高分辨率数值模式气压梯度力算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用非静力完全弹性的动力框架进行数值模拟和数值天气预报正成为大气科学研究和业务数值天气预报模式发展的主流,陡峭地形是困扰高分辨模式发展的主要问题之一。通过对气压梯度力误差分析和数值模式动力框架的发展研究得到的主要结论是:
     (1)现有模式中适合于天气尺度的气压梯度力算法在陡峭地形附近都存在较大的计算误差。在中尺度理想场典型参数设置下Corby方案计算的气压梯度力误差最小,精度为10~(-4)m/s~2,但即便如此,其气压梯度力算法也不收敛,即随着模式垂直分辨率的提高,计算精度不但没有提高,反而有恶化的趋势。
     (2)提出了基于静力方程订正的气压回插法来改进气压梯度力的计算方法。研究表明:1)改进的气压梯度力算法比Corby方案的计算精度有较大提高,在典型中尺度模式参数设置下计算精度可达10~(-6)m/s~2,当垂直分层为60时,可比Corby方案减少95%的误差。2)改进的气压梯度力算法是收敛的,即随着模式分辨率的提高,计算精度不断提高。特别是当现有模式的垂直分辨率提高时,水平气压梯度力计算误差将快速减小。3)当水平网格距为5km、垂直分层为100时,来自差分近似截断误差和静力方程截断误差基本相当,数量级都为10~(-6)至10~(-5)m/s~2,即由于差分近似造成的计算误差和静力方程截断导致的误差在该模式参数下基本相当,再要提高计算精度应同时考虑提高模式的水平分辨率和垂直分辨率。
     (3)发展了非静力完全弹性的数值模式动力框架,该动力框架采用两时间层的半隐式半拉格朗目的时间积分方案,使用的非跳点A网格比通常C跳点网格减少了拉格朗日插值的计算量。对气压梯度力采用水平显式的后向积分,对垂直气压梯度力采用半隐式的时间积分方案,水平显式、垂直隐式时间积分计算方案比全隐式简单。与一般非静力弹性模式动力框架不同的是,由于没有使用参考廓线,减少了使用不同廓线可能对模式性能的影响。理想场的试验表明发展的非静力全可压完全弹性数值模式动力框架具有正确模拟典型中小尺度天气系统特征的潜力,这些中小尺度天气过程和大尺度天气过程相比具有可压缩和非静力的特点。
     (4)从中国气象局发展科学研究和业务实践数值天气模式出发,给出了GRAPES模式动力框架的出发方程组、计算方案,边界条件和差分方法,讨论了GRAPES模式设计中物理模式选择、垂直坐标、隐式和显式时间积分方案等几个动力框架发展过程中的重要问题以及采用的3维Helmholtz方程气压方程解法、拉格朗日插值和矢量离散化等关键技术。通过进行平衡流、密度流和钟型地形扰动和应用牛顿松弛到纬向对称的温度场和动量的表面拖曳这两个简单物理过程进行长时间积分试验等一系列典型的理想场试验,表明使用GRAPES模式动力框架作中小尺度预报和大气环流的大气动力框架是基本可行的,同时也将为进一步改进GRAPES模式动力框架提供了线索和依据。
     (5)将改进的气压梯度力计算方案运用到非静力完全弹性模式动力框架中,通过陡峭地形试验分析其试验效果。采用新气压梯度力计算方法可望得到比较好的模拟精度,改进后的气压梯度力计算误差仅为改进前的3%左右。新气压梯度力计算方案计算稳定,计算结果比原方案有一定改进。在此基础上改进了GRAPES模式的气压梯度力算法;改进后的模式,其地形平衡流试验,运行稳定,运算结果基本合理。
The trends are witnessed to use the nonhydrostatic and fully elastic dynamicalcore for simulation and numerical weather forecast. The high resolution simulation ofatmospheric flows over complex orography is the main difficult numerical problem.Through the error analysis for pressure gradient force (PGF) and the development fornumerical model dynamical framework, the main conclusions are summarized asfollows:
     (1) The errors in several kinds of PGF computing methods have been diagnosedunder very steep slope with high-resolution used in meso-scale model by ideal fieldtests. Tests show that PGF errors can reach 10~(-2) m/s~2 for classical method, 10~(-3) m/s~2for average classical method and the highest precision 10~(-4)m/s~2 for Corby's schemeunder ideal meso-scale parameters. It is also indicated that computing results of PGFin theσterrain-following vertical coordinates will be deteriorated slightly and theerrors will not be converged under the conditions of steep slopes if the modelresolutions increase in vertical direction.
     (2) A revised scheme has been put forward in the conditions of high-resolutionmeso-scale model. It is based on the techniques of interpolating to isobaric level tocalculate PGF after finding precise geopotentials through integrating hydrostaticequation calculations with high vertical resolution. The ideal field tests show that thePGF errors decreased greatly under the steep topography slopes in the meso-scalemodel and the highest precision can reach 10~(-6) m/s~2 under the typical meso-scaleparameters. The calculation errors come mainly from integrals of truncation errors ofhydrostatic equation for geopotentials in vertical direction when number of verticallayers is less than 100. When the number of vertical layers is more than 100,truncation errors of differencing in horizontal discretizations will also play animportant role. The most significant feature is that the errors of PGF will reducedramatically with vertical resolution increase and the revised scheme on PGF will beconverged with the increasing vertical resolutions under the conditions of the idealatmospheric field.
     (3) A dynamical core of numerical model of nonstagger (A-grid) and no referenceprofile is introduced with the nonhydrostatic and fully elastic atmosphere equations. Asemi lagrangian time discretization is used for time integration of the advection termswhile the horizontal explicit and vertical implicit are adopted for time integration ofthe pressure gradient force. The advantages of the scheme are: 1) the reference profileimpact on dynamical core is taken away otherwise than most of the nonhydrostaticdynamical cores using different reference profile. 2) the horizontal explicit andvertical implicit time stepping makes the scheme more simple than 3D implicit timediscretization because there are no need to solve 3D Helmholtz equations. 3)nonstagger A-grid mesh is much more simple than stagger mesh (such as C-grid)when the equations are carded out for spatial discretization. At the same time, thecalculation is also reduced for semi lagrangian interpolations under A-grid mesh. Theprimary tests with idealized field show that the dynamical core has the ability to simulate nonlinear flow motions, such as density flow and rising thermal, as well aspropagation of gravity waves in horizontal and topographic mountain waves.
     (4) GRAPES (Global/Regional Assimilation and PrEdiction System) modelis a new generation numerical weather model with non-hydrostatic multi-scalecharacterization. The GRAPES dynamical core is fully compressible withnon-hydrostatic/hydrostatic switch and large time step by semi-implicit andsemi-lagrangian technique. This paper reviews briefly the basic prognostic equations,the scheme for time step integration and differencing discretizations used byGRAPES. It also describes the key technique methods in GRAPES framework andproblems during the model development, including GCR solvers for pressure equation,lagrangian interpolation and vector discretizations, as well as designing philosophy ofthe dynamical core. In addition, the important issues during developing dynamicalcore, such as physical model used in framework, vertical coordinate, implicit orexplicit time stepping, are discussed. The three idealized tests, which are calledbalanced flow, density flow and the bell-pattern mountain separately, have beencarded out in order to understand and verify the GRAPES model's ability to simulateand forecast weather systems, epically for middle and small systems. The balancedflow test shows that the GRAPES dynamical core preserve pattern and stable duringtime integration under the condition of geostrophic balance. The density currentsuggests that the model framework has the capability to simulate nonlinear stream andits continual evolution in case of fine scale. And the last case, bell-pattern mountaintrial, verifies that the model has the ability to simulate propogation in horizontal andvertical direction when the flow runs across an isolate mountain. The idealized testsabove imply primarily that the GRAPES multi-scale dynamical core has the potentialto simulate synoptic-scale and meso-scale systems. To verify whether the GRAPESdynamical core can take as a framework of AGCM, the long time integration has beencarried out with GRAPES dynamical core following benchmark test similar to thetechnique introduced by Held and Suarez. And the results indicate that it is feasibleusing the GRAPES frame as a dynamical core for AGCM and climate investigation.
     (5) The revised PGF scheme has been applied to the nonhydrostatic and fullyelastic dynamical core to test the impact under the steep slope. The results show thenew PGF scheme is better than before with 3% errors of the old scheme and theperformances are stable. The idea applying the revised PGF scheme to GRAPESmodel has been brought forward and a balanced flow test has been carded out withreasonable results.
引文
Adcroft A., C. Hill, and J. Marshall, 1997, Representation of topography by shaved cells in a height coordinate ocean model, Mon. Wea. Rev., 125, 2293-2315
    Arakawa A., and Suarez M. J., 1983, Vertical differencing of the primitive equations in sigma coordinates, Mon. Wea. Rev., 111, 34-45
    Arakawa A., and Konor C. S., 1996, Vertical differencing of the primitive equations based on the Charney-Phillips grid in hybrid-σ-P vertical coordinate, Mon. Wea. Rev. 124, 511-528
    Chen Qiushi, and David H. B., 1999, An equivalent isobaric geopotential height and its application to synoptic analysis and a generalized a equation in a σ coordinate, Mon. Wea. Rev., 127,145-172
    Christoph S., Daniel L., Oliver F., et al., 2002, A new terrain-folowing vertical coordinate formation for atmospheric prediction models., Mon. Wea. Rev., 130,2143-2149
    Ching-Yuang Huang, 2000, A forward-in-time anelastic nonhydrostatic model in a terrain-following coordinate, Mon. Wea. Rev., 128,2108-2134
    Corby G. A., A. Gilchrist and R. L. Newson, 1972, A general circulation model of the atmosphere suitable for long period integrations. Quart J. R. Met. Soc., 98, 809-832
    陈德辉,薛纪善,杨学胜,张红亮,胡江林,沈学顺,陈嘉滨,纪立人,张道民,陈雄山,2003,新一代静力/非静力多尺度通用数值预报动力模式(半隐式半拉格朗日)理论方案设计及试验,国家“十五”重点科技攻关项目《中国气象数值预报系统技术创新研究》技术报告文集(一),P188,(可从中国气象科学研究院数值预报研究中心获取)
    陈德辉,杨学胜,张红亮,胡江林,2003,多尺度非静力通用模式框架的设计策略,《应用气象学报》,14(4),452~461
    Dannard M., Q. Zhang and J. Kozlowski, 1993, On computing the horizontal pressure gradient force in sigma coordinate, Mon. Wea. Rev., 121, 3173-3183
    David, L. A., and A. R. Brown, 2001, Assessment of which scales of orography can be credibly resolved in a numerical model. Quart. J. Roy. Meteor. Soc.,127,1125-1237
    F. Auclair, P. Marsaleix and C. Estournel, 2000, Sigma coordinate pressure gradient errors evaluation and reduction by an inverse method, J. Atmos. Ocean. Tech., 17, 1348-1367
    G. A. Dalu, M. Baldi, R. A. Pielke, et al., 2003, Mesoscale nonhydrostatic and hydrostatic pressure gradient forces-theory, J. Atmos. Sci., 60, 2249-2266
    Gary, J. M.,1973, Estmates of truncation error in transformed coordinate, primitive equation atmospheric models, J. Atmos. Sci.,30,223-233
    Gal-Chen, T., and R. Somerville, 1975, On the use of coordinate a transform for the solution of the NavierStokes equations. J. Comput. Phys., 17, 209-228
    Gallus, W. A., and J. B. Klemp 2000: behavior of flow over step orography. Mon. Wea. Rev., 128,1153-1164
    高山红;吴增茂,1999,在较陡地形下对地形σ坐标的中尺度大气控制方程的修正,青岛海洋大学学报,29,180-186
    Gunther Zangl, 2002, An improved method for computing horizontal diffusion in a sigma-coordinate model and its application to simulations over mountainous topography, 130,1423-1432
    胡江林,王盘兴,2007,地形跟随坐标下的中尺度模式气压梯度力计算误差分析及其改进方案,大气科学,31,109-118
    Jarle Berntsen, 2002, Internal pressure errors in sigma-coordinate ocean models, J. Atmos. Ocean. Tech., 19, 1403-1414
    Janjic, Z. I.,1977, pressure gradient force and advection scheme used for forecasting with steep and small scale topography, Contrib. Atmos. Phys., 50, 186-199
    Janjic Z. I., 1989, On the pressure gradient force error in σ-coordinate spectral models, Mon. Wea. Rev., 117, 1153-1164
    Janjic Z. I., and J. P. Gerrity Jr., 2001, An Alternative Approach to Nonhydrostatic Modeling, Mon. Wea. Rev., 129,1164-1178
    Jurgen S., Bitzer H. W., Minotte M., et al., 2002, Nonhydrostatic atmospheric using a z-coordinate representation, Mon. Wea. Rev., 130, 2143-2149
    Klemp, J. B.,W. C. Skarock and J. Dudhia, 2000, Conservative split-explicit time integration methods for the compressible nonhydrostatic equations, J. Atmos. Sci., 35,1070-1096
    Kurihara Y., 1968, Note on finite-difference expressions for the hydrostatic relation and pressure gradient force. Mon. Wea. Rev., 96, 654-656
    梁丹青,张铭,曾庆存,2005a,分快地形坐标大气环流模式的动力框架及其整体性质,大气科学,29,301-306
    梁丹青,张铭,曾庆存,2005b,分快地形坐标大气环流模式框架的计算稳定性及数值试验,大气科学,29,354-362
    Lin S. J., 1997, A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Quart J. R. Met. Soc., 123, 1749-1762
    Mesinger, F., S. Nickovic, D. G. Davrilov and D. G. Deaven, 1988, The step mountain coordinate: Model description and performance for cases of alpine cyclogenesis and for cases of an Appalachian redevelopment. Mon. Wea. Rev., 125, 2293-2315
    Mesinger, F., Z. I. Janjic, 1984, Finite-difference schemes for the pressure gradient force and for the hydrostatic equation. Proceedings of the 1983 ECWMF Seminar on Numerical Methods for Weather Prediction, European Centre for Medium Range Weather Forecasts, Shinield Park, Reading, UK, pp103-157
    Mesinger, F., 1982, On the convergence and error problems of the calculation of the pressure gradient force is sigma coordinate models, Geophys. Fuild. Dyn.,19,105-117
    Mihailovic D.T. and Z. I. Janjic, 1986, Comparison of methods for reducing the error of the pressure gradient force in sigma coordinate models, Meteorol. Atmos. Phys., 35, 177-184
    Phillips N. A., 1957, A coordinate system having some special advantages for numerical forecasting. Meteor., 14, 184-185
    强学民;琚建华,2001,误差扣除法在云南中尺度数值模式中对气压梯度力的计算试验,高原气象,20,148-157
    钱永甫,1982,P-σ混合坐标系初始方程模式的若干改进及其在直角网格中试验结果,高原气象,1,28-45
    钱永甫,周天军,1994,陡峭地形区气压梯度力的误差扣除法,热带气象学报,4,358-368
    钱永甫,颜宏,王谦谦等,1988,行星大气中地形效应的数值研究,科学出版社,39-41
    Quan Yongfu, zhong zhong, 1986, General forms of dynamical equations for atmosphere in numerical models with topography. J. Meteor. Soc. Japan., special volume,743-756
    钱永甫,王云峰,1991,数值模式中气压梯度力的算法试验,气象学报,49,538-547
    Schar C., D. Leuenberger, O. Fuhrer, D. Luthi and C. Girard, 2002, A new terrain-following vertical coordinate formation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459-2480
    Simmons A., J. and D. M. Burridge, 1981, An energy and angular-momentum conserving finite-difference scheme and hybrid vertical coordinates, Mon. Wea. Rev., 109, 758-766
    Smagorinsky, J., J. L. Holloway and G. D. Hembree, 1967, Prediction experiments with a general circulation model. Proc.,Inter. Symp. Dynamics Large Scale Atmospheric Processes, 70-134
    Stelling, G. S. and J. A. Th. M. Van Kester, 1994, On the approximation of horizontal gradients in sigma coordinates for bathy metry with steep bottom slopes, International Journal for Numerical Methods in Fluids, 18, 915-935
    Steppeler J., R. Hess, U. Schattler and L. Bonaventura, 2003, Review of numerical methods for nonhydrostatic weather prediction models, Meteo. Atmos. Phys.,82,287-301
    Terry L. C.,2003, Block-iterative method of solving the nonhydrostatic pressure in terrain-following coordinates: two-level pressure and truncation error analysis, J. Appl. Meteor.,42, 970-983
    颜宏,钱永甫,1981,有地形数值预报模式中坐标变换和气压梯度力计算问题的讨论,大气科学,5,175-187
    杨晓娟,钱永甫,2003,P-σ坐标系数值模式中气压梯度力的递推算法,大气科学,27,171-181
    宇如聪,1994,一个η坐标有限区域数值预报模式对1993年中国汛期降水的实时预报试验,大气科学,18,284-292
    俞康庆,胡江林,1996,武汉区域中心暴雨数值预报模式(MAPS)的业务试验,《台风、暴雨数值预报方法和技术研究》,气象出版社
    Zeng Qingcun et al., 1987, A Global grid point general circulation model, J. Meteor. Soc. Japan., Special Volume, 421-430
    Zheng W., and Y. Qian, 1999, Improvement on computing the horizontal pressure force in the RegCM2, Acta Metero. Sinica., 13, 304-315
    朱抱真,张学洪,骆美霞,1980,在σ坐标中计算地形作用的一个静力扣除方案,第二次全国数值天气预报会议文集,67-73,科学出版社
    曾西平,任阵海,1995,水平气压梯度力差分格式误差的定量分析,大气科学,19,722-732
    Zhu Z., J. Thuburn, B. J. Hoskins, and P. H. Haynes, 1992, A vertical finite-difference schemes based hybrid σ-P coordinate, Mon. Wea. Rev.,120, 851-862
    Corby G. A., A. Gilchrist and R. L. Newson, 1972, A general circulation model of the atmosphere suitable for long period integrations. Quart J. R. Met. Soc., 98, 809-832
    钱永甫,周天军,1994,陡峭地形区气压梯度力的误差扣除法,热带气象学报,4,358-368
    钱永甫,王云峰,1991,数值模式中气压梯度力的算法试验,气象学报,49,538-547
    胡江林,王盘兴,2007,地形跟随坐标下的中尺度模式气压梯度力计算误差分析及其改进方案,大气科学,31,109-118
    杨晓娟,钱永甫,2003,P-σ坐标系数值模式中气压梯度力的递推算法,大气科学,27,171-181
    曾西平,任阵海,1995,水平气压梯度力差分格式误差的定量分析,大气科学,19,722-732
    Kurihara Y., 1968, Note on finite-difference expressions for the hydrostatic relation and pressure gradient force. Mon. Wea. Rev., 96, 654-656
    Gallus, W. A., and J. B. Klemp 2000: behavior of flow over step orography. Mon. Wea. Rev., 128,1153-1164
    Janjic Z. I., 1977, Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Beitr. Phys. Atmos., 50, 185-199
    Mihailovic D. T. and Z. I. Janjic, 1986, Comparison of methods for reducing the error of the pressure gradient force in sigma coordinate models, Meteorol. Atmos. Phys., 35, 177-184
    Phillips N. A., 1957, Acoordinate system having some special advantages for numerical forecasting. Meteor., 14, 184-185
    杨晓娟,钱永甫,2003,P-σ坐标系数值模式中气压梯度力的递推算法,大气科学,27,171-181
    Phillips N A. A coordinate system having some special advantages for numerical forecasting. Meteor., 1957, 14:184~185
    钱永甫,颜宏,王谦谦,等.行星大气中地形效应的数值研究.北京:科学出版社,1988.39~41
    朱抱真,张学洪,骆美霞.在σ坐标中计算地形作用的一个静力扣除方案.第二次全国数值天气预报会议文集.北京:科学出版社,1980.67~73
    Zhu Baozhen, Zhang Xuehong, Luo Meixia. A hydrostatic subtraction scheme on terrain effects in σ coordinates. Proceeding of the Second National Numerical Westher Prediction Congress (in Chinese). Beijing: Science Press, 1980. 67~73
    颜宏,钱永甫.有地形数值模式中坐标变换和气压梯度力计算问题的讨论.大气科学,1981,5:175~187
    Yan Hong, Qian Yongfu. The discussion on coordinate transform and pressure gradient force scheme in numerical model with terrain. Chinese Journal of Atmospheric Sclences (Scientia Atmospherica Sinica) (in Chinese), 1981, 5:175~187
    Dannard M, Zhang Q, Kozlowski J. On computing the horizontal pressure gradient force in sigma coordinate. Mon. Wea. Rev., 1993, 121:3173~3183
    钱永甫,周天军.陡峭地形区气压梯度力的误差扣除法.热带气象学报,1994,4:358~368
    Qian Yongfu, Zhou Tianjun. Error subtraction method in computing pressure gradient force for high and steep topographic areas, Journal of Tropical Meteorology (in Chinese), 1994, 4:358~368
    Zheng W, Qian Y. Improvement on computing the horizontal pressure force in sigma coordinate. Acta Meteorologica Sinica, 1999,13:304~315
    杨晓娟,钱永甫.P-σ坐标系数值模式中气压梯度力的递推算法.大气科学,2003,27:171~181
    胡江林,王盘兴,2007,地形跟随坐标下的中尺度模式气压梯度力计算误差分析及其改进方案,大气科学,31,109-118
    Yang Xiaojuan, Qian Yongfu. The recurrent computational methods of pressure gradient force in the P-σ coordinate numerical models. Scientia Atmospherica Sinica (in Chinese), 2003, 27:171~181
    Corby G A, Gilchrist A, Newson R L. A general circulation model of the atmosphere suitable for long period integrations. Quart. J. Roy. Meteor. Soc, 1972, 98: 809~832
    Janjic Z I. Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Beitr. Phys. Atmos, 1977, 50:185~199
    Arakawa A, Suarez M J. Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 1983, 111:34~45
    Arakawa A, Konor C S. Vertical differencing of the primitive equations based on the Charney-Phillips grid in hybrid-σ-P vertical coordinate. Mon. Wea. Rev., 1996, 124:511~528
    Smagorinsky J, Holloway J L, Hembree G D. Prediction experiments with a general circulation model. Proc. Inter. Symp. Dynamics Large Scale Atmospheric Processes, 1967. 70~134
    Kurihara Y. Note on finite-difference expressions for the hydrostatic relation and pressure gradient force. Mon. Wea. Rev, 1968, 96:654~656
    Steppeler J, Hess R, Schattler U, et al. Review of numerical methods for nonhydrostatic weather prediction models. Meteor. Atmos. Phys., 2003,82: 287~301
    David L A, Brown A R. Assessment of which scales of orography can be credibly resolved in a numerical model. Quart. J. Roy. Meteor. Soc., 2001, 127:1125~1237
    Schar C, Leuenberger D, Fuhrer O, et al. A new terrain-following vertical coordinate formation for atmospheric prediction models. Mon. Wea. Rev., 2002, 130: 2459~2480
    曾西平,任阵海,1995,水平气压梯度力差分格式误差的定量分析,大气科学,19,722-732
    Bates J R, Moorthi S, and Higgins R W. A global multilevel atmosphereic model using a vector semi-lagrangian finite-difference scheme. Part Ⅰ: Adiabatic Formulation. Mon Wea Rev, 1993, 121:244~263
    Cote J, Gravel S, Methot S, et al. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part Ⅰ: Design considerations and formulation. Mon Wea Rev, 1998a, 126: 1373~1395.
    Cote J., Gravel S, Methot A, et al. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part Ⅱ: Results. Mon Wea Rev, 1998b, 126: 1397~1418.
    Cullen M. J. P. The unified forecast/climate model. Meteor. Mag., 1993, 122: 81~ 94.
    Clark T J. A small scale numerical model using a terrain following coordinate system. J Comput Phys, 1977,24, 186~215
    陈德辉,杨学胜,胡江林等,多尺度通用动力模式框架的设计策略。应用气象学报,2003,14(4):452~461
    陈德辉,薛纪善.数值天气预报业务模式现状与展望,气象学报,2004,62(5):623-633
    Gal-Chen T And. Sommerville R. C. J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys, 1975,17: 209~228.
    Davies, H. C. A Lateral Boundary Formulation for Multi-Level Prediction Models. Quart. J. Roy. Meteor. Soc., 1976, 102, 405~418.
    Durran, D. R. and Klemp, J. B. A compressible model for the simulation of moist mountain waves. Mon. Wea Rev.1983, 111:2341-2361
    Eisenstat S. C, Elman H. C, Schultz M. H. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J Numer Anal, 1983,20,346~357
    Staniforth A. and Cote J:Semi-Lagrangian integration scheme for atmospheric models-A review. Mon Wea Rev, 1991,119, 2206~2223.
    梁丹青,张铭,曾庆存.分快地形坐标大气环流模式的动力框架及其整体性质.大气科学,2005,29(2):301-306
    梁丹青,张铭,曾庆存.分快地形坐标大气环流模式框架的计算稳定性及数值试验.大气科学,2005,29(3):354-362
    Janjic Z I. A nonhydrostatic model based on a new approach. Meteor Atmos Phy, 2003,82:271~285
    Golding B W. An efficient non-hydrostatic forecast model. Meteorol Atmos Phys, 1992,50:89~103
    Laprise R. The Euler equation of motion with hydrostatic pressure as an independent variable. Mon Wea Rev, 1992, 120:197~207
    Thompsin J F, Warsi U A and Mastin C W. Numerical grid generation:foundation and applications. North-Holland, 1985, 483 pp
    Klemp J B, Wilhelmson R B and Fuhrer O. Numerical consistency of Metric terms in terrain-following coordinates. Mon Wea Rea, 2003, 131:1229~1239
    纪立人,陈嘉滨,张道民等.数值预报模式动力框架发展的若干问题综述,大气科学,2005,29:120~130
    Gallus W A and Rancic M. A non-hydrostatic version of NMC' s regional Eta model. Q J R Meteorol Sci, 1996, 122: 495~513
    Gallus W A, Jr and Klemp J B. Behavior of flow over step orography. Mon Wea Rev, 2000, 128:1153~1164
    Klemp J B and Willhemson R B. The simulation of three-dimensional convective storm dynamics. J Atmos Sci, 1978,35:1070~1096
    Priestley A. A quasi-conservative version of the semi-Lagrangian advection scheme. Mon Wea Rev,1993, 121:621~629
    郭肖容,张玉玲,闫之辉等,有限区分析预报系统及其业务应用.气象学报,1995,53(3):306~318.
    宇如聪.陡峭地形有限区域数值模式设计.大气科学,1989,13(2):139~149
    宇如聪.一个η坐标有限区域数值预报模式对1993年中国汛期降水的实时预报试验.大气科学,1994,18(3):284-292
    Tanguay M., Robert A., Laprise R. A Semi-implicit Semi-Lagrangian fully compressible regional forecast model. Mon. Wea Rev,1990, 118: 1970~1980.
    Tanguay, M., E. Yakimiw, H. Ritchie and A. Robert, 1992: Advantages of spatial averaging in semi-Lagrangian schemes. Mon. Wea. Rev, 120, 113-123.
    Bauer, M. B., G. J. Mayr, I. Vergeiner and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimension mountain as a function of the horizontal aspect ratio. J.Atmos.Sci.,2000,3971-3991
    Tanguay M., Robert A., Laprise R. A Semi-implicit Semi-Lagrangian fully compressible regional forecast model. Mon. Wea Rev, 1990, 118: 1970~1980.
    Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992: A standard test for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211-224
    Held, I. H., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825-1830
    Galewsky, J., Richard, K. S., Polvani, L. M., 2004: An initial-value problem for testing numerical models of the global shallow-water equations. Tellus 56A, 429-440
    Polvani, L. M., Scott, R. K. and Thomas, S. J., 2004: Numerically converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev. 130, 1384-1396
    Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson and K. K. Droegemeier,1993: Numerical solutions of a non-linear density current: a benchmark solution and comparisons. International Journal for Numerical Methods in Fluids, 17,1-22
    Janjic, Z. I., Gerrity Jr., J. P. and Nickovic, S. 2001: An Alternative Approach to Nonhydrostatic modeling. Mon. Wea. Rev., 129,1164-1178
    Smith, R. B.,1980: Linear theory of stratified hydrostatic flow past an isolated mountain.Tellus,32,348-364
    Arakawa A., Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part Ⅰ. J. Comput. Phys., 1966, 1:119-143.
    Zhang Xuehong, Liang Xinzhong. Comparison and examination of dynamic frameworks of IAP and OSU AGCM. Advances in Atmospheric Sciences, 1989, 6: 265-274.
    左瑞亭,张铭,张东凌等.21层大气环流模式IAP AGCM-Ⅲ的设计及气候数值模拟Ⅰ动力框架,大气科学,2004,28(5):659-674.
    梁丹青,张铭,曾庆存.分块地形坐标大气环流模式框架的计算稳定性及数值试验,大气科学,2005,29(3):354-362.
    Wang Bin, Wan Hui, Ji Zhongzhen, et al. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China Ser. A Mathematics, 2004, 47:4-21.
    王斌,季仲贞.大气科学中的数值新方法及其应用,北京:科学出版社,2006:200-205.
    Gates, W. L. The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc., 1992, 73:1962-1970.
    Boer, G. J., B. Denis. Numerical convergence of the dynamics of a GCM. Climate Dyn., 1997, 13, 359-374.
    Polvani L. M., R. K. Scott, S.J.Thomas. Numerical converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev., 2004,132: 2539-2552.
    Trenberth, K. E., and J. G. Olson, ECMWF Global Analyses 1979-1986: Circulation statistics and data evalution, NCAR/TN -300+STR, NCAR Technical Note, 1988.
    Skamarock, W. C., Klemp, J. B., 1994, Efficiency and accuracy of the Klemp-Wilhemson time-splitting technique. Mon. Wea. Rev., 122, 2623-2630
    Xue, M., Droegemeier, K. k., Wang, V., 2000, The Advanced Regional Prediction System(ARPS)-A multi-scale nonhydrostatic atmospheric simulation and predication model. Part I: Model dynamics and verification. Meteor. Atmos. Physics, 75, 161-193
    Corby G. A., A. Gilchrist and R. L. Newson, 1972, A general circulation model of the atmosphere suitable for long period integrations. Quart J. R. Met. Soc., 98, 809-832
    Durran D. R. and Joseph B. K.,1983, A compressible model for the simulation of moist mountain waves, Mon. Wea. Rev., 111, 2341-2361
    钱永甫,周天军,1994,陡峭地形区气压梯度力的误差扣除法,热带气象学报,4,358-368
    胡江林,王盘兴,2007,地形跟随坐标下的中尺度模式气压梯度力计算误差分析及其改进方案,大气科学,31,109-118
    杨晓娟,钱永甫,2003,P-σ坐标系数值模式中气压梯度力的递推算法,大气科学,27,171-181
    曾西平,任阵海,1995,水平气压梯度力差分格式误差的定量分析,大气科学,19,722-732
    Klemp, J. B., and D. K. Lilly. Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 1978, 35(11):78-107
    Smith, R. B. Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 1980,32: 348-364
    Janjic Z I. A nonhydrostatic model based on a new approach. Meteorol Atmos. Phys. ,2003, 82: 271-285
    Boer, G. J., B. Denis. Numerical convergence of the dynamics of a GCM. Climate Dyn., 1997,13,359-374.
    Bauer, M. B., G. J. Mayr, I. Vergeiner and H. Pichler, 2000: Strongly nonlinear flow over and around a three-dimension mountain as a function of the horizontal aspect ratio. J. Atmos. Sci.,2000,3971-3991
    陈德辉,薛纪善.数值天气预报业务模式现状与展望,气象学报,2004,62(5):623-633.
    薛纪善.新世纪初我国数值天气预报的科技创新研究,应用气象学报,2006,17(5):601-610.
    陈德辉,沈学顺.应用气象学报,新一代数值预报系统GRAPES研究进展,应用气象学报,2006,17(6):773-777.
    伍湘君,金之雁,黄丽萍等.GRAPES模式软件框架与实现,应用气象学报,2005,16(4):539-546.
    黄丽萍,伍湘君,金之雁.GRAPES模式标准初始化方案设计与实现,应用气象学报,2005,16(3):374-384.
    叶成志,欧阳里程,李象玉等.GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析,热带气象学报,2006,16(4):539-546.
    李耀辉,赵建化,薛纪善等.基于GRAPES的西北地区沙尘暴数值预报模式极其应用研究,地球科学进展,2005,20(9):999-1011.
    章建成,刘奇俊.GRAPES模式不同云物理方案对短期气候模拟的影响,气象,2006,32(7):3-12.
    Arakawa A., Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part Ⅰ.J. Comput. Phys., 1966, 1:119-143.
    Zhang Xuehong, Liang Xinzhong. Comparison and examination of dynamic frameworks of IAP and OSU AGCM. Advances in Atmospheric Sciences, 1989, 6: 265-274.
    左瑞亭,张铭,张东凌等.21层大气环流模式IAP AGCM-Ⅲ的设计及气候数值模拟Ⅰ动力框架,大气科学,2004,28(5):659-674.
    梁丹青,张铭,曾庆存.分块地形坐标大气环流模式框架的计算稳定性及数值试验,大气科学,2005,29(3):354-362.
    王斌,季仲贞.大气科学中的数值新方法及其应用,北京:科学出版社,2006:200-205.
    Gates, W. L. The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc., 1992, 73:1962-1970.
    Galewsky, J., Richard, K. S., Polvani, L. M., 2004:An initial-value problem for testing numerical models of the global shallow-water equations. Tellus 56A, 429-440
    Held, I. H., M. J. Suarez. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteror. Soc.,1994, 75:1825-1830
    Polvani L. M., R. K. Scott, S. J. Thomas. Numerical converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon. Wea. Rev.,2004,132: 2539~2552.
    Trenberth, K. E., and J. G. Olson, ECMWF Global Analyses 1979-1986: Circulation statistics and data evalution, NCAR/TN -300+STR, NCAR Technical Note, 1988.
    Smith, R. B.,1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32,348-364
    Wang Bin, Wan Hui, Ji Zhongzhen, et al. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China Ser. A Mathematics, 2004, 47:4-21.
    Williamson, D. L., J. B. Drake, J. J. Hack, et al. A standard test for numerical approximations to the shallow water equations in spherical geometry. J. Comput. P HYS.,1992,102:211-224.
    Gal-Chen T And. Sommerville R. C. J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys, 1975,17: 209~228.
    Tanguay M., Robert A., Laprise R. A Semi-implicit Semi-Lagrangian fully compressible regional forecast model. Mon. Wea Rev,1990, 118: 1970~1980.
    Davies, H. C. A Lateral Boundary Formulation for Multi-Level Prediction Models. Quart. J. Roy. Meteor. Soc., 1976, 102, 405~418.
    Eisenstat S. C, Elman H. C, Schultz M. H. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J Numer Anal, 1983,20,346~357
    Staniforth A. and Cote J:Semi-Lagrangian integration scheme for atmospheric models-A review. Mon Wea Rev, 1991,119, 2206~2223.
    Bates J R, Moorthi S, and Higgins R W. A global multilevel atmosphereic model using a vector semi-lagrangian finite-difference scheme. Part Ⅰ: Adiabatic Formulation. Mon Wea Rev, 1993, 121:244~263
    Clark T J. A small scale numerical model using a terrain following coordinate system. J Comput Phys, 1977,24, 186~215
    Janjic Z I. A nonhydrostatic model based on a new approach. Meteor Atmos Phy, 2003,82:271~285
    Golding B W. An efficient non-hydrostatic forecast model. Meteorol Atmos Phys, 1992,50:89~103
    Laprise R. The Euler equation of motion with hydrostatic pressure as an independent variable. Mon Wea Rev, 1992, 120:197~207
    Thompsin J F, Warsi U A and Mastin C W. Numerical grid generation:foundation and applications. North-Holland, 1985, 483 pp
    胡江林,王盘兴.地形跟随坐标下的中尺度模式气压梯度力计算误差分析及其改进方案,大气科学,2007,31,109~118
    胡江林,沈学顺,张红亮等,GRAPES模式动力框架的长期积分特征,应用气象学报,2007(3)
    Klemp J B, Wilhelmson R B and Fuhrer O. Numerical consistency of Metric terms in terrain-following coordinates. Mon Wea Rea, 2003, 131:1229~1239
    纪立人,陈嘉滨,张道民等.数值预报模式动力框架发展的若干问题综述,大气科学,2005,29:120~130
    Gallus W A and Rancic M. A non-hydrostatic version of NMC' s regional Eta model. Q J R Meteorol Sci, 1996, 122: 495~513
    Gallus W A, Jr and Klemp J B. Behavior of flow over step orography. Mon Wea Rev, 2000, 128: 1153~1164
    Klemp J B and Willhemson R B. The simulation of three-dimensional convective storm dynamics. J Atmos Sci, 1978, 35: 1070~1096
    Priestley A. A quasi-conservative version of the semi-Lagrangian advection scheme. Mon Wea Rev. 1993, 121: 621~629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700