cancers. Tumour Biol. 2005; 26:324-336.
    
    100.Lau QC, Raja E, Salto-Tellez M et al. RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 2006; 66:6512-6520.
    
    101.M.J. Duffy. Role of tumor markers in patients with solid cancers: a critical review. Eur J Intern Med. 2007; 18:175-184.
    
    102.Sidransky D. Nucleic acid-based methods for the detection of cancer. Science. 1997; 278:1054-9.
    
    103.Anker P, Mulcahy H, Stroun M. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies? Int J Cancer. 2003; 103:149-52.
    
    104.Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature. 2008;452:553-63.
    
    105.Sidransky D. Nucleic acid-based methods for the detection of cancer.Science. 1997;278:1054-9.
    
    106.Laird PW. The power and the promise of DNA methylation markers.Nat Rev Cancer. 2003;3:253-66.
    
    107.Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLHl in sporadic colon tumors and mismatch repair-defective human tumor cell lines.Cancer Res. 1997;57:808-11.
    108.Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype.Cancer Res. 1999;59:5438-42.
    
    109.Eads CA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progression of esophageal adenocarcinoma.Cancer Res. 2001;61:3410-8.
    
    1 lO.Shen L, Ahuja N, Shen Y, et al. DNA methylation and environmental exposures in human hepatocellular carcinoma.J Natl Cancer Inst. 2002;94:755-61.
    
    111 .Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225-9.
    
    112.Ross JS, Linette GP, Stec J, et al. Breast cancer biomarkers and molecular medicine. Expert Rev Mol Diagn. 2003; 3: 573-585.
    
    113.Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations.Adv Cancer Res. 2000; 77:81-137.
    
    114.Laurent-Puig P, Béroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines.Nucleic Acids Res. 1998; 26: 269-70.
    
    115.Lewis CM, Cler LR, Bu DW, et al. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res. 2005; 11:166-72.
    
    116.Krassenstein R, Sauter E, Dulaimi E, et al. Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res. 2004;10:28-32.
    
    117.Dulaimi E, Hillinck J, Ibanez de Caceres I, et al. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10:6189-93.
    
    118.Hoque MO, Feng Q, Toure P, et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol. 2006;24:4262-9.
    
    119.Sharma G, Mirza S, Prasad CP, et al. Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sci.2007; 80:1873-81.
    
    120.Mirza S, Sharma G, Prasad CP, et al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients.Life Sci. 2007;81:280-7.
    121.Müller HM, Widschwendter A, Fiegl H, et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker.Cancer Res.2003;63:7641-5.
    
    122.Padopoulou E, Davilas E, Sotiriou V, et a.l Cell-free DNA and RNA in plasma as a new molecularmarker for prostate and breast cancer. Ann N Y Acad Sc,i. 2006; 1075:235-243.
    
    123.Maier S, Nimmrich I, Koenig T, et al. DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients-Technical and clinical validation in a multi-centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. Eur J Cancer. 2007; 43:1679-86.
    
    124.Harbeck N, Nimmrich I, Hartmann A, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated,node-negative breast cancer patients.J Clin Oncol. 2008; 26:5036-42.
    
    125.Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME, et al. DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. 2008; 111:429-37.
    
    126.Hartmann O, Spyratos F, Harbeck N, et al. DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res. 2009; 15:315-23.
    
    127.Martens JW, Nimmrich I, Koenig T, et al. Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res. 2005; 65:4101-17.
    
    128.Chekhun VF, Kulik GI, Yurchenko OV, et al. Role of DNA hypometylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett. 2006; 231:87-93.
    
    129.Chang HG, Kim SJ, Chung KW, et al. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J Mol Med. 2005; 83: 132-139.
    
    130.Kwabi-Addo B, Chung W, Shen L, et al. Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res. 2007; 13:3796-802.
    131.Issa JP, Ottaviano YL, Celano P, et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536-40.
    132.Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.Proc Natl Acad Sci USA. 1992; 89:1827-31.
    
    133.Kagan J, Srivastava S, Barker PE,et al. Towards Clinical Application of Methylated DNA Sequences as Cancer Biomarkers: A Joint NCI's EDRN and NIST Workshop on Standards, Methods, Assays, Reagents and Tools. Cancer Res. 2007;67:4545-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700