超临界流体染色关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO_2流体染色是一种新型的无水染色技术。与传统染色方法相比,该染色技术以超临界CO_2为介质对织物加工,具有节水、环保、节能、无需使用助剂等优点;其前处理、染色、清洗过程可一步完成,而且染色时间短,可缩短生产周期,提高经济效益。因此该技术的产业化应用对推动染整清洁生产、节能减排具有重要的现实意义。
     超临界CO_2染色设备对染色质量影响重大,对染色设备进行开发是该技术工业化应用首先要解决的问题。东华大学超临界流体染色课题组研制设计了国内第一台生产型超临界CO_2流体染色样机。新研制的样机容积达到24L,最高工作压力及温度分别为30Mpa、150℃。其内部配备有特殊设计的循环泵和固态染料存放装置,不仅实现在高温、高压下流体的自动往复循环的动态染色功能,而且可以有效防止染料在染色过程中的熔结。另外,染色工艺过程、各工序的染色参数及各工序的动作切换可由样机上自带的计算机控制,操作简便。经上海市经委组织鉴定样机整体性能达到国际先进水平。
     本文以分散红60为模型染料,在该生产型样机上对影响染色均匀性和上染量的诸因素进行研究,同时检验该设备加工效果的稳定性,即染色重现性。目的是检验该样机的设计合理性及生产适用性。所得的结果也将为今后的产业化提供技术依据。
     研究表明,采用卷绕密度为0.32g/cm~3,且两肩端经过倒角的筒子纱,染后均匀性良好。随着超临界CO_2流体流量的增大,涤纶筒子纱的染色均匀性提高。要获得良好的均匀性,流量需达到1100kg/h。此外,染液的正反循环交替是必要的,采用5min以上的换向周期,筒子纱内中外均匀性良好。
     对影响上染量因素的研究表明,合理的染料釜结构以及染料在染料釜内的均匀分布可以大大提高上染率。染色上染量分别随温度、压力的提高而增大,且温度对上染量的影响要比压力更为显著;染料在超临界CO_2介质中的上染速率较快,一般在60min时就基本达到染色平衡;染料的上染是一种分配关系,与水介质染色中的规律一致;在120℃、25MPa的超临界条件下染色60min,上染率达90%左右,可获得与常规水染色相当的染色深度。另外,样机染色结果重现性良好,且所染筒子纱透染性好,耐水洗和耐摩擦色牢度均可达4-5级以上。
The Supercritical fluid dyeing is a newly-developed technology which is now attracting more and more attending all around the world. Comparing with the conventional aqueous dyeing processes, it is a water-free and auxiliaries-free processing and has many other advantages such as shorter dyeing time, full utility of dyes, energy savings and being more environmentally friendly. With these advantages, the commercialization of the supercritical CO_2 fluid technology will be of great benefit to promote the clean production, water savings, energy savings, and the environmental protection for dyeing and finishing plants.
     Based on the experience gained from the lab-scale plant, a new pilot-scale plant equipped with many new optimization components was developed to support the further study.
     This research was carried out on this pilot-scale supercritical carbon dioxide fluid (SCF) dyeing equipment to study the effects of the process conditions on levelness and the dye uptake, together with the reproducibility of the dyeing. The purpose of the research is to test the rationality of the design of the plant and exam whether the plant can be applied into production. The data gained from research can also be used to support the future industrial application.
     It was found that winding PET yarns with a density of 0.32g/cm~3 in combination with chamfering the yarns would obtain an even dyeing. The levelness of the dyeing improved as the CO2 flow rate increasing. A good uniformity of the dyeing would be obtained when the CO_2 flow rate increased to 1100kg/h. Besides, the change in the directions of the CO_2 flow during dyeing was needed to insure the levelness, and the interval of 5min was proved being suitable.
     The results also showed that the exhaustion rate could be enhanced dramatically by modifying the dye storage vessel and distributing the dyes evenly in the dye storage. The dye uptake increased with the temperature and pressure increasing respectively. The effect of temperature on the dye uptake was more pronounced than that of pressure. Only 60 minutes were needed to reach the equilibrium, because a higher dyeing rate was obtained in the supercritical CO_2. It was observed the absorption of dye in PET fibers in supercritical CO_2 obeyed a distribution relationship, which was similar to water medium. The exhaustion of Dispersing Red 60 in supercritical CO_2 at 120℃,25MPa could reach up to 90%, attaining the same level of conventional aqueous dyeing. Furthermore, good reproducibility of the dyeing and good penetration performance of the PET fibers was observed. Both the wash fastness and rub fastness could attain up to 4-5 grade.
引文
[1]A. A. Clifford, K. D. Bartle. Supercritical Fluid dyeing [J]. Textile Technology Inernational,1996,117:113
    [2]张镜澄.超临界流体萃取[M].北京:化学工业出版社,2001
    [3]陈维纽.超临界流体萃取的原理和应用[M].北京:化学工业出版社,2000
    [4]R. Vollbreacht. Extraction of hops with supercritical CO2 [J]. Chem. Ind., 1982,60(6):397
    [5]K. Zosel. DE2005297,1971
    [6]R. Prasad, H. J. Grubbs. EP0323699 (Philip Morris Inc. NY US),1989
    [7]E. Lack, R. Marr. Estimation of the Process Parameter for High-Pressure (supercritical fluid) Carbon Dioxide Extraction of Natural Products [J]. Separation science and technology,1988,23:63
    [8]E. Reverchon. Supercritical fluid extraction and fractionation of essential oils and related products [J]. The Journal of Supercritical Fluids,1997,10:1
    [9]宓鹤鸣,柳正良.超临界流体萃取技术在中药现代化研究中的应用与评价.2002.8,贵阳,第四届全国超临界流体技术学术及应用研讨会论文集:261
    [10]M. L. Sand. US4598006,1986
    [11]A. R. Beres, G. S. Huvard and R. W. Korsmeyer. EP0222207 (B FGoodrich Co., US),1987
    [12]E. Schollmeyer, D. Knittel, H-J. Bushmann, et al.. DE3906724 (Deutsches Textilforschungszentrum,Germany),1990
    [13]E. Schollmeyer, D. Knittel. DE4200352 (Deutsches Textilforschungszentrum, Germany),1993
    [14]D. Knittel, W. Saus, R. Benken, H-J. Bushmann, et al.. DE3906724 (Deutsches Textilforschungszentrum, Germany),1990
    [15]D. Knittel, W. Saus, R. Benken, H-J. Bushmann, et al.. DE4202320 (Deutsches Textilforschungszentrum, Germany),1993
    [16]徐谷仓.中国纺织工程学会环保年会论文集,无锡,2005,5
    [17]J.H. Jun, K. Sawada, M. Ueda. Application of perfluoropolyether reverse micelles in supercritical CO2 to dyeing process [J]. Dyes and pigments,2004,61(1): 17-22
    [18]E. Bach, E. Cleve, E. Schollmeyer. Past, present and future of supercritical fluid dyeing technology——an overview [J]. Rev. Prog. Color.,2002,32:88
    [19]G. A. Montero, C. B. Smith, W. A. Hendrix, D. Butcher. Supercritical fluid technology in textile processing:an overview [J]. Ind. Eng. Chem. Res.,2000,39(12): 4806
    [20]S. G. Kazarian, N. H. Brantley, C. A. Eckert. Dyeing to be clean:use supercritical carbon dioxide [J]. CHEMTECH,1999,29(7):36
    [21]S. G. Kazarian, M. F. Vincent, B. L. West, C. A. Eckert. Partitioning of solutes and cosolvents between supercritical CO2 and polymer phase [J]. J.Supercrit.Fluids, 1998,13:107
    [22]P. Scheibli, W. Schlenker et al.. Dyeing in supercritical carbon dioxide—an environmental quantum leap in textile processing [J]. Chemiefasern/Textilindustrie, 1993, (43/95):E64
    [23]J. W. Lee, J. Myung et al.. Solubility measurement of disperse dyes in supercritical carbon dioxide [J]. J. Chem. Eng. Data,1999,44(4):684
    [24]S. L. Draper, G. A. Montero, B. Smith, K. Beck. Solubility relationships for disperse dyes in supercritical carbon dioxide [J]. Dyes and Pigment,2000,45:177
    [25]I. Tabata, J. Lyu, S. Cho, T. Tominaga, T. Hori. Relationship between the solubility of disperse dyes and the equilibrium dye adsorption in supercritical fluid dyeing [J]. Color. Technol.,2001,117:346
    [26]K. Poulakis, M. Spee, G. M. Schneider, D. Knittel, H-J. Bushmann, E Schollmeyer. Dyeing of polyester in supercritical carbon dioxide [J]. Chemiefasern /Textilind.,1991,41193(11):142
    [27]E. Bach, E. Cleve, J. Schiittken, J. W. Rucker, E. Schollmeyer. Correlation of solubility data of azo disperse dyes with the dye uptake of poly(ethylene terephthalate) fibres in supercritical carbon dioxide [J]. Color. Technol.,2001,117:13
    [28]B. Guzel, A. Akgerman. Solubility of disperse and mordant dyes in supercritical CO2 [J]. J. Chem. Eng. Data,1999,44:83
    [29]M. Rita, D. Giorgi, E. Cadoni, et al... Dyeing polyester fibres with disperse dyes in supercritical CO2 [J]. Dyes and Pigments,2000,45:75
    [30]W. Saus, D. Knittel et al.. Water-free dyeing of synthetic material—dyeing in supercritical carbon dioxide [J]. International Textile Bulletin,1993,39(1):20
    [31]W. Saus, D. Knittel, E. Schollmeyer. Dyeing with supercritical carbon dioxide— an alternative to high-temperature dyeing of polyester [J]. Textil Praxis International, 1992,47(11):1052
    [32]B. Gebert, W. Saus, et al.. Dyeing natural fibers with disperse dyes in supercritical carbon dioxide [J]. T. R. J.,1994,64(7):371
    [33]何中琴译.用超临界二氧化碳的无水染色[J].印染译丛,2001,(3)91[(日)“纤维机械学会志”1999(10):13-18
    [34]S. Shakra, A. A. Mousa, B. M. Youssef, E. A. El-Kharadely. Normal and supercritical dyeing of fibers with benzothiazole disperse azo dyes [J]. Mansoura Sci. Bull. (A:Chem.),1999,26 (2):1
    [35]W. Schlenker, P. Liechti, D. Werthemann, A. D. Casa. DE4230325 (Ciba-Geigy AG, Switzerland),1993
    [36]B. Guzel, A. Akgerman. Solubility of disperse and mordant dyes in supercritical CO2 [J]. J. Chem. Eng. Data,1999,44:83
    [37]Tusek, V. Golob, Z. Knez. The effect of pressure and temperature on supercritical CO2 dyeing of PET-dyeing with mixtures of dyes [J]. Int. J. Polym. Mater.,2000,47: 657
    [38]侯爱芹,戴瑾瑾.涤纶织物的超临界流体染色研究[J].印染,2002,28(增刊):20
    [39]W. Saus, D. Knittel, E. Schollmeyer. Dyeing with supercritical carbon dioxide —physical-chemical fundamentals [J]. Textile Praxis Int.,1993,48(1):32
    [40]S. Kazarian, M. F. Vincent et al.. Specific Intermolecular Interaction of Carbon Dioxide with Polymers [J]. J. Am. Chem. Soc.,1996,118:1729
    [41]D. Knittel, E. Schollmeyer. Environmentally friendly dyeing of synthetic fibres and textile accessories [J]. Int. J. Clothing Sci. Technol.,1995,7:36.
    [42]D. Knittel, W. Saus, E. Schollmeyer. Application of supercritical carbon dioxide in finishing processes [J]. J. Text. Inst.,1993,84(4):534
    [43]E. Bach, E. Cleve, E. Schollmeyer, Proc.3rd Int. Symposium High Pressure Chem. Eng., Zurich, Switzerland (Amsterdam:Elsevier),1996:581
    [44]P. L. Beltrame, A. Castelli et al.. Morphological changes and dye uptake of poly(ethylene terephthalate) and 2,5-cellulose diacetate immersed in supercritical carbon dioxide [J]. Dyes and Pigments,1998,39(Ⅰ):35
    [45]A. Walter, W. A. Hemdrix. Progress in Supercfitieal CO2 dyeing [J]. J. Industral Textiles,31(1),2001:43-56
    [46]陈英.染整工艺实验教程[M].北京:中国纺织出版社,2004:8
    [47]邹衡.纱线筒子染色工程[M].北京:中国纺织出版社,2004:96-100
    [48]M. S. hannon, W. A. Hendrix, B. Smith, G. A. Montero. Modeling of supercritical fluid flow through a yarn package [J]. J.Supercrit. Fluid.,2001,19:87-99
    [49]E. Bach, E. Cleve, A. Schmidt, E. Schollmeyer. Proc.3rd Eur. Congress Chem. Eng., Nurnberg Germany,2001.
    [50]鲍萍.分散染料结构对涤纶超临界CO_2染色的影响,东华大学博士学位论文: 100-111
    [51]A. Gerardo, B. C. Smith, W. A. Hendrix. Supercritical Fluid Technology in Textile Processing:an overview [J]. Ind. Eng. Chem.Res.2000,39:4806-4812
    [52]I. Tabata, J. Lyu, S. Cho. Relationship between the Solubility of Disperse Dyes and the Equilibrium Dye Adsorption in Supercritical Fluid Dyeing [J]. Color. Technol. 2001,117:346-351
    [53]V. D. Kraan et al.. Equilibrium Study on the Disperse Dyeing of Polyester Textile in Supercritical Carbon Dioxide [J]. Text. Res. J.2007,77(8):549-558

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700