光子晶体光纤中异常布里渊散射特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤(PCF)中异常布里渊散射是近年来新型微结构材料中非线性光学效应的研究热点之一。本论文基于PCF的结构特点和光学、声学特性,对异常布里渊散射现象及其应用进行理论和实验研究。
     本论文研究了PCF中异常布里渊散射特性的产生机理。从石英圆柱简化模型出发,近似模拟计算了PCF中声波模式的色散关系、声波模场分布、声光相互作用强度和布里渊散射增益系数谱,研究了布里渊增益系数谱中双峰结构随泵浦光波长和温度的变化关系。理论上得到了PCF中异常布里渊散射源于混合声波模式间模式耦合的物理解释。
     从有限元算法的基本原理出发,通过对称性边界条件克服有限元算法的时间和空间复杂度,实现了PCF中声波全矢量波动方程的波导有限元数值模拟程序。基于该程序计算了石英圆柱和不同结构PCF中声波模式模场分布特点和声光相互作用规律,初步论证了程序的可行性。
     实验研究了双峰布里渊散射增益介质在布里渊激光陀螺中的应用。将PCF中异常布里渊双峰结构推广到传统光纤,分析了具有布里渊增益双峰的混合环形腔性质,实现基于混合环形腔的布里渊激光器。首先实现单向泵浦激光器激射,发现不同激射波长的激光竞争激射的现象。基于此,在双向泵浦下实现了该激光器的双向双波长激射,并讨论了实现双向双波长单模运转的条件。
The novel Brillouin scattering property in photonic crystal fibers (PCF) is one of the frontiers in nonlinear optical effect of novel microstructure materials in recent years. Based on the structure features, photonic and phononic properties in PCF, the novel Brillouin scattering phenomenon is theoretically studied, whose application is also experimentally investigated.
     The mechanism of novel Brillouin scattering is studied. Based on the silica rod model, the dispersion relationships of acoustic modes, the field distribution, the acousto-optic interaction intensity and the Brillouin scattering gain coefficient spectrum in PCF are calculated. The couplings among different hybrid acoustic modes and their impacts on the Brillouin scattering gain coefficient spectrumare analyzed by investigating the Brillouin scattering changes under different pump wavelengths and temperatures. Based on the above results, the conclusion is drawn that the novel Brillouin scattering is originated from the couplings among hybrid acoustic modes in PCF.
     The numerical simulation of Brillouin scattering in PCF is theoretically studied. Based on the fundamental principles of Finite Element Method (FEM) and overcoming the time and space complexity by utilizing the symmetric boundary conditions, the waveguide FEM program analyzing the full-vector acoustic wave equation is coded. By this program, the features of acoustic modes’field distributions and acousto-optic interactions in PCFs with different structures are analyzed. The influencing of structure parameters on Brillouin scattering is discussed.
     The applications of dual peaks of Brillouin scattering gain medium are experimentally investigated. By simulating the novel Brillouin gain coefficient spectrum of PCF in conventional fibers, the fiber Brillouin laser based on the hybrid ring cavity is realized. Firstly, the Brillouin lasing in the single direction is realized, and the lasing competition is discovered and studied. Then bi-directional dual-wavelength Brillouin lasing is realized. The single mode operating conditions of the laser is discussed.
引文
[1] G. P. Agrawal.非线性光纤光学原理及应用,贾东方.北京:电子工业出版社,2002. 222~240
    [2] F. Zarinetchi, S. P. Smith, S. Ezekiel. Stimulated Brillouin fiber-optic laser gyroscope. Opt. Lett., 1991, 16 (4):229~231
    [3] Kwang Yong Song, Kazuo Hotate. Distributed Fiber strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis. Photonics Tech. Lett., 2007, 19 (23): 1928~1930
    [4] Y. Koyamada, Y. Sakairi, et. al. Novel Technique to Improve Spatial Resolution in Brillouin Optical Time-Domain Reflectometry, Photonic. Tech. Lett., 2007, 19 (23): 1910~1912
    [5] J. C. Beugnot, T. Sylvestre, et. al. Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber, Optics Express, 2007, 15 (23): 15517~15522
    [6] Lufan Zou, Xiaoyi Bao, Liang Chen. Brillouin scattering spectrum in photonic crystal fiber with a partially germanium-doped core, Opt. Lett., 2003, 28 (21): 2022~2024
    [7] P. Dainese, P. S. J. Russell, et. al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres, Nature Physics, 2006, 2: 388~392
    [8] Sylvie Lebrun, Philippe Delaye, et. al. Hollow core photonic crystal fiber filled with ethanol for efficient stimulated Raman scattering, CLEO, 2006, CThCC7
    [9] B. Beaudou, F. Couny, et. al. Tapered Hollow-Core Photonic Crystal fiber for Cascaded Stimulated-Raman-Scattering, CLEO/QELS, 2008, JFC5
    [10] Denis Akimov, Torsten Siebert, Wolfgang Kiefer. Optical parametric amplification of a blueshifted output of a photonic-crystal fiber, J. Opt. Soc. Am. B., 2006, 23 (9): 1988~1993
    [11] Trefor Sloanes, Ken McEwan, et. al. Optimisation of high average power optical parametric generation using a photonic crystal fiber, Optics Express, 2008, 16 (24): 19724~19733
    [12] Ju Han Lee, Zulfadzli Yusoff, et. al. Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering, Opt. Lett., 2002, 27 (11): 927~929
    [13] Lufan Zou, Xiaoyi Bao, et. al. Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber, Opt. Lett. 2004, 29 (13): 1485~1487
    [14] John E. McElhenny, Radha K. Pattnaik, et. al. Unique characteristic features of stimulated brillouin scattering in small-core photonic crystal fibers, J. Opt. Soc. Am. B., 2008, 25 (4):582~593
    [15] Wei Zhang, Yin Wang, Yanyan Pi, Yidong Huang, Jiangde Peng. Influences of pump wavelength and environment temperature on the dual-peaked Brillouin property of a small-core microstructure fiber, Opt. Lett., 2007, 32 (16): 2303~2305
    [16] Nori Shibata, Katsunari Okamoto, Yuji Azuma. Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers, J. Opt. Soc. Am. B., 1989, 6 (6): 1167~1174
    [17] Weiwen Zou, Zuyuan He, Kazuo Hotate. Two-Dimensional Finite-Element Modal Analysis of Brillouin Gain Spectra in Optical Fibers. Photonics Tech. Lett., 2006, 18 (23): 2487~2489
    [18] Vincent Laude, Abdelkrim Khelif, et. al. Phononic band-gap guidance of acoustic modes in photonic crystal fibers, Physical Review B, 2005, 71 (4): 045107-1~045107-6
    [19] Ikumi Enomori, Kunimasa Saitoh, Masanori Koshiba, Takashi Matsui. Localized Acoustic Modes in Photonic Crystal Fibers, Electronics and Communications in Japan, Part 2, 2005, 88 (3): 27~35
    [20] Ikumi Enomori, Kunimasa Saitoh, Masanori Koshiba. Fundamental Characteristics of Localized Acoustic Modes in Photonic Crystal Fibers, 2005, IEICE TRANS. ELECTRON., E88-C (5): 876~881
    [21] F. Zarinetchi, S. P. Smith, S. Ezekiel. Stimulated Brillouin fiber-optic laser gyroscope, Opt. Lett., 1991, 16 (4), 229~231
    [22] F. Aronowitz,“The Laser Gyro”. In: Laser Applications, M. Ross Ed. New York: Academic, 1971. 133~200
    [23] S. Huang, P. A. Nicati, et. al. Synthetic heterodyne detection in a fiber-optic ring-laser gyro, Opt. Lett., 1993, 18 (1): 81~83
    [24] K. Hotate, S. Yamashita. Grasp of the behavior of lock-in phenomenon and a manner to overcome it in Brillouin Fiber Optic Gyro, SPIE, 3541: 57~65
    [25]张克潜,李德杰.微波与光电子学中的电磁理论(第二版),北京:电子工业出版社,2001. 173~223
    [26] M. Willm, A. Khelif, S. Ballandras, V. Laude. Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials, Physical Review E 2003, 67 (6): 065602-1~065602-4
    [27] J. O. Vassenr, B. D.Rouhani, et. al. Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbodepoxy composite and some metallic systems, J. Phys.: Condens. Matter, 1994, 6: 8759~8770
    [28] S. Guenneau, A. B. Movchan. Analysis of Elastic Band Structures for Oblique Incidence, Arch. Rational Mech. Anal., 2004, 171: 129~150
    [29] C. G. Poulton, A. B. Movchan, et. al. Eigenvalue Problems for Doubly Periodic Elastic Structures and Phononic Band gaps, Proc. R. Soc. Lond. A, 2000, 456 (2000): 2543~2559
    [30] V. V. Zalipaev, A. B. Movchan, C. G. Poulton. Elastic Waves and Homogenization in Oblique Periodic Structures, Proc. R. Soc. Lond. A, 20002, 458 (2002): 1887~1912
    [31] R. A. Waldron. Some problems in the theory of guided microsonic waves, Transactions on microwave theory and tech., 1969, MTT-17 (11): 893~904
    [32] J. C. Knight, J. Arriaga, T. A. Birks, et. al. Anomalous Dispersion in Photonic Crystal Fiber, Photonics Tech. Lett., 2000, 12 (7): 807~809
    [33] R. N. Thurston. Elastic waves in rods and clad rods, J. Acoust. Soc. Am., 1978, 64 (1): 1~37
    [34] CHENG-KUEI JEN, NOBUO GOTO. Backward Collinear Guided-Wave-Acousto-Optic Interactions in Single-Mode Fibers, J. Lightwave Tech., 1989, 7 (12): 2018~2023
    [35] P. J. Thomas, N. L. Rowell, et. al. Normal acoustic modes and Brillouin scattering in single-mode optical fibers, Phy. Rev. B, 1979, 19 (10): 4986~4997
    [36] Li J. Zhao, Yong Q. Li, et. al. Wide-Range Temperature Dependence of Brillouin Shift in Optical Fiber, Proceedings of the 1st IEEE International Conference on Nano/Micro Engineering and Molecular Systems, 2006: 1327~1330
    [37] Jia-Hong Sun, Tsung-Tsong Wu. Analyses of Surface Acoustic Wave Propagation in Phononic Crystal Waveguides using FDTD Method, IEEE Ultrasonics Symposium, 2005, 73~76
    [38] J. O. Vasseur, P. A. Deymier, et. al. Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals, Phys. Rev. Lett., 2001, 86 (14): 3012~3015
    [39] Jianming Jin. The finite element method in electromagnetics, New York: John Wiley & Sons, 1993. 11~33
    [40] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The finite element method: its basis and fundamentals, Boston : Elsevier Butterworth-Heinemann, 2005. 1~100
    [41] Andrew J. Jennings, Gregory K. Cambrell. Refined Finite-Element Analysis of a Clad Fiber Acoustic Waveguide, IEEE Transactions on sonics and ultrasonics, 1982, SU-29 (5): 239~247
    [42] Beresford N. Parlett. The symmetric eigenvalue problem, Englewood Cliffs, New Jersey: Prentice Hall, 1980: 287~320
    [43] Masanori Koshiba, Michio Suzuki. A Note on the Use of Symmetric and Antisymmetric conditions in the fem analysis of acoustic waveguide, IEEE Transactions on sonics and ultrasonics, 1983, SU-30 (6): 370~372
    [44] Jae Chul Yong, Luc Thevenaz, Byoung Yoon Kim. Brillouin Fiber Laser Pumped by aDFB Laser Diode, J. Lightwave Tech., 2003, 21 (2): 546~554
    [45] Donald R. Ponikvar, Shaoul Ezekiel. Stabilized single-frequency stimulated Brillouin fiber ring laser, Opt. Lett., 1981, 6 (8): 398~400
    [46] S. Norcia, S. Tonda-Goldstein, et. al. Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals, Opt. Lett., 2003, 28 (20): 1888~1890
    [47] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 1982, 13: 357~385
    [48] A. Ferrando, E. Silvester, et. al. Full vector analysis of a realistic photonic crystal fiber, Opt. Lett., 1999, 24 (5): 276~278
    [49] A. Ferrando, E. Silvestre, et. al. Vector description of higher-order modes in photonic crystal fibers, J. Opt. Soc. Amer. A., 2000, 17 (7): 1333~1340
    [50] S. E. Barkou, J. Broeng, A. Bjarklev. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect, Opt. Lett., 1999, 24 (1): 46~48
    [51] J. Broeng, S. E. Barkou, et. al. Analysis of air-guiding photonic bandgap fibers, Opt. Lett., 2000, 25 (2): 96~98
    [52] M. Koshiba, K. Saitoh. Numerical verification of degeneracy in hexagonal photonic crystal fibers, IEEE Photon. Tech. Lett., 2001, 13 (12): 1313~1315
    [53] S. Guenneau, A. Kicholet, et. al.“Modeling of photonic crystal optical fibers with finite elements, IEEE Trans. Magn., 2002, 38 (2): 1261~1264
    [54] M. Koshiba. Full-vector analysis of photonic crystal fibers using the finite element method, IEICE Trans. Electron., 2002, 85-C (4): 881~888
    [55] A. Cucinotta, S. Selleri, et. al. Holey fiber analysis through the finite-element method, IEEE Photon. Tech. Lett., 2002, 14 (11): 1530~1532
    [56] M. J. Steel, T. P. White, et. al. Symmetry and degeneracy in microstructured optical fibers, Opt. Lett., 2001, 26 (8): 488~490
    [57] T. P. White, R. C. McPhedran, et. al. Confinement losses in microstructured optical fibers, Opt. Lett., 2001, 26 (21): 1660~1662
    [58] T. P. White, R. C. McPhedran, et. al. Calculations of air-guided modes in photonic crystal fibers using the multipole method, Opt. Express, 2001, 9 (13): 721~732
    [59] T. P. White, B. T. Kuhlmey, et. al. Multipole method for microstructured optical fibers. I. Formulation, J. Opt. Soc. Amer. B., 2002, 19 (10), 2322~2330
    [60] B. T. Kuhlmey, T. P. White, et. al. Multipole method for microstructured optical fibers. II. Implementation and results, J. Opt. Soc. Amer. B., 2002, 19 (10): 2331~2340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700