基于iSIGHT的船型生成及耐波性优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,优化作为提高性能的重要手段,在设计过程中越来越多的被设计者所采用。而为了改变船舶性能,较为直观的方法就是控制影响性能的船型要素,如我们所熟悉的影响船舶阻力的主要参数有:船长(L),宽(B),吃水(T),棱形系数(Cp),纵向浮心位置(1cb),船舯系数(Cm)等。作为一种特殊船舶,金枪鱼围网渔船的设计者为寻求较好耐波性性能的船型,在设计初期必须对影响渔船耐波性的船型要素有所了解,以便在设计过程中选取合适的船型参数及在性能优化过程中对已有参数进行必要的改进以得到具有更好耐波性能的渔船船型。
     然而,对单一船型进行计算,仅仅可以作为对此船型性能的评估检验,不具有类比性,而且试验耗费的人力、物力、财力是巨大的。为了得到船型要素对耐波性的影响,必须对系列船型进行系统计算,得出不同参数下船型的运动和载荷,相互对比,给设计者提供有效的参考依据。鉴于此,作者利用iSIHGT这个多学科优化软件平台,初步搭构了一个基于此优化平台软件的船型生成和耐波性优化优化系统。通过改变其中的若干个船型参数,而保持其他船型参数基本不变,进行船型变换,随后将经变换所得船型进行进行耐波性计算,进行优化,得到理想的符合要求的船型。优化系统主要包含两大模块:第一个模块是船型变换程序,通过对参数的控制,来生成一系列船型;第二个模块是基于Wasim的耐波性计算结果所绘制图谱的耐波性插值计算程序,以有义纵摇角、砰击程度、首部垂向加速度、有义横摇角等船舶运动响应指标为目标。
     本文中,作者以金枪鱼围网渔船这一热门船型作为算例,验证了这套基于iSIGHT的船型生成和耐波性优化系统。首先,作者分析船舶主尺度和船型要素对耐波性的影响,确定了影响耐波性的主要参数,接着,通过对这些参数的控制由母型船派生出不同方形系数和不同船宽比的系列船型,再对船型库内所有船型的耐波性进行了详细计算,并绘制了图谱,建立起了船舶主尺度与主要船型要素与金枪鱼围网渔船在波浪中运动响应的关系。再根据绘制出的图谱,编写了插值程序,并连同船型变换程序建立了一套完整的以寻找有义纵摇角、首部垂向加速度和砰击情况以及有义横摇角最理想船型为目标的优化系统,寻找出金枪鱼围网渔船在波浪中运动稳定性最优的船型。
At present, optimization, as an important measure to improve performance of ships, is more and more adopted in engineering by designers. In order to change the performance of ships, an obvious measure is to control the factors that might influence performance. For instance, the factors that affect ship resistance mainly include length (L), width (B), draft (T), prismatic coefficient (Cp), longitudinal center of buoyancy (lcb), midship coefficient (Cm), and so on. As a special ship, the designer of tuna seiner ship must learn about the factors that might affect ship seakindliness in the beginning of engineering, so as to select proper parameters during engineering and make necessary improvement to existing parameters during performance optimization for fishing ships with better seakindliness.
     However, calculation to single type of ship can only serve as performance evaluation and examination. There is no comparability, and meanwhile tests consume considerable labor, equipment and expense. In order to figure out the influence of ship parameters to seakindliness, systematic calculation on series of ship types is necessary, so as to identify ship movements and loads in different parameters, and compare one another to provide effective reference for designers. In view of the above stated, the author established a ship optimization system, using ISIHGT, a multi-discipline optimization software platform. The system optimizes ship to satisfy certain requirements by changing certain parameters and keeping other parameters almost unchanged, and then set certain parameters as targets. This system is mainly consistent of tow modules. The first is a ship form change program, which generates series of ship forms by controlling parameters. The second is an interpolation system of seakindliness calculation results, based on WASIM. The interpolation system takes ship vertical movement indexes as target, such as pitch angle, calculate the series of ship forms generated, and search for the best one.
     In this thesis, the author established a ship form change program based on iSIGHT platform, and by controlling series of parameters, series of ship forms with different fineness coefficient and different breadth-draft ratio are generated from original ship form. Then, detailed calculation to vertical movement of tuna seiner ship was conducted, and figures were drawn. By analysis, the influence of main ship dimension and ship factors to vertical movement of tuna seiner ship in waves was concluded. And further, according to the figures drawn, an interpolation program was developed. Together with the ship form change program, the two programs form a complete set of optimization system to search for ship forms that have most favorable pitch angle, head vertical acceleration, strike situation and roll angle, and the tuna seiner ship form with the best stability in movement in waves was found out.
引文
[1]Schrage D.Beitracchi T.Berke L.Dodd A,Niedling L,Sobieszezanski-sobieski J Current state of the art on muhidisci-plinary design optimization (MDO) 1991.
    [2]Ray T.Gokarn R P.Sha O P A global optimization model for ship designs 1995 CAMPANAEF, PERID, TAHARAY, etal. Comparison and validation of CFD vased local optimization methods for surface combatant bow[C].25th Symposium on Naval Hydrodynamics. St. John's, Newfoundland and Labrador, CANADA,8-13 August 2004
    [3]赛特达公司学术讨论会论文集,2004
    [4]洪鹃,孙成通,基于iSIGHT的多学科设计优化技术研究,临沂师范学院院报
    [5]Patrick N. Koch, Evans J. P., David Powell, Interdigitation for effective design space exploration using iSIGHT [J]. Journal of Structure and Multi disciplinary Optimization, 2002, (3):111-126
    [6]钟英杰、都晋燕、张雪梅,CFD技术及在现代工业中的应用[J],浙江工业大学学报,2003(6):284-289
    [7]冯佰威、刘祖源、谢伟等,船舶CAD/CFD集成优化接口开发及应用研究,船舶工程2009年增刊,总第31期邵汉东,金枪鱼延绳钓船增高初稳性的探讨,造船技术,2003年第4期
    [8]朱江锋、戴小杰,中西太平洋金枪鱼围网渔业现状及我国发展对策,2009年第一期
    [9]陈龙、贾复、秦士元,远洋金枪鱼围网渔船主要参数分析,船舶工程,1997
    [10]贾复、陈龙、朱瑞源等,金枪鱼围网渔船设计特点,大连水产学院院报,2000年3月,第五卷11期
    [11]Lackenby H. Formation of ice on trawler[J], Fishing Boats of The World,1960(1):16-18.
    [12]R·巴塔查雅,海洋运载工具动力学,邬明川,戴仁元,陶尧森译,海洋出版社,1982
    [13]Moor D. I., Resistance Propulsion and Motions of High Speed Single-Screw Cargo Liners, Trans RINA,1967
    [14]於家鹏,船舶与海洋建物性能统计预报理论及应用,国防工业出版社,1985
    [15]Vossers G.., W. A. Swaan, H. Rifken, Experiment with Series 60 Models in Wave,1960
    [16]Goodrich, G.J., "The Influence of Freeboard on Wetness," Proc.5th ONR Symposium on Naval Hydrodynamics,1964.
    [17]吴秀恒,船舶操纵性与耐波性(第二版),人民交通出版社
    [18]赵连恩,韩端锋,高性能船舶水动力原理与设计,哈尔滨工程大学出版社
    [19]戴仁元、金辅华、秦鑫泉,.船舶耐波性评估方法与衡准,船舶耐波性专辑.中国造船(增刊),1990
    [20]熊云峰、陈章兰、毛筱菲,船舶期望航速百分数的计算与分析,船海工程,2008年5期
    [21]毛筱菲、熊文海、熊云峰,大风浪中船舶航行安全性评,中国航海,2004年第三期.
    [22]毛筱菲、唐卫军、熊云峰等,舰船耐波性设计及其评价指标的计算,中国舰船研究,2006年2月
    [23]徐昌文,模糊数学在船舶工程中的应用,国防工业出版社,1992
    [24]熊文海、毛筱菲、李毓江,船舶耐波性衡准及其评价方法浅析,船海工程,2007年8月
    [25]J.Zhang, "Design and Hydrodynamic Performance of Trimaran Displacement ships", PhD Thesis, Dept of Mechanical Engineering, University College London,1997
    [26]Stephen M. Hollister, "Automatic Hull Variation and Optimization", International Shipbuilding Progress,, July,1992
    [27]冯恩德,席龙飞,船舶设计原理,大连海运学院出版社,1990
    [28]项久洋,船型要素对三体船耐波性和波浪载荷影响的数值计算,2008年4月
    [29]YIN Bo、 XU Dian,AN Yi-ran,CHEN Yao-song, Aerodynamic optimization of 3D wing based on iSIGHT,应用数学与力学(英文版),2008年第5期
    [30]Beck, R. F. Time-domain computations for floating bodies. App 1. Ocean Res.16,1994.
    [31]Gadd, G. E. A method of computing the flow and surface wave pattern around full forms. Trans. Roy. Asst. Nav. Archit., Vol.113,1976.
    [32]Dawson, C. W. A practical computer method for solving ship-wave problems.2"d International Conference on Numerical Ship Hydrodynamics, USA,1977.
    [33]Chapman, R. B. Time-domain method for computing forces and moments acting on 3-D surface piercing hull with forward speed.3rd ICNSH, Paris,1981.
    [34]Nakos, D. E. and Sclavounos, P. D. On steady and unsteady ship wave patterns. Journal of Fluid Mechanics, Vol.215,1990:263-288P.
    [35]Sclavounos, P. D. Computation of wave ship interactions. Advances in Marine Hydrodynamics, edited by M.Ohkusu, Computational Mechanics Publications,1995.
    [36]Nakos, D. E. Kring, D. C. and Sclavounos, P. D. Rankine panel methods for transient free surface flows. Proceedings of the 6" International Conference on Numerical Ship Hydrodynamics, Iowa City, Iowa,1993.
    [37]Kring, D. C. Time domain ship motions by a three-dimensional Rankine panel method. Ph. D. Thesis, MIT, Cambridge, MA,1994.
    [37]陈超核、沈进威、徐秉涵,规则波中船舶非线性波浪弯矩时域计算,中国造船,1983(3)
    [38]Cummins, W. E. The impulse response function and ship motions. Schiffstechnik, Band 9, 1962:101-109P.
    [39]李玉成、滕斌,波浪对海上建筑物的作用,海洋出版社,2002.
    [40]何光渝、高永利,Visual Fortran常用数值算法集,科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700