多电极SOA饱和功率研究及驱动控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光放大器(SOA)因其具有体积小、成本低、易与其他光电器件集成等特点,在光纤通信系统中有很广泛的应用。其应用领域主要可以分为两类:一类是利用其线性放大功能,在光纤通信系统中作为后置放大器、在线放大器和前置放大器;另一类是利用其非线性效应,用作全光信号处理的功能器件,如波长转换器、光开关、全光逻辑器件等。在上述两类应用中,对SOA饱和功率的要求不一样。
     为了适应在不同应用场合对SOA饱和功率的不同要求,可以利用多电极SOA。本文以载流子速率方程和光子传输方程为基础,应用SOA的分节模型对饱和功率进行了数值模拟和分析。首先研究了单电极SOA的饱和功率随注入电流、有源区腔长等的变化规律;然后,重点模拟了多电极SOA的饱和功率随电流注入比例、有源区腔长比例等的变化规律。发现固定两电极SOA第一电极的注入电流,连续改变第二电极的注入电流时,可以实现饱和功率的连续调节;采用前节光场限制因子大,后节光场限制因子小的两电极SOA,可以实现在小信号增益不降低的前提下,提高饱和输出功率。
     另外,作者还完成了多电极SOA驱动与温控系统的设计和制作,该系统能实现多电极SOA的恒流驱动和精密温度控制,各电极最大驱动电流达800mA,温度在15~50℃内控制精度达0.05℃,以ATmega16单片机为核心的系统控制电路实现多电极SOA的过流和过温保护。
Because of its compactness, potentially low cost and easy to integrate with other optoelectronic devices, semiconductor optical amplifier(SOA) is widely used in optical fiber communication system. The main areas of its application can be divided into two types: one is to use its linear amplification in optical fiber communication system as boost amplifiers, inline amplifiers and pre-amplifiers; the other is to make use of its non-linear effects, used in All-optical signal processing, such as wavelength converters, photonic switches, all-optical logic devices. In these two types of applications mentioned above, the saturation power of SOA is different as the request.
     In order to adapt to various requirements of saturation power in different applications, multi-electrode SOA can be used. Based on the carrier density rate equation and photon propagation equation, the multi-section model of SOA has been presented to study the saturation power in this thesis. The saturation power of single-electrode SOA, under different injected current and different cavity length has been studied. Then, the saturation power of multi-electrode SOA under different injected current ratio and cavity length ratio, is emphatically studied. It’s found that the saturation power can be adjusted continuously by changing the injected current of the second electrode in the two-electrode SOA. It is also found that the two-electrode SOA with bigger optical confinement factor in the first electrode and smaller one in the second electrode can achieve a high saturation output power and the small signal gain is not decreased.
     In addition to study on saturation characteristics, the drive and temperature control system for multi-electrode SOA is also designed and constructed. It’s suitable for multi -electrode SOA to achieve constant current drive and precision temperature control. The maximum drive current of the single electrode is up to 800mA. The temperature can be controlled at 15~50℃with accuracy of 0.05℃. The system control circuit based on ATmega16 can provide over-current and over-temperature protection.
引文
[1]李超.浅谈光纤通信技术发展的现状与趋势.沿海企业与科技, 2007, 07: 24~25
    [2]李玉权.光通信原理与技术. (第一版).北京:科学出版社, 2006. 3~4
    [3] A. Bogoni, L. Poti, A. Bizzi, et al. Modeling and Experimental Validation of Current- induced Gain Saturated SOAs for Ultra-fast Transmission. OFC 2002., 2002: 707~709
    [4] Serge Dubovitsky, Atul Mathur, William H. Steier, et al. Gain Saturation Properties of a Polarization Insensitive Semiconductor Amplifier Implemented with Tensile and Compressive Strain Quantum Wells. IEEE Photonics Technology Letters, 1994, 6(2): 176~178
    [5] Lars Gillner and Lars Thylen. Effects of Gain Saturation in Semiconductor Laser Amplifier Links. IEEE Photonics Technology Letters, 1992, 4(5): 438~441
    [6] Jinyan Jin, Decheng Tian, Jing Shi, et al. Fabrication and Complete Characterization of Polarization Insensitive 1310nm InGaAsP-InP Quantum-well Semiconductor Optical Amplifier. Semiconductor Science and Technology, 2004, 19: 120~126
    [7] S. Tanaka, S. Tomabechi, A. Uetake, et al. Record High Saturation Output Power (+20dBm) and Low NF (6.0dB) Polarization-insensitive MQW-SOA Module. Electronics Letters, 2006, 42(18): 13~15
    [8] Giampaolo Bendelli, Kazuhiro Komori, and Shigehisa Arai. Gain Saturation and Propagation Characteristics of Index-Guided Tapered-Waveguide Traveling-Wave Semiconductor Laser Amplifier(TTW-SLA’s). IEEE Journal of Electronics, 1992, 28(2): 447~458
    [9] Takaaki Kakitsuka, Yasuo Shibata, Masayuki Itoh, et al. Theoretical Analysis of Polarization Sensitivity of Strained Bulk SOAs. Proc. SPIE, 2001, 4283: 398~405
    [10]刘林,邵钟浩.基于SOA的全光波长转换器及其研究进展.科技信息, 2008, 1: 93~94
    [11] Ken Morito, High Output Power Polarization Insensitive SOA. Proceedings of SPIE, 2002, 4651: 127~136
    [12] Keang-Po Ho, Shien-Kuei Liaw and Clinlon Lin. Reduction of Semiconductor Laser Amplifier Induced Distortion and Crosstalk for WDM Systems Using Light Injection. Electronics Letters, 1996, 32(24): 2210~2211
    [13] Chien-Hung Yeh. Hybrid Three-stage C- plus L-band Optical Fiber Amplifier inCascade Configuration. Optical Engineering, 2005, 44(5): 054201-1~054201-5
    [14] Wolfson D. Detailed Theoretical Study of the Cascadability of Conventional and Gain-clamped SOA-gates in Multi-wavelength Optical Networks. IEEE Photonics Technology Letters, 1999, 11(11):1494~1496
    [15]王惠,王涛,刘德明,黄德修.增益钳制半导体光放大器的实验研究.华中科技大学学报, 2001, 29(8): 1~3
    [16] Jacco L. Pleumeekers, Matthias Kauer, Kevin Dreyer, et al. Acceleration of Gain Recovery in Semiconductor Optical Amplifier by Optical Injection Near Transparency Wavelength. IEEE Photonics Technology Letters, 2002, 14(1): 12~14
    [17] Manabu Yoshino and Kyo Inoue. Improvement of Saturation Output Power in a Semiconductor Laser Amplifier through Pumping Light Injection. IEEE Photonics Letters, 1996, 8(1): 58~59
    [18] P.D. Greene, M.J. Fice, A.J. Collar, et al. Modeling and Optimization of The Static Saturation Characteristics of Quantum Well Semiconductor Optical Amplifiers. Quantum Electronics, 1999, 21: 180~183
    [19] James W. Raring. Advanced InP Based Monolithic Integration Using Quantum Well Intermixing and MOCVD Regrowth: [A dissertation for the degree of Doctor in Philosophy]. Santa Barbara: The Library of University of California, 2006
    [20] Omar Qasaimeh. Optical Gain and Characteristics of Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics, 2003, 39(6): 793~798
    [21] Tommy W. Berg and Jesper Mork. Saturation and Noise Properties of Quantum-Dot Optical Amplifier. IEEE Journal of Quantum Electronics, 2004, 40(11): 1527~1539
    [22] Hong Ma, Xinjian Yi and Sihai Chen. 1.55μm AlGaInAs/InP Polarization-insensitive Optical Amplifier with Tensile Strained Wells Grown by MOCVD. Optical and Quantum Electronics, 2003, 35: 1107~1112
    [23]黄黎蓉,李含辉,陈俊等.多电极半导体光放大器对增益特性的改善.光子学报, 2003, 32(1): 68~71
    [24]崔迎超,张书练,冯金亘.半导体光放大器的增益特性和偏振特性.激光技术, 2005, 29(5): 462~465
    [25]廖先炳,李蔚.半导体光放大器的开发现状和市场预测.元器件应用, 2003, 2: 54~55
    [26]洪伟,黄德修.半导体光放大器静态增益饱和特性的理论研究.华中科技大学学报, 2002, 30(9): 67~72
    [27]王颖.基于半导体光放大器的全光逻辑门: [硕士论文].武汉:华中科技大学图书馆, 2004
    [28] Chaoyuan Jin, Yongzhen Huang, Lijuan Yu, et al. Detailed Model and Investigation of Gain Saturation and Carrier Spatial Burning for a Semiconductor Optical Amplifier With Gain Clamping by a Vertical Laser Field. IEEE Journal of Quantum Electronics, 2004, 40(5): 513~518
    [29] Shurong Wang, Zhihong Liu, Wei Wang, et al. Wide-Band Polarization-Insensitive High-Output-Power Semiconductor Optical Amplifier Based on Thin Tensile-Strained Bulk InGaAs. CHIN.PHYS.LETT, 2004, 21(2): 310~312
    [30]黄黎蓉.半导体光放大器偏振相关性及其宽谱特性研究: [博士论文].武汉:华中科技大学图书馆, 2005
    [31] Alan.E Willner, Willian Shieh. Optical Spectral and Power Parameters for All-optical Wavelength Shifting: single stage, fanout and cascadability. J.Lightwave Thechnonogy, 1995, 13(5): 771~781
    [32] Mehdi Asghari, I.H. White, R.V.Penty. Wavelength-conversion using semiconductor optical amplifier. J. Lightwave., 1997, 15(7): 1181~1189
    [33] Lee H., Yoon H., Kim Y., et al. Theory Study of Frequency Chirping and Extinction Ratio of Wavelength-Converted Optical Signal by XGM and XPM Using SOA’s. IEEE. J. Quantum Electron., 1999, 35(8): 1213~1219
    [34]王会军.基于SOA非线性的全光逻辑门的理论与实验研究: [硕士论文].北京:北京化工大学图书馆, 2007
    [35] K. Kikuchi, M. Amano, C.E. Zah, et al. Measurement of Differential Gain and Line-width Enhancement Factor of 1.5-um Strained Quantum-Well Active Layers. IEEE Journal of Quantum Electronics, 1994, 30(2): 571~577
    [36] M. Fedawy, M.B.Saleh, Moustafa H.Aly. SOA Output Characteristics Effect of Amplifier Length and Injected Carrier Density. NRSC, 2006, 23: D2-1~7
    [37] Tadashi Saitoh, Takaki Mukai. Recent Progress in Semiconductor Laser Amplifiers. Journal of Lightwave Technology, 1988, 6(11): 1656~1664
    [38] Qiangguo Li, Michael J. Connelly. A Study of Birefringence Effect in a Bulk Semiconductor Optical Amplifier and its Application to All-optical Wavelength Conversion. SPIE, 2005, 5825: 525~532
    [39] Wavelength electronics, WLD3343 Ultra-stable Driver For Laser Diodes, WLD3343- 00400-A Rev B, http://www.teamwaveleng.com, 2002.
    [40]曾小飞.基于单端SOA的全光波长转换器的模块化研究.: [硕士论文].武汉:华中科技大学图书馆, 2005
    [41]阳英,柴广跃,段子刚.基于ANSYS的大功率半导体光放大器的热分析.电子与封装, 2008, 8(9): 4~7
    [42] Wavelength electronics, WTC3243 Ultra-stable Thermoelectric Controller, WTC3243- 00400-A Rev A. http://www.teamwaveleng.com, 2002.
    [43]马潮. AVR单片机嵌入式系统原理与应用实践. (第一版).北京:北京航天航空大学出版社, 2007. 24~30
    [44]金春林,邱慧芳,张皆喜. AVR系列单片机C语言编程与应用实例. (第一版).北京:清华大学出版社, 2003. 175~181
    [45]曹倩. SOA自动测试评估板系统的研究: [硕士论文].武汉:华中科技大学图书馆, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700