中波紫外线和氧化应激诱导晶体上皮细胞中I型胶原降解及EGF诱导人晶体上皮细胞移行的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白内障是当今社会首要的致盲眼病之一,现在世界上大约有2千万人是由于白内障而致盲,在我国白内障也是引起失明的最主要的眼病,目前仍以手术为主要复明措施。但术后残留的人晶体上皮细胞(HLECs)在晶体后囊增殖、移行,许多病人逐渐发生后囊膜混浊(PCO)或后发障(after cataract)),据统计,白内障晶体摘除术后一年,约有12%的患者形成后发障,术后五年后发障的发病率约为28%,严重影响了手术预后。目前尚无有效的方法防治后发障。
     现在已经明确有许多因素导致白内障和后发障的发生,如中波紫外线(UVB)、活性氧自由基(ROS);在后发障的形成过程中,有多种生长因子参与了HLECs的增殖和分化,其中EGF、bFGF和TGF-β与此密切相关,可刺激HLECs产生ROS。在HLECs中的Ⅰ型胶原对细胞的增殖、移行、白内障及后发障的形成起了关键的作用,
     HLECs的移行在后发障的发生中起着决定性的作用,但是目前有关细胞移行的信号机制研究不多。本研究探讨了UVB、
Cataract is the most common cause of blindness in the world. About 20,000,000 people in the world are blind caused by cataract. It also is a major ocular disease that causes blindness in china. Cataract is curable only by surgery. Unfortunately, many patients gradually develop the complication of posterior capsule opacification (PCO), arising from stimulated cell proliferation and cell migration within the lens capsule. It is estimated that 12 percent people will develop PCO in one year after surgery and 28 percent in five years post-surgery. Visual acuity(VA) is seriously deseased by PCO but which can not be effectively prevented and treated by now.
    It is well established that various factors such as UVB and oxidative stress of H_2O_2 can induce cataract and PCO formation. During the process of PCO formation, many growth factors involved in the proliferation and migration of human lens epithelial cells(HLECs). EGF, bFGFand TGF-β that can stimulate
引文
1. Thylefors B, Negrel, AD, and Pararajasegaram, R. Global data on blindness. Bull, of World Health Org. 73:115,1995.
    2. Apple, DJ, Solomon, KD and Tetz, MR. Posterior capsule opaci?cation. Surv. Ophthalmol. 37:73±116,1992.
    3. Kojima, M, Yamada, Y and Sasaki, K. Photodamage and the repair process of lens epithelial cells induced by a single exposure ultraviolet light. Invest.Ophthalmol. Vis. Sci. 40:S529,1999.
    4. Hockwin O, Kojima M and Sakamoto Y UVB damage to the eye lens: further results from animal model studies: a review. J Epidemiol 9: S39-47,1999
    5. Nishi K., Nishi O., Omoto Y The synthesis of cytokines by human lens epithelial cells-interleukin 1 (IL-1), tumor necrosis factor (TNF) interleukin 6 (IL-6), and epidermal growth factor (EGF). Nippon Ganka Gakkai Zasshi 96:715-20, 1992.
    6. Yamashita H., Tobari I., Sawa M., et al. [Functions of the transforming growth factor-beta superfamily in eyes]. Nippon Ganka Gakkai Zasshi 101:927-47, 1997.
    7. Beck R., Nebe B., Guthoff R., et al. Inhibition of lens epithelialcell adhesion by the calcium antagonist Mibefradil correlates with impaired integrin distribution and organization of the cytoskeleton. Graefes Arch. Clin. Exp. Ophthalmol. 239:452-8, 2001.
    8. Sugita M., Kato S., Sugita G., et al. Migration of lens epithelial cells through haptic root of single-piece acrylic-foldable intraocular lens. Am. J. Ophthalmol. 137:377-9, 2004.
    9. Wong T.T., Daniels J.T., Crowston J.G., et al. MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br. J. Ophthalmol. 88:868-72, 2004.
    10. Shigeo T, Michael W and Julia M.Induction of Matrix Metalloproteinases 2 and 9 following Stressto the Lens.Exp. Eye Res. 71:591 - 597,2000
    11.Frederikse PH, Garland D and Zigler JS. Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J Biol Chem 271: 10169-74,1996
    12.Sachdev NH, Di Girolamo N and Nolan TM. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation. Invest Ophthalmol Vis Sci 45: 4075-82, 2004.
    13.Birkedal-Hansen, H. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728 - 35, 1995.
    14. Tina TL, Charanjit S and Julie T. Matrix Metalloproteinases in Disease and Repair Processes in the Anterior Segment. Survey ofophthalmology 47(3),2002.
    15.Park J.Y., Kwon B.M., Chung S.K., et al. Inhibitory effect of 2'-O-benzoylcinnamaldehyde on vascular endothelial cell proliferation and migration. Ophthalmic. Res. 33:111-6, 2001.
    16.Rieck P.W., Kriegsch J., Jaeckel C, et al. Effect of suramin on proliferation and migration of lens epithelial cells in vitro. Ophthalmologe 101:73-9, 2004.
    1. Truscott RJ. 2003. Human cataract: the mechanisms responsible; light and butterfly eyes. Int J Biochem Cell Biol 35: 1500-4
    2. Hightower KR. 1994. A review of the evidence that ultraviolet irradiation is a risk factor in cataractogenesis. Doc Ophthalmol 88: 205-20
    3. Andley UP, Weber JG 1995. Ultraviolet action spectra for photobiological effects in cultured human lens epithelial cells. Photochem Photobiol 62: 840-6
    4. Sommerburg O, Ullrich O, Sitte N, von Zglinicki D, Siems W, Grune T. 1998. Dose- and wavelength-dependent oxidation of crystallins by UVB light-selective recognition and degradation by the 20S proteasome. Free Radic Biol Med 24: 1369-74
    5. Park SK, Kim J, Seomun Y, Choi J, Kim DH, et al. 2001. Hydrogen peroxide is a novel inducer of connective tissue growth factor. Biochem Biophys Res Commun 284: 966-71
    6. 6Sachdev NH, Di Girolamo N, Nolan TM, McCluskey PJ, Wakefield D, Coroneo MT. 2004. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in thehuman lens: implications for cortical cataract formation. Invest Ophthalmol Vis Sci 45: 4075-82
    7. McLauchlan WR, Sanderson J, Williamson G. 1997. Quercetin protects against hydrogen peroxide-induced cataract. Biochem Soc Trans 25: S581
    8. Tessier F, Moreaux V, Birlouez-Aragon I, Junes P, Mondon H. 1998. Decrease in vitamin C concentration in human lenses during cataract progression. Int J Vitam Nutr Res 68: 309-15
    9. Mayer UM, Muller Y, Bluthner K. 2001. [Vitamins C and E protect cultures of bovine lens epithelium from the damaging effects of blue light (430 nm) and UVBA light (300-400 nm)]. Klin Monatsbl Augenheilkd 218: 116-20
    10.Takahashi A, Masuda A, Sun M, Centonze VE, Herman B. 2004. Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull 62: 497-504
    11.Bonnefoy M, Drai J, Kostka T. 2002. [Antioxidants to slow aging, facts and perspectives]. Presse Med 31: 1174-84
    12.Lee do H, Cho KS, Park SG, Kim EK, Joo CK. 2005. Cellular death mediated by nuclear factor kappa B (NF-kappaB) translocation in cultured human lens epithelial cells afterultraviolet-B irradiation. J Cataract Refract Surg 31: 614-9 13.Krysan K, Lou MF. 2002. Regulation of human thioltransferase (hTTase) gene by AP-1 transcription factor under oxidative stress. Invest Ophthalmol Vis Sci 43: 1876-83
    14. Li WC, Spector A. 1996. Lens epithelial cell apoptosis is an early event in the development of UVB-induced cataract. Free Radic Biol Med 20: 301-11
    15. Li DW, Spector A. 1997. Hydrogen peroxide-induced expression of the proto-oncogenes, c-jun, c-fos and c-myc in rabbit lens epithelial cells. Mol Cell Biochem 173: 59-69
    16.Tasheva ES, Conrad GW. 2003. The UVB responsive elements in the human mimecan promoter: a functional characterization. Mol Vis 9: 1-9
    17.Li WC, Kuszak JR, Dunn K, Wang RR, Ma W, et al. 1995. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cell Biol 130: 169-81
    18.Kang J, Zhang J, Zhao Y. 1998. [A study of lipid peroxide-induced damage and of ultrastructure of lens epithelial cells in lens organ culture in vitro]. Zhonghua Yan Ke Za Zhi 34: 221-3, 15
    19.Frederikse PH, Garland D, Zigler JS, Jr., Piatigorsky J. 1996.Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J Biol Chem271: 10169-74
    20. Mansfield KJ, Cerra A, Chamberlain CG. 2004. FGF-2 counteracts loss of TGFbeta affected cells from rat lens explants: implications for PCO (after cataract). Mol Vis 10: 521-32
    21. Tina T.L,Charanjit Sethi,and Julie T. Daniels.Matrix Metalloproteinases in Disease and RepairProcesses in the Anterior Segment. SURVEY OF OPHTHALMOLOGYVOLUME 47,NUMBER 3,MAY-JUNE, 2002
    22. Sanderson J, Marcantonio, JM and Duncan G. Ahuman lens model of cortical cataract: calcium induces protein loss, vimentin cleavage and opaci(?)cation incultured human lens. Invest. Ophthalmol. Vis. Sci. 41,2255±61,2000
    23.Tamiya S, Wormstone IM, Marcantonio JM, et al: Induction of matrix metalloproteinases 2 and 9 following stress to the lens. Exp Eye Res 71:591-7, 2000
    24.Sachdev NH, Di Girolamo N, Nolan TM, McCluskey PJ, Wakefield D, Coroneo MT. 2004. Matrix metalloproteinasesand tissue inhibitors of matrix metalloproteinases in the human lens: implications for cortical cataract formation. Invest Ophthalmol Vis Sci 45: 4075-82 25.Davis R J . Signal transduction by the JNK group of MAP Kinase.Cell , 2000 , 103 (2) : 239-252
    26.Pulverer B J , Kyriakis J M , Avruch J , et al. Phosphorylation of c2jun mediated by MAP kinase. Nature , 1991 , 353 ( 6345 ) :670-674
    27. Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits:quarrel and harmony among siblings.J Cell Sci 2004,117:5965-5973
    
    28.Fatma N, Singh DP, Shinohara T, Chylack LT, Jr. 2001. Transcriptional regulation of the antioxidant protein 2 gene, a thiol-specific antioxidant, by lens epithelium-derived growth factor to protect cells from oxidative stress. J Biol Chem 276: 48899-907
    
    29. Cornish KM, Williamson G, Sanderson J. 2002. Quercetin metabolism in the lens: role in inhibition of hydrogen peroxide induced cataract. Free Radic Biol Med 33: 63-70
    
    30. Sanderson J, McLauchlan WR, Williamson G. 1999. Quercetin inhibits hydrogen peroxide-induced oxidation of the rat lens. Free Radic Biol Med 26: 639-45
    1. Wang E., Reid B., Lois N., et al. Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract? Faseb. J. 19:842-4, 2005.
    2. Wong T.T., Daniels J.T., Crowston J.G., et al. MMP inhibition prevents human lens epithelial cell migration and contraction of the lens capsule. Br. J. Ophthalmol. 88:868-72, 2004.
    3. Beck R., Nebe B., Guthoff R., et al. Inhibition of lens epithelial cell adhesion by the calcium antagonist Mibefradil correlates with impaired integrin distribution and organization of the cytoskeleton. Graefes Arch. Clin. Exp. Ophthalmol. 239:452-8, 2001
    4. . Sugita M., Kato S., Sugita G., et al. Migration of lens epithelial cells through haptic root of single-piece acrylic-foldable intraocular lens. Am. J. Ophthalmol. 137:377-9,2004.
    5. Nishi K., Nishi O., Omoto Y. The synthesis of cytokines by human lens epithelial cells-interleukin 1 (IL-1), tumor necrosis factor (TNF) interleukin 6 (IL-6), and epidermal growth factor (EGF). Nippon Ganka Gakkai Zasshi 96:715-20, 1992
    6. Yamashita H., Tobari I., Sawa M., et al. [Functions of the transforming growth factor-beta superfamily in eyes]. Nippon Ganka Gakkai Zasshi 101:927-47, 1997.
    7. Grierson I., Heathcote L., Hiscott P., et al. Hepatocyte growth factor/scatter factor in the eye. Prog. Retin. Eye Res. 19:779-802,2000.
    8. Ibaraki N., Lin L.R., Reddy V.N. Effects of growth factors on proliferation and differentiation in human lens epithelial cells in early subculture. Invest. Ophthalmol. Vis. Sci. 36:2304-12, 1995.
    9. Maidment J.M., Duncan G., Tamiya S., et al. Regional differences in tyrosine kinase receptor signaling components determine differential rowth patterns in the human lens. Invest. Ophthalmol. Vis. Sci. 45:1427-35, 2004.
    10. Wan Y., Belt A., Wang Z., et al. Transmodulation of epidermal growth factor receptor mediates IL-1 beta-induced MMP-1 expression in cultured human keratinocytes. Int. J. Mol. Med. 7:329-34,2001.
    11. Hu X., Cao B.N., Hu G., et al. Attenuation of cell migration and induction of cell death by aged garlic extract in rat sarcoma cells. Int. J. Mol. Med. 9:641-3, 2002.
    12.Bjorklund M., Koivunen E. Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta 1755:37-69, 2005
    13. Beck R., zur Linden B., Stave J., et al. Effect of intraocular lens design on posterior capsule opacification: an in-vitro model. Klin. Monatsbl. Augenheilkd 218:111-5, 2001.
    14.Nebe B., Kunz F., Peters A., et al. Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells. Graefes Arch. Clin. Exp. Ophthalmol. 242:597-604, 2004.
    15.Hollick E.J., Spalton D.J., Ursell P.G., et al. Lens epithelial cell regression on the posterior capsule with different intraocular lens materials. Br. J. Ophthalmol. 82:1182-8, 1998.
    16.Livela T., Uusitalo M. Structure, development and function of cytoskeletal elements in non-neuronal cells of the human eye. Prog. Retin. Eye Res. 17:385-428, 1998.
    17.Nishi O., Nishi K., Ohmoto Y. Synthesis of interleukin-1, interleukin-6, and basic fibroblast growth factor by human cataract lens epithelial cells. J. Cataract Refract Surg. 22 Suppl. 1:852-8, 1996.
    18.Girao H., Pereira P., Ramalho J., et al. Cholesterol oxides mediated changes in cytoskeletal organisation involves Rho GTPases small star, filled. Exp. Cell Res. 291:502-13, 2003.
    19. Weng J., Liang Q., Mohan R.R., et al. Hepatocyte growth factor, keratinocyte growth factor, and other growth factor-receptor systems in the lens. Invest. Ophthalmol. Vis. Sci. 38:1543-54, 1997
    20.Nishi O., Nishi K., Akaishi T., et al. Detection of cell adhesion molecules in lens epithelial cells of human cataracts. Invest. Ophthalmol. Vis. Sci. 38:579-85, 1997
    21. Shi B., Isseroff R.R. Epidermal growth factor (EGF)-mediated DNA-binding activity of AP-1 is attenuated in senescent human epidermal keratinocytes. Exp. Dermatol. 14:519-27, 2005.
    22.Mikami F., Gu H., Jono H., et al. Epidermal growth factor receptor acts as a negative regulator for bacterium nontypeable Haemophilus influenzae-induced toll-like receptor 2 expression via a Src-dependent p38 MAP kinase signaling pathway. J. Biol. Chem. 2005.
    23.Khan S.M., Oliver R.H., Yeh J. Epidermal growth factor receptor inhibition by tyrphostin 51 induces apoptosis inluteinized granulosa cells. J. Clin. Endocrinol. Metab. 90:469-73, 2005.
    24. Zhang Y., Banerjee S., Wang Z.W., et al. Epidermal growth factor receptor-related protein inhibits cell growth and induces apoptosis of BxPC3 pancreatic cancer cells. Cancer Res. 65:3877-82, 2005
    25.Raftopoulou M, Etienne-Maaneville S, Self A, et al. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science, 2004, 303( 5661): 1179-1181
    
    26. Ikejiri M., Bernardo M.M., Bonfil R.D., et al. Potent mechanism-based inhibitors for matrix metalloproteinases. J. Biol. Chem. Jul. 26, 2005.
    
    27. Jiang X., Dutton CM., Qi W.N., et al. siRNA mediated inhibition of MMP-1 reduces invasive potential of a human chondrosarcoma cell line. J. Cell Physiol. 202:723-30, 2005.
    1 郭振举,主编.眼辐射损伤.北京:北京协和医科大学中国协和医科大学联合出版社,1992,147
    2 Lerman S. Radiant Energy and the Eye, Macmillan, New York, 1980.
    3 Na'dia Campos, Victor BM, Silvana Allodia, et al. Ultrastructural study of first and second order neurons in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Micron 33 (2002) 627-637
    4 Taylor, HR. Ultraviolet radiation and the eye: an epidemiologic study, Trans. Am. Ophthalmol. Soc. 87 (1990) 802-853
    5 Boettner EA and Wolter JR. Transmission of the ocular media. Invest Ophthalmol Vis Sci 1962, 1:776
    6 Cooper G and Robson J. The yellow colour of the lens of man and other primates. J Physiol (Lond) 1969, 203:411
    7 Lerman S: Human ultraviolet radiation cataracts. Ophthalmic Res 1980, 12:303
    8 O'Donnell JH. Radiation chemistry of polymers. In: Reichmanis E, O'Donnell JH, editors. The effects of radiation on high-technology polymers. Washington, D.C.: American Chemical Society; 1989. p. 1-139 Kolozsvari L, Nogradi A, Hopp B, Bor Z. UVB absorbance of the human cornea in the 240- to 400-nm range. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2165-8
    10 Cullen AP, Chou BR, Hall MG, Jany SE. Ultraviolet-B damages corneal endothelium. Am J Optom Physiol Opt. 1984 Jul;61(7):473-8
    11 Karai I, Matsumura S, Takise S, et al. Morphological change in the corneal endothelium due to ultraviolet radiation in welders. Br J Ophthalmol. 1984 Aug;68(8):544-8
    12 Taylor HR, West SK, Rosenthal FS et al: Corneal changes associated with chronic ultraviolet radiation. Arch Ophthalmol 107:1481, 1989
    
    13 Kwok LS, Coroneo MT. A model for pterygium formation. Cornea. 1994 May; 13(3):219-24
    14 Moran D J, Hollows FC: Pterygium and ultraviolet radiation: A positive correlation. Br J Ophthalmol 1984, 68:343
    
    15 Nolan TM, DiGirolamo N, Sachdev NH, et al. The role of ultraviolet irradiation and heparin-binding epidermal growth factor-like growth factor in the pathogenesis of pterygium. Am J Pathol. 2003 Feb;162(2):567-74
    16 Duke-Edler S. Textbook of Ophthalmology. Vol. vl chapter 1954, 70: 6443-6467
    17 周新,自由基及其对机体作用,见:徐学峰主编,生理生化学与医学(第二版),北京:科学出版社,1987年,504-515
    18 Cejkova J, Stipek S, Crkovska J, et al. Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histol Histopathol. 2000 Oct; 15(4): 1043-50.
    19 Cejkova J, Stipek S, Crkovska J, Ardan T, Midelfart A. Reactive oxygen species (ROS)-generating oxidases in the normal rabbit cornea and their involvement in the corneal damage evoked by UVB rays. Histol Histopathol. 2001 Apr;16(2):523-33
    20 Podskochy A, Gan L, Fagerholm P. Apoptosis in UVB-exposed rabbit corneas. Cornea. 2000 Jan;19(1):99-103
    21 Gillardon F, Zimmermann M, Uhlmann E. Expression of c-Fos and c-Jun in the cornea, lens, and retina after ultraviolet irradiation of the rat eye and effects of topical antisense oligodeoxynucleotides. Br J Ophthalmol. 1995 Mar;79(3):277-81
    22 Podskochy A, Fagerholm P. The expression of Fas ligand protein in ultraviolet-exposed rabbit corneas. Cornea. 2002 Jan;21(1):91-4.
    23 Ma X, Bazan HE. Platelet-activating factor (PAF) enhances apoptosis induced by ultraviolet radiation in corneal epithelial??cells through cytochrome c-caspase activation. Curr Eye Res. 2001 Nov;23(5):326-35
    
    24 Kennedy M, Kim KH, Harten B, et al. Ultraviolet irradiation induces the production of multiple cytokines by human corneal cells. Invest Ophthalmol Vis Sci. 1997 Nov;38(12):2483-91
    
    25 Cullen AP, Chou BR, Hall MG, Jany SE. Ultraviolet-B damages corneal endothelium. Am J Optom Physiol Opt. 1984 Jul;61(7):473-8.
    
    26 Wanda Brown. Ultraviolet Radiation . Ohio State University Fact Sheet CDFS-199-98
    
    27 Wickert H, Zaar K, Grauer A, John M, Zimmermann M, Gillardon F. Differential induction of proto-oncogene expression and cell death in ocular tissues following ultraviolet irradiation of the rat eye. Br J Ophthalmol. 1999 Feb;83(2):225-30.
    
    28 Brubaker RF, Bourne WM, Bachman LA, McLaren JW. Ascorbic acid content of human corneal epithelium, nvest Ophthalmol Vis Sci. 2000 Jun;41(7):1681-3
    29 Lodovici M, Raimondi L, Guglielmi F, Gemignani S, Dolara P. Protection against ultraviolet B-induced oxidative DNA damage in rabbit corneal-derived cells (SIRC) by 4-coumaric acid. Toxicology. 2003 Mar 3; 184(2-3): 141-7
    30 Fujihara T, Nagano T, Endo K, Nakamura M, Nakata K. Lactoferrin protects against UVB-B irradiation-induced corneal epithelial damage in rats. Cornea. 2000 Mar;19(2):207-l 1
    31 Cai CX, Birk DE, Linsenmayer TF. Nuclear ferritin protects DNA from UVB damage in corneal epithelial cells. Mol Biol Cell. 1998 May;9(5):1037-51
    32 Sliney DH. How light reaches the eye and its components. Int J Toxicol. 2002 Nov-Dec;21(6):501-9.
    33 Wollensak G, Spoerl E, Seiler T Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003 May;135(5):620-7
    34 Borderie VM, Kantelip BM, Genin PO, Masse M, Laroche L, Delbosc BY. Modulation of HLA-DR and CDla expression on human cornea with low-dose UVB irradiation. Curr Eye Res. 1996 Jun;15(6):669-79
    35 Dana MR, Olkowski ST, Ahmadian H, Stark WJ, Young EM. Low-dose ultraviolet-B irradiation of donor corneal endothelium and graft survival. Invest Ophthalmol Vis Sci. 1990 Nov;31(11):2261-8
    36 Leske MC, Sperduto RD: The epidemiology of senile cataracts: A review. Am J Epidemiol 1983, 118:152,
    37 K. Sasaki, Epidemiology - search for risk factors of cataract formation, Nova Acta Leopoldina 75 (299) (1997) 25-36
    38 Zuclich JA. Ultraviolet-induced photochemical damage in ocular tissues. Health Phys 1989;56:671- 682.
    39 PJ. Dolin, Ultraviolet radiation and cataract: A review of the epidemiological evidence, Br. J. Opthalmol. 1994, 78:478-482.
    40 Taylor HR, West SK, Rosenthal FS et al: Effect of ultraviolet radiation on cataract formation, N Engl J Med 1988, 319: 1429
    41 Bochow TW, West SK, Axar A et al: Ultraviolet light exposure and risk of posterior subcapsular cataracts. Arch Ophthalmol 1989, 107:369
    42 Hayashi LC, Hayashi S, Yamaoka K, et al. Ultraviolet B exposure and type of lens opacity in ophthalmic patients in Japan. Sci Total Environ. 2003 Jan 20;302(l-3):53-62
    43 Longstreth J, de Gruijl FR, Kripke ML, et al. Health risks. J Photochem Photobiol B. 1998 Oct;46(1-3):20-39
    44 Lofgren S, Soderberg PG. Lens lactate dehydrogenase inactivation after UVB irradiation: an in vivo measure of UVR-B penetration. Invest Ophthalmol Vis Sci. 2001 Jul;42(8):1833-6
    45 Zigman S, Schultz J, Yulo T: Possible roles of near UVB light in the cataractous process. Exp Eye Res 13:462, 1974
    46 Spector A: The search for a solution to senile cataracts (Proctor Lecture). Invest Ophthalmol Vis Sci 25: 130, 1984
    47 Dillon J, Zheng L, Merriam JC, Gaillard ER The optical properties of the anterior segment of the eye: implications for cortical cataract. Exp Eye Res. 1999 Jun;68(6):785-95.
    48 Oriowo OM, Cullen AP, Sivak JG. Impairment of eye lens cell physiology and optics by broadband ultraviolet A-ultraviolet B radiation. Photochem Photobiol. 2002 Sep;76(3):361-7.
    49 Soderberg PG, Michael R, Merriam JC. Maximum acceptable dose of ultraviolet radiation: a safety limit for cataract. Acta Ophthalmol Scand. 2003 Apr;81(2): 165-9
    50 J. Dillon, Photophysics and photobiology of the eye, J. Photochem.- Photobiol. B: Biol. 10 (1991) 23-40.
    51 H.Z. Malina, X.D. Martin, Xanthurenic acid derivative formation in the lens is responsible for senile cataract in humans, Graefes Arch. Clin. Exp. Ophthalmol. 234 (1996) 723-730
    52 Ortwerth BJ, Chemoganskiy V, Olesen PR. Studies on singlet oxygen formation and UVBA light-mediated photobleaching of the yellow chromophores in human lenses. Exp Eye Res. 2002 Feb;74(2):217-29
    53 Davies MJ, Truscott RJ. Photo-oxidation of proteins and its rolein cataractogenesis. J Photochem Photobiol B. 2001 Oct;63(l-3):114-25
    54 Liao JH, Lee JS, Chiou SH. Distinct roles of alphaA- and alphaB-crystallins under thermal and UVB stresses. Biochem Biophys Res Commun. 2002 Jul 26;295(4):854-61
    55 Aquilina JA, Truscott RJ. Identifying sites of attachment of UVB filters to proteins in older human lenses. Biochim Biophys Acta. 2002 Apr 1;1596(1):6-15
    56 Lin SY, Ho CJ, Li MJ. UVB-B-induced secondary conformational changes in lens alpha-crystallin. Photochem Photobiol B. 1999 Mar;49(l):29-34
    57 Giblin FJ, Leverenz VR, Padgaonkar VA, et al. UVBA light in vivo reaches the nucleus of the guinea pig lens and produces deleterious, oxidative effects. Exp Eye Res. 2002 Oct;75(4):445-58.
    58 Byshneva LN, Senchuk VV. [Effect of UVB-radiation on the level of ascorbic acid, SH-groups, and activity of glutathione reductase in the eye lens] [Article in Russian] Vopr Med Khim. 2002 Sep-Oct;48(5):455-60
    59 Michael R, Vrensen GF, van Marie J, Gan L, Soderberg PG. Apoptosis in the rat lens after in vivo threshold dose ultraviolet irradiation. Invest Ophthalmol Vis Sci. 1998 Dec;39(13):2681-7
    60 Argirova MD, Breipohl W. Glycated proteins can enhance photooxidative stress in aged and diabetic lenses. Free Radic Res. 2002 Dec;36(12):1251-9
    61 Wickert H, Zaar K, Grauer A, et al. Differential induction of proto-oncogene expression and cell death in ocular tissues following ultraviolet irradiation of the rat eye. Br J Ophthalmol. 1999 Feb;83(2):225-30
    62 Alexander G, Carlsen H, Blomhoff R. Strong in vivo activation of NF-kappaB in mouse lenses by classic stressors. Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2683-8
    63 Boileau TW, Bray TM, Bomser JA. Ultraviolet radiation modulates nuclear factor kappa B activation in human lens epithelial cells. J Biochem Mol Toxicol. 2003; 17(2): 108-13
    64 Zigman S. Lens UVBA photobiology. J Ocul Pharmacol Ther. 2000 Apr;16(2):161-5
    65 Anwar MM, Moustafa MA. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation. Comp Biochem Physiol C Toxicol Pharmacol. 2001 May;129(1):57-63
    66 Yildirim N, Ozer A, Inal M, Angin K, Yurdakul S. The effect of N-acetyl serotonin on ultraviolet-radiation-induced cataracts in rats. Ophthalmologica. 2003 Mar-Apr;217(2): 148-53
    67 Bardak Y, Ozerturk Y, Ozguner F, Durmus M, Delibas N. Effectof melatonin against oxidative stress in ultraviolet-B exposed rat lens. Curr Eye Res. 2000 Mar;20(3):225-30
    68 Gorgels TG, van Norren D. Spectral transmittance of the rat lens. Visual Research 1992, 32:1509-1512
    69 F.M. Barker, G.C. Brainard, P. Dayhaw-Barker, Transmittance of the human lens as a function of age, Invest. Ophthalmol. Vis. Sci. 32S (1991) 1083.
    70 Rosenthal RS, Safran M, Taylor HR: The ocular dose of ultraviolet radiation from sunlight exposure. Photochem Photobiol 1985, 42: 163
    
    71 Dillon J, Zheng L, Merriam JC, Gaillard ER. Transmission spectra of light to the mammalian retina. Photochem Photobiol. 2000 Feb;71(2):225-9
    
    72 Kawa P, Mankowska A, Mackiewicz J. [Solar retinopathy] [Article in Polish] Klin Oczna. 1998;100(4):235-7
    
    73 Stokkermans TJ, Dunbar MT. Solar retinopathy in a hospital-based primary care clinic. J Am Optom Assoc. 1998 Oct;69(10):625-36.
    
    74 Loeffler KU, Sastry SM, McLean IW. Is age-related macular degeneration associated with pinguecula or scleral plaque formation?Curr Eye Res. 2001 Jul;23(l):33-7
    
    75 The National society to prevent blindness, The NationalOptometric association, The American Academy of Ophthalmology. Statement on ultraviolet radiation hazards in sunlight. 1993,Nov 10
    76 Wagner RS. Why children must wear sunglasses. Contemp pediatr 1995, 12:27-31
    77 Young S, Sands J. Sun and the eye: prevention and detection of light-induced disease. Clin Dermatol. 1998 Jul-Aug;16(4):477-85
    78 Busch EM, Gorgels TG, Van Norren D. Filling-in after focal loss of photoreceptors in rat retina. Exp Eye Res. 1999 Apr;68(4):485-92.
    79 Gorgels, T.G., van Norren, D., 1995. Ultraviolet and green light cause different types of damage in retina. Invest. Ophthalmol. Vis. Sci. 36, 851-863.
    80 Busch EM,Gorgels TG. Temporal sequence of changes in rats after UVBA and blue light exposure.Visual Research . 1999(39):1233-1247
    81 Glickman RD. Phototoxicity to the retina: mechanisms of damage. Int J Toxicol. 2002 Nov-Dec;21(6):473-90
    82 Yoshizawa T. Photophysiological functions of visual pigments. Adv Biophys. 1984;17:5-67
    83 Z. Ablonczy, D.R. Knapp, R. Darrow, et al. Mass spectrometricanalysis of rhodopsin from light damaged rats. Mol. Vis. 6 (2000) 109-115
    84 J.E. Roberts, E.R. Gaillard, S.J. Atherton, J. Dillon, Potential involvement of singlet oxygen in light induced damage to the retina. Invest. Ophthalmol. Vis. Sci. 34 (1993) 1433.
    85 Augustin AJ, Dick HB, Offermann I, Schmidt-Erfurth U. [The significance of oxidative mechanisms in diseases of the retina] [Article in German] Klin Monatsbl Augenheilkd. 2002 Sep;219(9):631-43.
    86 Girotti AW. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B. 2001 Oct;63(1-3):103-13
    
    87 T. Sarna, Properties and function of the ocular melanin — a photobiophysical view, J. Photochem. Photobiol. B: Biol. 12 (1992):215-258
    
    88 M. Rozanowska, A. Bober, J.M. Burke, T. Sarna, The role of retinal pigment epithelium melanin in photoinduced oxidation of ascorbate. Photochem. Photobiol. 65 (1997) 472-479
    
    89 M. Boulton, F. Docchio, P. Dayhaw-Barker, et al. Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigmentepithelium. Vis. Res. 30 (1990) 1291-1303
    90 S. Sundelin, S.E.G. Nilsson, U.T. Brunk, Lipofuscin accumulation in cultured retinal pigment epithelial cells is dependent on the melanin content, Invest. Ophthalmol. Vis. Sci. 41 (2000)4472
    91 Sliney DH. Geometrical assessment of ocular exposure to environmental UVB radiation-implications for ophthalmic epidemiology. J Epidemiol. 1999 Dec;9(6 Suppl):S22-32.
    92 J.E. Roberts, A. Harriman, S.J. Atherton, et al. A non-invasive method to detect oxygen tensions and other environmental factors in the lens. Int. Soc. Ocular Phototox., Sedona, AZ, Abstr. 82, 1992, p
    93 J.W. McLaren, S. Dinslage, J.P. Dillon, er al. Measuring oxygen tension in the anterior chamber of rabbits. Invest. Ophthalmol. Vis. Sci. 39 (1999) 1899-1909
    94 D.G. Pitts, A.P. Cullen, W.H. Parr, Ocular ultraviolet effects in the rabbit eye, DHEW (NIOSH) Publ. 77 (1976) 130-138
    95 K.L. Schey, S. Patat, C.F. Chignell, M. Datillo, R.H. Wang, J.E. Roberts, Photooxidation of lens proteins by hypericin (active ingredient in St. John's Wort), Photochem. Photobiol. 72 (2000) 200-207.
    96 P. Dayhaw-Barker, Ocular photosensitization, Photochem.Photo-biol. 46 (1987) 1051-1056.
    97 Wickert H, Zaar K, Grauer A, et al. Differential induction of proto-oncogene expression and cell death in ocular tissues following ultraviolet irradiation of the rat eye. Br J Ophthalmol. 1999 Feb;83(2):225-30.
    98 Liang YG, Jorgensen AG, Kaestel CG,et al. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UVB-light and daunorubicin. Curr Eye Res. 2000 Jan;20(l):25-34
    99 Walsh N ; Valter K ; Stone J .Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina. Exp Eye Res 2001 May; 72(5): 495-501
    100 Eisenfeld AJ, Bunt Milan AH, Sarthy PV. Muller cell expression of glial fibillary acidic protein after gentic and experimental photoreceptor degeneration in the rat retina[J]. Invest Ophthal Cis Sci 1984,25(110:321-325
    101 Bova LM, Sweeney MH, Jamie JF, Truscott RJ. Major changes in human ocular UVB protection with age. Invest Ophthalmol Vis Sci. 2001 Jan;42(l):200-5
    102 Reddy GB, Nayak S, Reddy PY, Bhat KS. Reduced levels of rat lens antioxidant vitamins upon in vitro UVB irradiation. J Nutr Biochem. 2001 Feb;12(2):121-124103 Moeller SM, Jacques PF, Blumberg JB. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr. 2000 Oct;19(5 Suppl):522S-527S
    104 R.P. Gallagher, J.M. Elwood, J.M. Rootman, Risk factors for ocular melanoma: Western Canada Melanoma Study, J. Natl. Cancer Inst. 74 (1985) 775-778
    105 M.A. Tucker, J.A. Shields, P. Hartge, J. Augsburger, R.N. Hoover, J.F. Fraumeni, Sunlight exposure as risk factor for intraocular malignant melanoma, New Engl. J. Med. 313 (1985) 789-792
    106 Raivio, UVBeal melanoma in Finland: an epidemiological, clinical and prognostic study, Acta Ophthalmol. (Suppl.) 133 (1977)3-64.
    107 J. Scotto, J.F. Fraumeni Jr., J.A.H. Lee, Melanomas of the eye and other non-cutaneous sites: epidemiologic aspects, J. Natl. Cancer Inst. 56 (1976) 489-491
    108 G. Prota, D.N. Hu, M.R. Vincensi, S.A. McCormick, A. Napolitano, Characterization of melanins in human irides and cultured UVBeal melanocytes from eyes of different colors, Exp. Eye Res. 67 (1998) 293-299.
    109 O.A. Jeson, Malignant melanomas of the UVBea in Denmark 1943-1952: a clinical, histopathological andprognostic study, Acta Ophthalmol. (Suppl.) 75 (1963) 17-78
    110 D.N. Hu, S.A. McCormick, S.J. Orlow, S. Rosemblat, A.Y. Lin, Regulation of melanogenesis by human UVBeal melanocytes in vitro, Exp Eye Res. 64 (1997) 397-404.
    111 D.N. Hu, S.A. McCormick, A.Y. Lin, J.Y. Lin, TGF-b2 inhibitsgrowth of UVBeal melanocytes at physiological concentrations, Exp Eye Res. 67 (1998) 143-150
    112 D.-N. Hu, J.E. Roberts, Melatonin inhibits growth of cultured human UVBeal melanoma cells, Melanoma Res. 7 (1997)27-31
    113 J.E. Roberts, D.-N. Hu, L. Martinez, C.F. Chignell, Photophysical studies on melatonin and its receptor agonists, J. Pineal Res. 29(2000) 94-99.
    114 R. Cubeddu, P. Taroni, D.N. Hu, N. Sakai, K. Nakanishi, J.E. Roberts, Photophysical studies of A2E, putative precursor of lipofuscin, in human retinal pigment epithelial cells, Photochem Photobiol. 70 (1999) 172-175
    115 J.E. Roberts, B. Kukielczak, P. Bielski, R. Sik, C.F. Chignell, D.-N. Hu, The role of A2E in the protection of and light damage to human retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci. 42(2001) S943
    116 Lu H, Hunt DM, Ganti R, et al. Metallothionein protects retinal pigment epithelial cells against apoptosis and oxidativestress. Exp Eye Res. 2002 Jan;74(l):83-92
    117 F.M. Barker, G.C. Brainard, P. Dayhaw-Barker. Transmittance of the human lens as a function of age. Invest Ophthalmol Vis Sci. 32S (1991): 1083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700