基于光子晶体光纤的全光缓存技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤作为一种新型的光纤,包层由折射率周期分布的二维光子晶体组成。由于其在非线性方面的诸多优势,一提出便受到广泛的关注。一方面,研究人员通过设计不同的结构,从理论或实验上进一步探索光子晶体光纤的新特性;另一方面,基于光子晶体光纤的通信器件也相继得到研究,有的已经开始应用到实际的通信网络中,并发挥着重要的作用。
     基于此,我们认为研究光子晶体光纤的特性及其在通信中的应用是一个很有意义的课题。我们从光子晶体光纤的导光原理出发,深入研究了带隙光纤的能带结构,解释了空芯导光原理,对比了它与传统折射率导光的异同。通过归一化频率参数计算了光子晶体光纤的无截止单模特性,这是光子晶体光纤所特有的属性。利用有限元方法分析了光纤的模场分布,并分别计算了光子带隙光纤和折射率导引光子晶体光纤中的色散曲线。实验上研究了高非线性光子晶体光纤中的超连续谱产生,分析了超连续产生的机理和应用前景。
     在详细研究了光子晶体光纤中的受激布里渊散射效应和当前的光速减慢技术后,我们提出在极小核光子晶体光纤中利用受激布里渊散射效应实现全光缓存。该技术以声波作为信息缓存的载体,可实现缓存时间连续可调、还原效率高、脉冲失真度小、控制脉冲低等优点。并且通过数值模拟,验证了我们的想法,和普通大核光纤相比,在还原效率可比拟的情况下,用极小核光子晶体光纤可大大降低控制脉冲的功率,从而降低控制脉冲对光通信网络造成的潜在威胁,使系统更加稳定,在全光通信网络中具有很大的应用前景。
Photonic crystal fiber (PCF), whose cladding is constituted with index-periodically arranged two dimensional photonic crystal, is a novel optical fiber. Because of its various advantages in nonlinear properties, PCF attracts many attentions once it was proposed. On one hand, researchers explore the new optical characteristics of PCF by designing different kinds of structures theoretically or experimentally; On the other hand, PCF-based communication devices begin to be investigated and made into application, some of which has its application in practical communication network and plays an important part in it.
     Therefore, we think that it is a meaningful work to research the optical properties of PCF and its applications in communication. Starting from the optical guiding principle of PCF, we deeply study the bandgap structure of photonic bandgap fiber, explain the guiding principle in air hole and compare it with the traditional index-guiding optical fiber. We also investigate the endless single mode properties of PCF from normalized frequency V parameter, which is the particular property of PCF. By using the finite element method, we study the mode distribution of index-guiding PCF and photonic bandgap fiber, respectively, and then calculate the dispersion curve and birefringence of them. In addition, we experimentally investigate the supercontinuum generation in our high nonlinear PCF, and analyze the mechanism and application prospect of supercontinuum generation.
     After detailed investigating stimulated Brillouin scattering effect in PCF and the current slow light technology, we propose a new method that realizing all-optical buffering in ultra small-core PCF via stimulated Brillouin scattering. By using the long-lived acoustic wave as the temporal information carrier during the all-optical buffering, we can achieve the buffering with tunable delay, high retrieval efficiency, small pulse distortion and low control pulse power. To prove the validity of our assumption, we numerically simulate the buffering process by solving the coupled wave equation. It is shown that we can greatly reduce the needed control power while keeping the same retrieval efficiency when buffering in our small-core PCF instead of traditional optical fiber. It promise a brighter application in communication network because the reduced control power will take less damage to all-optical network and make the system more steady.
引文
[1] P. St. Russell. Photonic crystal fibers. Science, 2003, 299(17): 358-362
    [2] J. C. Knight. Photonic crystal fibres. Nature, 2003, 424(14): 847-851
    [3] P. St. Russell. Photonic-crystal fibers. J. Lightw. Technol., 2006, 24(12): 4729-4749
    [4] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 1996, 21(19): 1547-1549
    [5] R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539
    [6] B. Kuhlmey, G. Renversez, D. Maystre. Chromatic dispersion and losses of micro-structured optical fibers. Appl. Opt., 2003, 42(4): 634-639
    [7] A. Ferrando, E. Silvestre, J. J. Miret, et al. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt. Lett., 2000, 25(11): 790-792
    [8] M. J. Steel, R. M. Osgood. Elliptical-hole photonic crystal fibers. Opt. Lett., 2001, 26(4): 229-231
    [9]张晓娟,赵建林,侯建平.一种新型高双折射光子晶体光纤.物理学报, 2007, 56(8): 4668-4676
    [10] F. Benabid, F. Couny, J. C. Knight, et al. Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibres. Nature, 2005, 434(24): 488-491
    [11] R. Zhang, J. Teipel, H. Giessen. Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. Opt. Exp., 2006, 14(15): 6800-6812
    [12] S. Février, R. Jamier, J. -M. Blondy. Low-loss singlemode large mode area all-silica photonic bandgap fiber. Opt. Exp., 2006, 14(2): 562-569
    [13] A. Ortigosa-Blanch, A. Díez, M. Delgado-Pinar, et al. Ultrahigh birefringent nonlinear microstructured fiber. IEEE Photon. Technol. Lett., 2004, 6(7): 1667-1669
    [14] Tzong-Lin Wu, Chia-Hsin Chao. A novel ultraflattened dispersion photonic crystal fiber. IEEE Photon. Technol. Lett., 2005, 17(1): 67-69
    [15] R. E. Kristiansen, K. P. Hansen, J. Broeng, et al. Microstructured fibers and theirapplications. in Proc. Reunión Espa?ola de Optoelectrónica, OPTOEL 2005, Elche, Spain, CI-5: 37-49
    [16] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476-1478
    [17] D. G. Ouzounov, F. R. Ahmad, D. Muller, et al. Generation of megawatt optical solitons in hollow-core photonic bandgap fibers. Science, 2003, 301(5640): 1702-1704
    [18] C. J. S. de Matos, J. R. Taylor, T. P. Hansen, et al. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber. Opt. Exp., 2003, 11(22): 2832-2837
    [19] F. Benabid, J. C. Knight, G. Antonopoulos, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592): 399-402
    [20] J. B. Khurgin. Light slowing down in Moire fiber gratings and its implications for nonlinear optics. Phys. Rev. A., 2000, 62(1): 013821
    [21] L. V. Hau, S. E. Harris, Z. Dutton, et al. Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 1999, 397 (6720): 594-598
    [22] A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, et al. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett., 2002, 88(2): 023602
    [23] C. C. Philips, E. Paspalakis, G. B. Serapiglia, et al. Observation of electromagnetically induced transparency and measurements of subband dynamics in a semiconductor quantum well. Physica E, 2000, 7(12): 166-173
    [24] A. A. Maradudin, A. R. McGurn. Out of plane propagation of electromagnetic waves in two-dimensional periodic dielectric medium. J. Mode. Opt., 1994, 41(2): 275-284
    [25] A. W. Snyder, J. D. Love. Optical Waveguide Theory (Chapman & Hall, New York, 1983)
    [26] T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 1997, 22(13): 961-963
    [27] M. D. Nielsen, N. A. Mortensen. Photonic crystal fiber design based on the V-parameter. Opt. Exp., 2003, 11(21): 2762-2768
    [28] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, et al. Modal cut-off and the V-parameter in photonic crystal fibers. Opt. Lett., 2003, 28(20): 1879-1881
    [29] K. Saitoh, M. Koshiba. Empirical relations for simple design of photonic crystal fibers. Opt. Exp., 2005, 13(1): 67-274
    [30] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A, 1998, 15(3): 748-752
    [31] A. Ferrando, E. Silvestre, J. J. Miret, et al. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett., 1999, 24(5): 276-278
    [32] A. Ferrando, E. Silvestre, J. J. Miret, et al. Vector description of higher-order modes in photonic crystal fibers. J. Opt. Soc. Am. A, 2000, 17(7): 1333-1340
    [33] S. G. Johnson, J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Exp., 2001, 8(3): 173-190
    [34] G. E. Town, J. T. Lizer. Tapered holey fibers for spot size and numerical-aperture conversion. Opt. Lett., 2001, 26(14): 1042-1044
    [35] M. Qiu. Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method. Microwave Opt. Technol. Lett., 2001, 30(5): 327-330
    [36] Z. Zhu, T. G. Brown. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Exp., 2002, 10(17): 853-864
    [37] Y. Chiang, Y. Chiou, H. Chang. Finite-difference frequency-domain analysis of 2-D photonic crystals with curved dielectric interfaces. Opt. Exp., 2008, 26(8): 971-976
    [38] P. Kowalczyk, M. Wiktor, M. Mrozowski. Efficient finite difference analysis of microstructured optical fibers. Opt. Exp., 2005, 13(25): 10349-10359
    [39] F. Brechet, J. Marcou, D. Pagnoux, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method. Opt. Fiber Technol., 2000, 6(2): 181-191
    [40] K. Aaitoh, M. Koshiba. Numeric modeling of photonic crystal fiber. J. Lightw. Technol., 2005, 23(11): 3580-3590
    [41] T. P. White, R. C. McPhedran, C. M. de Sterke, et al. Confinement losses in microstructured optical fibers. Opt. Lett., 2001, 26(21): 1660-1662
    [42] K. Saitoh, M. Koshiba. Leakage loss and group velocity dispersion in air-corephotonic bandgap fibers. Opt. Exp., 2003, 11(23): 3100-3109
    [43] D. Ferrarini, L. Vincetti, M. Zoboli. Leakage properties of photonic crystal fibers. Opt. Exp., 2002, 10(23): 1314-1319
    [44] R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, et al. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation. Opt. Exp., 2007, 15(26): 17577-17586
    [45] W. H. Reeves, J. C. Knight, P. St. Russell. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Exp., 2002, 10(14): 609-613
    [46] R. R. Alfano, S. L. Shapiro. Emission in the region 4000 to 7000 ? via four-photon coupling in glass. Phys. Rev. Lett., 1970, 24(11): 584-587
    [47] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett., 2000, 25(1): 25-27
    [48] W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, et al. Soliton effects in photonic crystal fibres at 850 nm. Electron. Lett., 2000, 36(1): 53-55
    [49] Lingling Ji, Peixiang Lu, Nengli Dai, et al. Multiplex frequency conversion of femtosecond laser pulses in trefoil and quatrefoil channels of a holey fiber. Applied Physics B, 2008, 91(2): 295-298
    [50] Lingling Ji, Peixiang Lu, Wei Chen, et al. An efficient generation of blue light ina high-delta microstructure fiber. J. Opt. Soc. Am. B, 2008, 25(4): 513-517
    [51] Lingling Ji, Peixiang Lu, Wei Chen, et al. Polarization dependent blue-shifted emissions in microstructure fibers. Opt. Commun., 2009, 282(4): 640-643
    [52] K. Y. Song, M. G. Herraez, Luc Thevenaz. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Exp., 2004, 13(1): 82-88
    [53] Zhaoming Zhu, Daniel J. Gauthier. Nearly transparent SBS slow light in an optical fiber. Opt. Exp., 2006, 14(16): 7238-7245
    [54] Y. Okawachi, M. S. Bigelow, J. E. Sharping, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett., 2005, 94(15): 153902
    [55] M. G. Herraez, K. Y. Song, Luc Thevenaz. Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering. Appl. Phys. Lett., 2005, 87(8):081113
    [56] C. Jauregui, H. Ono, P. Petropoulos, et al. Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m Bismuth-oxide fiber. OFC, 2006, PDP2
    [57] K. Y. Song, Kazuo Hotate. 25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett., 2007, 32(3): 217-219
    [58] K. Y. Song, M. G. Herráez, Luc Thévenaz. Long optically controlled delays in optical fibers. Opt. Lett., 2005, 30(14): 1782-1784
    [59] T. Schneider, M. Junker, K. Lauterbach. Time delay enhancement in stimulated- Brillouin-scattering-based slow-light systems. Opt. Lett., 2007, 32(3): 220-222
    [60] T. Schneider, M. Junker, K. Lauterbach. Potential ultra wide slow-light bandwidth enhancement. Opt. Exp., 2006, 14(23): 11082-11087
    [61] Zhaoming Zhu, Daniel J. Gauthier. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B., 2005, 22(11): 2378-2384
    [62] Zhaoming Zhu, Andrew M. C. Dawes, Daniel J. Gauthier, et al. Broadband SBS slow light in an optical fiber. J. Lightw. Technol., 2007, 25(1): 201-205
    [63] G. P. Agrawal. Nonlinear Fiber Optics, 3rd edition, (Academic Press, San Diego 2001), Chapter 9
    [64] R. W. Boyd. Nonlinear Optics (Academic, Boston, Mass., 1992), Chapter 9
    [65] R. S. Krishnan. Fine structure of the Rayleigh line in amorphous substances. Nature 1950, 165: 933-934
    [66] D. Heiman, D. S. Hamilton, R. W. Hellwarth. Brillouin scattering measurements on optical glasses. Phys. Rev. B, 1979, 19(12): 6583-6592
    [67] R. W. Tkach, A. R. Chraplyvy, R. M. Derosier. Spontaneous Brillouin scattering for single-mode optical-fibre characterisation. Electron. Lett., 1986, 22(19): 1011-1013
    [68] N. Shibata, K. Okamoto, Y. Azuma. Longitudinal acoustic modes and Brillouin- gain spectra for GeO2-doped-core single-mode fibers. J. Opt. Soc. Am. B, 1989, 6(6): 1167-1174
    [69] T. -O. Sun, A. Wada, T. Sakai, et al. Novel method using white spectral probe signals to measure Brillouin gain spectra of pure silica core fibres. Electron. Lett.,1992, 28(3): 247-249
    [70] J. E. McElhenny, R. K. Pattnaik, J. Toulouse, et al. Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers. J. Opt. Soc. Am. B, 2008, 25(4): 582-593
    [71] P. Dainese, P. St. J. Russell, N. Joly, et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys., 2006, 2(6): 388-392
    [72] J. C. Beugnot, T. Sylvestre, D. Alasia, et al. Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber. Opt. Exp., 2007, 15(23): 15517-15522
    [73] S. E. Harris. Electromagnetically induced transparency. Physics Today, 1997, 50: 36-42
    [74] K. J. Boller, A. Imamoglu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 1991, 66(20): 2593-2596
    [75] P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, et al. Slow light in semiconductor quantum wells. Opt. Lett., 2004, 29(19): 2291-2293
    [76] S. Ghosh, J. E. Sharping, D. G. Ouzounov, et al. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys. Rev. Lett., 2005, 94(9): 093902
    [77] A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, et al. Observation of superluminal and slow light propagation in erbium-doped optical fiber. Europhys. Lett., 2006, 73(2): 218-224
    [78] G. M. Gehring, A. Schweinsberg, C. Barsi, et al. Observation of backwards pulse propagation through a medium with a negative group velocity. Science 2006, 312(5775): 895-897
    [79] D. J. Gauthier. Physics and applications of slow light. 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, NC, July 27, 2004
    [80] M. D. Stenner, M. A. Neifeld, Z. Zhu, et al. Distortion management in slow-light pulse delay. Opt. Exp., 2005, 13(25): 9995-10002
    [81] M. G. Herráez, K. Y. Song, L. Thévenaz. Arbitrary-bandwidth Brillouin slow lightin optical fibers. Opt. Exp., 2006, 14(4): 1395-1400
    [82] J. J. Longdell, E. Fraval, M. J. Sellars, et al. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Phys. Rev. Lett., 2005, 95(6): 063601
    [83] M. F. Yanik, W. Suh, Z. Wang, et al. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett., 2004, 93(23): 233903
    [84] Z. Zhu, D. J. Gauthier, R W. Boyd. Stored light in an optical fiber via stimulated Brillouin scattering. Science 2007, 318(5857): 1748-1750
    [85] N. A. Mortensen. Effective area of photonic crystal fiber. Opt. Exp., 2002, 10(7): 341-348
    [86] D. Marcuse. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J., 1977, 56: 703-718
    [87] R. Chu, M. Kanefsky, J. Falk. Numerical study of transient stimulated Brillouin scattering. J. Appl. Phys., 1992, 71(10): 4653-4658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700