工作状态下汽缸与船体结构一体化抗冲击动响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶设备的抗冲击性能是衡量船舶生命力重要指标。当船舶停泊于海港时遭受攻击的可能性较小,当船舶在作战状态即船舶设备处于工作状态时遭受敌方攻击的可能性较大,因此船舶设备冲击环境特征之一在于其处于运行状态时遭受水下爆炸冲击作用。然而由于缺乏相应实船实验数据资料,且因军事保密原因,国外相关领域的研究进展也很少见诸发表,所以目前针对工作状态下船舶设备抗冲击性能评估国内尚未形成成熟计算方法。因此依靠数值仿真进行工作状态下船舶设备抗冲击性能实验显得尤为重要。本文以船体大型设备汽缸为例,基于数值实验对工作状态下船用设备与船体结构的一体化抗冲击动响应特性进行研究。
     首先,结合船用汽缸在运行时的四种典型工况对其力学特性进行分析。得到汽缸内外缸壁及内部支撑构件的定常压力系数Cp及脉动压力系数CP’随Ma数的变化特点。并对汽缸内部支撑构件的脉动力频率进行分析,得到构件的各阶脉动力频率值。
     其次,通过对船用汽缸进行模态分析,将得到的汽缸结构固有频率值与流体力作用频率进行对比,发现汽缸排汽口加强结构及汽缸前支撑板的固有频率与流体力作用频率相近,发生共振可能性较大,应在结构设计中予以注意。
     第三,将计算流体力学软件计算得到的瞬态力加在相应的结构上,分析工作状态下流场压力对结构的作用。
     最后进行工作状态下船体设备一体化抗冲击动响应特性分析,并与非工作状态下响应结果进行对比,给出对比结果。建议中近场抗冲击性能分析考虑工作状态下流场力对结构的作用。
Shock resistance performance of Ship equipment is a significant parameter to ship survivability. The attack possibility of when ships at the harbor is smaller, however, ship particularly in the operational status that the ship equipment in working condition when subjected to enemy attacks are more likely, therefore one characteristic of the shipboard equipment shocking environment is shipboard equipment suffering underwater explosion shocking under working condition. But there is no relative shock test and trial data. In addition, there is no research advancement published in the journal overseas in this field because of keeping secret. Consequently, numerical experiment on ship equipment of anti-shock performance under working condition seems very important. Take the ship main steam turbine for instance in this paper, by means of numerical experiments research under working condition the cylinder and hull structure integration of dynamic response characteristics。
     First, combination of a Marine cylinder of four typical working condition carry on its mechanical properties analysis, inside and outside of the cylinder and internal support components unsteady pressure coefficient Cp and fluctuating pressure coefficient C′P characteristics as the number of Ma changes, and carry on dynamic frequency analysis of the cylinder internal support components, received frequency value of every components.
     Secondly, carry out modal analysis of the involved cylinder, compared the cylinder component modal value to the frequency of flow, found that strengthen structure of cylinder vent and supporting structure of natural frequency of cylinder are similar to the frequency of fluid, more likely to happen resonance, structural design should be attention.
     Thirdly, put transient power calculate by CFD software on the corresponding structure, and analyze the fluid pressure effect on the structure。
     Finally taking a hull equipment integration impact analysis of dynamic response under working condition, and compare with non-working state response results, give comparative results. Suggest that middle and close field under-water explosion of shipboard equipment anti-shock ability analysis adopt considering marine steam turbine on working condition inner vapor fluid influence to structures.
引文
[1]汪玉,华宏星.舰船现代冲击理论及应用.北京:科学出版社,2005:13页,69-74页
    [2]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究.中国造船.2001,42(2):48-55页
    [3]Rudolph J.Scavuzzo. Henry C Pusey. Naval Shock Analysis and Design. SAVIAC/Booz.Allen and Hamilton, Inc.,2000:85-92P
    [4]D.V.Balandin, N.N.Bolotnik, W.D.Pilkey. Optimal Protection from Impact. Shock and Vibration. Gordon and Breach,1999:45-52P
    [5]D.V.Balandin, N.N.Bolotnik, W.D.Pilkey. Review:Optimal Shock and Vibration Isolation.Shock and Vibration,1998(5):73-87P
    [6]王旭,张文平,马胜远等.转子蜂窝密封封严特性的试验研究.热能动力工程.2004,19(5):521-525页
    [7]李剑钊.船用汽轮机除湿级带冠叶片振动特性及寿命分析.中国舰船研究院博士学位论文.2005:1-3页
    [8]王丽华.200MW汽轮机低压缸气动优化设计.汽轮机技术.2007,49(5):349-351页
    [9]金怡军,杜占波,张荻,孙弼.船用汽轮机进汽阀箱气动性能数值模拟分析系统及其应用.汽轮机技术.2000,42(5):287-290页
    [10]Ferguson, J. G. Brush Seals AsHigh Performance Gas Turbine Seals. ASME Paper,88-GT-182,1988
    [11]王桂良,杨明.汽轮机高低压缸连通管气动性能试验研究.热能动力工程.2000,15(89):485-487页
    [12]J. W.Chew, Guardino. Simulation of Flow and Heat Transfer in the Tip Region of a Brush Seal. International Journal of Heat and Fluid Flow, 2004,25(4):649-658P
    [13]P. E.Wood, T. V. Jones. A Test Facility for the Measurement of Torques at the Shaft to Seal Interfaced in Brush Seals. Journa of Engineering for Gas Turbines and Power,1999,121(1):160-166P
    [14]李殿玺,樊轶,金洁敏,林志鸿.汽轮机排汽缸的气动研究进展.汽轮机技术.2006,25(5):257-260页
    [15]刘莲,于丽.汽轮机排汽缸模型试验研究.汽轮机技术.2002:44(1):40-41页
    [16]H.K.Verstee g, W.Malalasekera, An Introduction to Computational Fliud Dynamics:The Finite Volume Method, New York:Wiley,1995:105-123P
    [17]赵宝珠,郭玉双.300MW汽轮机排汽通道气动性能的研究.汽轮机技术.2002,44(5):282-284页
    [18]尹群.水面舰船设备冲击环境与结构抗冲击性能研究.南京:南京航空航天大学,2006:1-16页
    [19]Didoszak J M. Parametric Studies of DDG-81 Ship Shock Trial Simulations.Monterey:Naval Postgraduate School,2004.1-3P
    [20]第六机械工业部船舶系统工程部. xxxx实艇水下爆炸试验资料汇编.1982
    [21]马纶宇,王成刚,沈荣瀛.舰船机械设备冲击标准浅谈.噪声与振动控制.1997,6:41-45页
    [22]马铁犹.计算流体力学.北京:北京航空学院出版社,1986
    [23]傅德熏.流体力学数值模拟.北京:国防工业出版社,1994
    [24]朱白强.应用计算流体力学.北京:北京航空航大大学出版社,1998
    [25]张兆顺,崔桂香,许春晓.湍流理论与模型.北京:清华大学出版社,2005:256-260页
    [26]Spalart P R. Trends in turbulence treatments. AIAA-00-2306,2000
    [27]Strelets M. Detached eddy simulation of massively separated flows. AIAA-01-0879,2001
    [28]Morton S. DES and RANS simulations of delta wing vertical flows. AIAA-02-0587,2002
    [29]刘学强,伍贻兆.用DES数值模拟具有横向喷流的紊流流场.航空学报.2004,25(3):125-128页
    [30]Spalart P R, Jou W H, Strelets M et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach.1st AFOESR Int Conf on DNS/L ES. Greyden Press,1997:59-63P
    [31]Spalart P R. Trends in turbulence treatments. AIAA-00-2306,2000
    [32]James R F. Detached eddy simulation of a supersonic axisymmetric base flow with an unstructured solver. AIAA-00-2410,2000
    [33]Strelets M.Detached eddy simulation of massively separated flows. AIAA-01-0879,2001
    [34]Morton S. DES and RANS simulations of delta wing vertical flows. AIAA-02-0587,2002
    [35]Spalart P R. Trends in turbulence treatments ANSYS Company ANSYS-CFX Release 10.0 modeling,118-122P
    [36]Howell J F. Vortex shedding from circular cylinders in turbulent flow. Wind Engineering,1980,1:619-630P
    [37]Miyata T. Turbulence effects on aerodynamic response of rectangular bluff cylinders. Proc. of the 4th Int. Cong. on Wind Effects on Building and Struct,1975:631-643P
    [38]童秉纲.非定常流与涡运动.北京:国防工业出版社,1983:310页
    [39]Laneville A. The effects of intensity and large scale turbulence on the mean pressure and drag coefficient of 2D rectangular cylinders. International Journal of Heat and Fluid Flow,2004:379-404P
    [40]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004:215页
    [41]张荻,周屈兰.等不同进口条件对排汽缸气动性能的影响.汽轮机技术.1996,41(5):205-208页
    [42]陈洪溪,薛沐睿.大型空冷汽轮机低压排汽缸几何尺寸对气动性能的影响.汽轮机技术.2003,23(6):19-23页
    [43]曲维克,管小明,余敏.125MW汽轮机通流部分改造.江西电力.2003,26(3):85-88页
    [44]杨建明.水轮机三维导叶研究与试验.德阳四川东方电机工作站博士后论文.2002
    [45]王平子.现代大功率汽轮机排汽缸的气动性能.汽轮机技术.1999,41(5):19-24页
    [46]李栋,焦予秦,中村佳朗.Detached Eddy Simulation方法模拟不同类型翼型的失速特性.航空学报.2005:26(4):406-410页
    [47]刘学强,伍贻兆.用DES数值模拟具有横向喷流的紊流流场.航空学报.2004:25(3):209-213页
    [48]李栋,IgorMen'shov,中村佳朗.翼型失速特性的RANS方法与DES方法数值模拟对比分析.西北工业大学学报.2006:24(2):228-231页
    [49]吴建军.机翼绕流的三维数值模拟.河海大学硕士论文.2007
    [50]张阿漫.水下爆炸载荷作用下的船体总强度计算方法研究.哈尔滨工程大学报.2005:12-24页
    [51]Altair HyperMesh基础培训教程.上海:澳汰尔工程软件公司,2003:10-25页
    [52]刘荣军,吴新跃,郑建华.有限元建模中的几何清理问题.机械设计与制造.2005,9(9):145-147页
    [53]李金国,王慧,刘红.基于HyperMesh的有限元前置优化设计.制造业信息化.2005(7):126-127页
    [54]石亦平,周玉蓉.ABAQUS有限元分析实例详解.北京:机械工业出版社,2006:125-163页
    [55]刘建湖.舰船非接触水下爆炸动力学的理论与应用.无锡:中国船舶科学研究中心,2002
    [56]Cho-Chung Liang, Min-Fang Yang, Yuh-Shiou Tai. Prediction of shock response for a quadruped-mast using response spectrum analysis method. Ocean Engineering,2002,29(8):887-914P
    [57]汪玉,胡刚义,华宏星等.带限位器的船舶设备非线性冲击响应分析.中国造船.2003,44(2):39-44页
    [58]汪国和,尹立国,吴广明等.筏体和基础弹性对设备冲击响应影响的有限元分析.噪声与振动控制.2004,6:11-14页
    [59]GJBl060.1-91.中华人民共和国国家军用标准-舰船环境条件要求机械环境.北京:国防科学技术工业委员会,1991
    [60]姚熊亮.船体振动.哈尔滨:哈尔滨工程大学出版社,2004
    [61]谌勇,汪玉,沈荣瀛等.舰船水下爆炸数值计算方法综述.船舶工程.2007,29(4):48-52页
    [62]翁雪涛,蒋学武,信世堡等.减振系统的抗冲击性能计算.噪声与振动控制.1999,2:16-18页
    [63]钱安其,嵇春艳,王自力.水下爆炸荷载作用下水面舰船设备冲击环境预报方法研究.舰船科学技术.2006,28(4):43-47页
    [64]呼怡玫.对舰船设备冲击振动试验的分析.哈尔滨:哈尔滨工程大学,2002
    [65]陆鑫森.高等结构动力学.上海:上海交通大学出版社,1992:84-87页
    [66]金咸定,赵德有.船体振动学.上海:上海交通大学出版社,2000:27页,65-67页
    [67]郭镇明,唐嘉亨,丛望.非接触爆炸下舰船电力系统生命力的研究方法.船舶工程.1996,2:31-35页
    [68]陈晓洪,崔鲁宁,浦金云.爆炸及冲击效应对舰船电力系统生命力的影响分析.船海工程.2005,6:7-10页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700