基于性能的结构多维抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论研究与震害经验表明,扭转反应会加速偏心结构在地震作用下的破坏,在某些情况下甚至成为导致建筑物破坏的主要因素,平扭耦联是空间问题,不应简化为平面问题处理。目前,结构的抗震设计思想也由传统的基于力的强度设计方法发展到基于性能的延性抗震设计方法,但研究成果大都以单向地震输入的平面分析为前提,所以研究多维偏心结构在多维地震作用下的基于性能的抗震设计理论和方法具有重要现实意义。本文以基于性能的结构多维抗震设计思路为基础,着重完成以下几个方面的研究工作:
     (1)提出了直接基于损伤性能目标的抗震设计方法。由于以往对累积耗能与最大位移关系的研究针对于单自由度系统,而不一定适用于层间反应,于是基于累积耗能参数推导了地震下层间最大位移与层间累积耗能的关系方程,并以Park双参数损伤准则为基础建立了结构层间损伤计算公式,将结构最薄弱楼层的预期损伤性能目标作为设计起点进行抗震设计,反推结构的刚度和强度。为满足小震下的使用要求,将小震不坏的承载力控制引入设计程序,并与中震、大震下的损伤控制有机结合起来,从而实现了多性能水准的设计思想。最后通过算例,证明了该方法具有一定的准确性。
     (2)由于结构的总滞回耗能是反映结构整体累积损伤的重要参量,为此通过能量方程推导了结构与其等效单自由度系统的滞回耗能和变形能关系公式。建议了通过结构等效单自由度系统来估计地震下结构累积滞回耗能的方法。通过对结构剪切刚度分布和屈服剪力系数分布的均匀和不均匀的多个算例进行分析和比较,证明了该方法在一定范围内能够较为准确地估计地震下结构的滞回耗能。
     (3)针对传统抗震设计中完全依赖于概念设计来设计构件截面尺寸的不合理性,提出了刚度设计思想。将传统的“两阶段抗震设计”发展为“三阶段抗震设计”,即刚度设计阶段、强度设计阶段、变形验算及调整加固阶段,其中后两阶段与传统方法相似。对经典的R-μ设计谱进行分析,给出了长周期弹塑性位移谱的简化公式,并在此基础上提出了基于位移的刚度设计方法。定义了刚度调整系数,通过刚度调整系数可以一次性地调整好结构的构件尺寸,使结构能够满足预期的目标要求,从而避免了反复迭代的设计过程。针对三阶段设计中的刚度设计,首先给出了对称结构的刚度设计方法,并通过算例进行验证;而对于平面不对称结构的刚度设计,提出了基于pushover方法的平面刚度分布调整程序,通过该程序来调整不对称结构的刚度分布,尽可能的使刚心与质心重合,然后按对称结构进行刚度设计。而对于很难实现质心与刚心近似重合的结构,提出了偏心结构直接基于位移的刚度设计方法。最后,在以上研究成果的基础上给出了多维结构的三阶段抗震设计流程。
     (4)建立了双向地震作用下单质点双自由度系统的等延性强度折减系数反应谱。通过硬土、中硬(软)土、软土场地的178条地震记录作为地震输入,采用了不同以往的建立强度折减系数设计谱的方法,建立了统计平均的等延性强度折减系数设计谱。分析了场地类别、延性系数、两水平主轴方向周期比对强度折减系数谱的影响。并根据统计结果,给出了便于工程应用的等延性强度折减系数简化设计谱公式。通过比较分析可知,该简化公式比较准确,且能够较合理的反应各参量对强度折减系数设计谱的影响规律。
     (5)提出了考虑双向地震作用的多维结构振型pushover分析方法。采用弹性振型分解的思路,将非线性多维结构反应近似为结构多振型弹塑性反应的叠加,进而将多维结构按振型等效为多个等效方程。将每一等效方程转化为以双向实际地震记录的组合为地震输入的等效单自由度系统,并通过弹塑性R-μ关系谱的统计分析,得出其与实际地震记录输入的单自由度系统具有近似的弹塑性反应特性。在此基础上给出了考虑双向地震作用的多维结构振型pushover分析程序,并阐述了该方法与传统pushover分析方法的区别,最后通过算例将该方法结果与时程分析方法结果进行比较,证明了该方法具有一定的准确性。
     (6)在本文的双向地震下等延性强度折减系数设计谱和考虑双向地震作用的振型pushover分析的研究基础上提出了多维能力谱方法。提出了多维结构振型组合的分析思路。由考虑双向地震作用的多维结构振型pushover分析程序获得基于各振型的能力谱曲线;由双向地震下等延性强度折减系数设计谱和规范设计谱建立等延性弹塑性需求设计谱曲线;将能力谱曲线与需求谱曲线组合并通过一定算法即可获得双向地震下多维结构的目标位移。最后通过算例进行比较分析,说明了该方法能够比较准确地估计多维结构在双向地震下的反应需求。
Both theoretical analysis and seismic disasters indicate that the torsional response canaggravate destroying of the asymmetry plan structures. The torsional coupling response willinduce the structure's dimensional effects that shouldn't be resolved in the two dimensions(2D). Presently, the seismic design has been shifted from force-based seismic design(FBSD)to performance-based seismic design (PBSD), but the existing research findings of PBSDalmost belong to 2D analysis. So it is significant to develop performance-based seismicdesign theories and methods for the asymmetry plan structures subjected to multi-dimensionalearthquake excitations. The theories and procedures of PBSD for asymmetric plan structuressubjected to multi-dimensional earthquake excitations are established and discussed, the mainfindings are listed as follows:
     (1) A seismic design approach is presented where the design procedure attempts to createstructures with a specified limited objective under a specified level of seismic intensity. Thelimited objective may be directly defined by limiting damage state of the weakness storey.The famous Park model, constant ductility inelastic response spectra and the traditionaryseismic design method are combined to determine families of structures whose initial strengthand stiffness characteristics will ensure that the desired limited damage performance objectivefor each seismic level is, as closely as possible, achieved. Furthermore, the applicability ofusing the parameterγ_h for storey response of multiple degree-of-freedom structures isanalyzed, and the corresponding equation is established. Finally, a design example shows thatthe design approach is feasible and accurate.
     (2) The formula of hysteretic energy between the MDOF structures and equivalentSDOF systems is developed. The procedure for estimating hysteretic energy of MDOFstructures subjected to severe ground motions employing the energy relation equation basedon equivalent SDOF systems is proposed. Finally, eight examples for two regular and sixirregular MDOF structures which includes three stiffness distribution irregular structures andthree yield ratio distribution irregular structures show that the procedure to obtain thehysteretic energy demands of MDOF structures may be used as a simple and effective energyestimation method.
     (3) The traditionary design for structural members' section sizes depends on the concept design absolutely which is difficult to answer the purpose of multi-performance objective forperformance-based seismic design. So, the constant ductility strength reduction factorinelastic statistical spectra is analyzed, and the simplified inelastic spectra equation ispresented, based on which the traditionary two stages seismic design is developed to threestages seismic design: stiffness design stage, strength design stage, displacement checkingstage. In the stiffness design stage, the displacement-based stiffness design procedure ofsymmetry structures is proposed, firstly. For asymmetry plan structures, the adjustmentprocedure of storey stiffness distribution is presented, by which the floor quality center andstiffness center are concurrent and the torsion response is reduced. The displacement-basedseismic design procedure of eccentric structures is presented for those which it is difficult toremove the structural eccentricity by adjusting stiffness distribution. Finally, the three stagesseismic design procedures for multi-dimensional structures are proposed.
     (4) The constant ductility strength reduction factor inelastic statistical spectra forbi-directional ground motions is established and effects on structural nonlinear response underbi-directional earthquake excitations are discussed based on statistic analysis of 178recordings for hard site, medium site and soft site. By the sufficient statistic analysis, thesimplified model of constant ductility strength reduction factors design spectra is established,which is the foundation for forming the inelastic design demand spectra for structuressubjected to bi-directional ground motions.
     (5) A multiple modal pushover analysis method to estimate seismic demands forasymmetric plan structures subjected to bi-directional ground motions is presented. Theassumption of equivalent systems for asymmetric plan structures is developed fromequivalent SDOF systems for symmetric structures. The displacement response of asymmetricplan structures is supposed to equate to the combined responses of modal equivalent systems.The multiple modal pushover analysis procedure is proposed, and an example for comparingstructural response results of multiple modal pushover analysis with the results of nonlineardynamic time history analysis shows that the multiple modal pushover analysis proceduremay be used as a simple and effective seismic demands estimation method for asymmetricplan structures subjected to bi-directional ground motions.
     (6) The capacity spectra methods for estimating the earthquake demands of asymmetricplan structures which based on the multiple modal pushover analysis and bi-directionalinelastic response demand spectra presented in the paper is proposed. Finally, the engineeringexample is provided to show the method is simple, feasible and accurate.
引文
[1] 李宏男.建筑抗震设计原理.北京:中国建筑工业出版社.1996.
    [2] 王亚勇.我国2000年抗震设计模式展望.建筑结构,1999(6):13-19.
    [3] J.P. Moehle. Displacement-based design of RC structures subjected to earthquakes. Earthquake Spectra, 1992,3:403-428.
    [4] K. Peter. Application of the capacity spectrum method to R. C. buildings with bearing walls. The 12th World Conference On Earthquake Engineering, Paper No. 0609, 2000.
    [5] T.E. Kelly. Analysis Procedures for Performance Based Design. The 12th World Conference On Earthquake Engineering, Paper No. 2400, 2000.
    [6] H.S. Lew. Evaluation of Analysis Procedures for Performance-Based Seismic Design of Buildings. The 12th World Conference On Earthquake Engineering, Paper No. 1005, 2000.
    [7] Xiao-Kang Zou, Chun-Man Chan. Seismic drift performance-based design optimization of reinforced concrete buildings. The 13th World Conference on Earthquake Engineering, Paper No. 223, 2004.
    [8] S.S. LEE, S.C. Goel, S.H. Chao. Performance-based Seismic Design of Steel Moment Frames Using Target Drift and Yield Mechanism. The 13th World Conference on Earthquake Engineering, Paper No. 266, 2004.
    [9] S. Otan. Japanese Seismic Degign of High-Rise Reinforced Concretes Buildings 'An Example of Performance-based Degign Code and State of Practices'. The 13th World Conference on Earthquake Engineering, Paper No. 5010, 2004.
    [10] A. K. Chopra. Estimating Seismic Demands for Performance-based Engineering of Buildings. The 13th World Conference on Earthquake Engineering, Paper No. 5007, 2004.
    [11] SEAOC Vision 2000 Committee. Performance-Based Seismic Engineering of Building. Report Prepared by Structural Engineers Association of California, Sacramento, California, USA, 1995.
    [12] ATC-34. A Critical Review of Current Approaches to Earthquake-Resistant Design. Applied Technology Council, Redwood City, 1995.
    [13] ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council. Red Wood City, California, 1996.
    [14] FEMA273. NEHRP Commentary on the Guidelines for the Rehabilitation of Buildings. Federal Emergency management Agency, Washington D.C., September, 1996.
    [15] FEMA274. NEHRP Guidelines for the Rehabilitation of Buildings. Federal Emergency Management Agency, Washington D.C., September, 1996.
    [16] Building Center of Japan. Report of development of new engineering framework for building structures. Integrated Development Project, Ministry of construction, 1996, 1997and 1998.
    [17] S. Otani. Recent Developments in Seismic Design Criteria in Japan. The 11th World Conference on Earthquake Engineering, Paper No. 2124, 1996.
    [18] S. Otani. Development of performance-based seismic design method in Japan. Building Structures, 2000, 30(6): 3-9.
    [19] 小古俊介.日本基于性能结构抗震设计方法的发展.建筑结构,2000,30(6):3-9.
    [20] FEMA356. Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington D. C., 2000.
    [21] Eurocode 8: Design of structures for earthquake resistance. General rules, seismic actions and rules for buildings. British Standards Institution, London, 2003.
    [22] 谢礼立.抗震性态和基于性态的抗震设防.国家自然科学基金“九五”重大项目—大型复杂结构的关键科学问题及设计理论研究论文集.大连:大连理工大学出版社,1999.
    [23] 杨溥.基于位移的结构地震反应分析方法研究:(博士学位论文).重庆:重庆建筑大学,1999.
    [24] 马玉宏.基于性态的抗震设防标准研究:(博士学位论文).哈尔滨:中国地震局工程力学研究所,2000.
    [25] 罗文斌,钱嫁茹.钢筋混凝土结构基于位移的抗震设计.土木工程学报,2003,36(5):22-29.
    [26] 李英民,杨成,赖明.性态设计方法及能力-需求曲线方法的几个问题.重庆建筑大学学报,2003,25(6):26-32.
    [27] 刘光明,杨红等.基于新规范的钢筋混凝土框架抗震性能评价.重庆大学土木工程学院,2004,26(1):40-49.
    [28] 李宏男,何浩祥.利用能力谱法对结构地震损伤评估的简化方法.大连理工大学学报,2004,44(2):267-270.
    [29] 李刚,程耿东.基于投资.效益准则的结构目标性能水平.大连理工大学学报,2005,45(2):166-171.
    [30] 王丰,李宏男.多维结构体系地震位移反应的近似评估—多维能力谱法.振动工程学报,2006,19(2):270-276.
    [31] 钱稼茹等.在用市政桥梁基于位移的抗震安全评估.工程力学,2006,23:194-202.
    [32] 肖明葵,马占杰.结构抗震性能评估的改进模态能力谱法.重庆大学学报,2007,(2):115-119.
    [33] 王东升,李宏男等.钢筋混凝土桥墩基于位移的抗震设计方法.土木工程学报,2006,39(10):80-86.
    [34] 中华人民共和国国家标准.建筑抗震设计规范(GB50011—2001).北京:中国建筑工业出版社,2001.
    [35] 李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望.地震工程与土程振动.2001,21(4):73-79.
    [36] 王亚勇.我国2000年抗震设计模式规范基木问题研究综述.建筑结构学报,2000,21(1):2-4.
    [37] 陈耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报,2000,21(1):5-11.
    [38] 李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望.地震工程与工程振动,2001.21(4):73-79.
    [39] 李应斌,刘伯权,史庆轩.结构的性能水准与评价指标.世界地震工程,2003,19(2):132-137.
    [40] 张静怡,李春祥.抗震性能设计的发展.自然灾害学报,2004,13(5):128-135.
    [41] 李应斌,林艺勇,刘洋.抗震设计中结构的极限状态与性能目标.西北地震学报.2004,26(1):24-27.
    [42] K. G. Smith. Innovation in Earthquake Resistant Concrete Design Philosophies: A Century of Progress since Hennebique's Patent. Engineering Structure, 2001, 23: 72-81.
    [43] M. J. N. Priestley. Performance Based Seismic Design. The 12th World Conference on Earthquake Engineering, Paper No. 2831, 2000.
    [44] M. J. N. Priesttey, M. J. Kowalsky. Direct Displacement-based Seismic Design of Concrete Buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 2000, 33(4): 421-444.
    [45] 李应斌.钢筋混凝土结构基于性能的抗震设计理论与应用研究:(博士学位论文).西安:西安建筑科技大学,2004.
    [46] S. A. Freeman, J. P. Nicoletti. Evaluation of Existing Buildings for Seismic Risk 'A Case Study of Puget Sound Naval Shipyard Bremerton'. Proceedings of 1st U.S. National Conference on Earthquake Engineering, Washington, Earthquake Engineering Research Institution, 1975: 113-122.
    [47] T. Vidic, P. Fajfar, M. Fischinger. Consistent Inelastic Design Spectra: Strength and Displacement. Earthquake Engineering and Structural Dynamics. 1992, 23: 507-521.
    [48] E. Miranda, V. V. Bertero. Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra. 1994, 10: 357-379.
    [49] P. Fajfar, P. Gaspersis. The N2 Method: the Seismic Damage Analysis of RC Buildings. Earthquake Engineering and Structural Dynamics, 1996, 25: 31-46.
    [50] S. K. Ghosh. Seismic Detailing of Reinforced Concrete Structures and Performance-Based Codes. Seismic Design Methodologies for the Next Generation of Codes, Balkema, 1997.
    [51] P. Fajfar. Capacity spectrum method based on inelastic demand spectra. IKIPR Report EE 3/98. September. Ljubljana, Slovenia: Univ. of Ljubljana. 1998.
    [52] A. K. Chopra, B. K. Goel. Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDOF Systems. Report No. PEER-1999/02. Pacific Earthquake Engineering Research Center. University of California at Berkeley, 1999.
    [53] 王威,孙景江.基于改进能力谱方法的位移反应估计.地震工程与工程振动,2003,23(6):37-43.
    [54] 曹炳政,罗奇峰等.需求能力系数法及其在性能评估中的应用.华东交通大学学报,2004,21(1):21-26
    [55] T. Vidic, P. Fajfar, M. Fischinger. Consistent Inelastic Design Spectra: Strength and Displacement. Earthquake Engineering and Structural Dynamics. 1994, 23: 507-521.
    [56] E. Miranda, V. V. Bertero. Evaluation of Strength Reduction Factors. for Earthquake-resistant Design. Earthquake Spectra, 1994; 10(2): 357-379.
    [57] H. Krawinkle, G. D. Seneviratna. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures. 1998, 20(4-6): 453-464.
    [58] Y. J. Park, H. S. Ang. Mechanistic Seismic Damage Modal for Reinforced Concrete. Journal of Structural Engineering, 1985, 111 (4): 722-739.
    [59] 王光远等.工程结构与系统抗震优化设计的实用方法.北京:中国建筑工业出版社,1999.
    [60] S. M. Williams, G. Robert. Seismic Assessment of Concrete Bridges Using Inelastic Damage Analysis. Engineering Structures, 1997, 19(3): 208-216.
    [61] A. Ghbarah, H. A. Elfath, A. Biddah. Response-Based Damage Assessment of Structures. Earthquake Engineering and Structural Dynamic, 1999, 28(10): 79-104.
    [62] 欧进萍,何政,吴斌等.钢筋混凝土基于地震损伤性能的设计.地震工程与工程振动,1999,19(1):21-30.
    [63] G. W. Housner. Limit design of structures to resist earthquake. Proceeding of First World Conference on Earthquake Engineering, Berkeley, CA, 1956. 5-1~5-11.
    [64] 秋山宏. Earthquake-resistant limit-state design for building. Tokyo: University of Tokyo Press, 1985.
    [65] W. E. McKevitt. Hysteretic energy spectra in seismic design. Proceeding of seventh world conference on earthquake engineering, Structural Aspects, 2000, 7: 487-494.
    [66] C. C. Chou, C. M. Uang. Establishing absorbed energy spectra an attenuation approach. Earthquake Engineering and Structure Dynamics, 2000, 29: 1441-1455.
    [67] 胡冗冗,王亚勇.地震动瞬时输入能量谱探讨.32程抗震,2004,(1):9-13.
    [68] D. Luis, Decanini, F. Mollaioli. An energy-based methodology for the assessment of seismic demand. S oil Dynamics and Earthquake Engineering, 2001, 21 : 113-137.
    [69] L. P. Ye, S. Otani. Maximum seismic displacement of inelastic systems based on eriergy concept. Earthquake Engineering and Structure Dynamics, 1999, (6): 1483-1499.
    [70] Y. Hagiwara. Momentary Energy Absorption and Effective Loading Cycles of Structures During Earthquakes. The 12th World Conference on Earthquake Engineering, Paper No. 0457, 2000.
    [71] 胡冗冗,王亚勇.地震动瞬时能量与结构最大位移反应关系研究.建筑结构学报,2000,21(1):71-76.
    [72] 经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析.工程力学,2003,20(3):31-37.
    [73] 李琪.基于位移模式结构抗震设计方法研究:(博士学位论文).南京:河海大学,2005.
    [74] 熊向阳,戚振华.侧向荷载分布方式对静力弹塑性分析结果的影响.建筑科学,2001,17(5):8-13.
    [75] 魏巍,冯启民.几种push-over分析方法对比研究.地震工程与工程振动,2002,22(4):66-73.
    [76] 李刚,刘永.不同加载模式下不对称结构静力弹塑性分析.大连理工大学学报,2004,44(3):350-355.
    [77] 侯爽,欧进萍.结构pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动,2004,24(3):89-97.
    [78] 徐金等.静力弹塑性分析方法中不同加载模式的对比.中国民航学院学报,2006,24(6):27-30.
    [79] C. A. Kircher, P. E. Kircher, Associates. Capacity Spectrum Pushover Method: Seeing is Believing. Proceedings of SEAOC 65th Annual Convention. HAWAII: Structural Engineering Association of California, MAUl, 1996.
    [80] 叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法.32程抗震,1998,(4):10-14.
    [81] P. Fajfar. Capacity Spectrum Method Based on Inelastic Demand Spectra. Earthquake Engineering and StruCtural Dynamics, 1999, 28: 979-993.
    [82] 肖明葵.基于性能的抗震结构位移及能量反应分析方法研究:(博士学位论文).重庆:重庆大学,2004.
    [83] D. Vamvatsikos, C. A. Cornell. Direct estimation ofthe seismic demand and capacity of oscillators with multi-linear static pushovers through IDA. Earthquake Engineering and Structural Dynamics, 2006, 35(9): 1097-1117.
    [84] R. S. Lawson. Nonlinear Static Pushover Analysis Why, When, and How?. The 5th U. S. National Conference on Earthquake Engineering, 1994.
    [85] H. Krawinkler. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures, 1998, 20(4-6): 452-464.
    [86] P. Fajfar. Simple Pushover Analysis of Buildings Structures. The 11th World Conference on Earthquake Engineering, 1996.
    [87] T. E. Kelly. Analysis Procedures for Performance Based Design. The 12th World Conference On Earthquake Engineering, Paper No. 2400, 2000.
    [88] H. S. Lew. Evaluation of Analysis Procedures for Performance-Based Seismic Design of Buildings. The 12th World Conference On Earthquake Engineering, Paper No. 1005, 2000.
    [89] Yang Pu. A Study on Improvement of Pushover Analysis. The 12th World Conference on Earthquake Engineering, Paper No. 1940, 2000.
    [90] C. Chintanapakdee, A. K. Chopra. Evaluation of Modal Pushover Analysis Using Vertically Irregular Frames. The 13th World Conference on Earthquake Engineering, Paper No. 2139, 2004.
    [91] T. V. Dinh. Probabilistic estimation of seismic story drifts in reinforced concrete buildings. Journal of Structural Engineering, 2003, 3: 416-427.
    [92] A. K. Chopra, R. K. Goel. Statistics of single-degree of freedom estimate of displacement for pushover analysis of buildings. Journal of Structural Engineering, 2003, 4: 459-469.
    [93] V. Boonyapingyo, N. Intaboot. Seismic Capacity Evaluation of Post-Tensioned Concrete Slab-Column Frame Buildings By Pushover Analysis. The 13th World Conference on Earthquake Engineering, Paper No. 827, 2004.
    [94] M. S. Williams, D.E. Clement. Application of Pushover Analysis to The Design of Structures Containing Dissipative Elements. The 13th World Conference on Earthquake Engineering, Paper No. 1888, 2004.
    [95] J. R. Garcia, E. Miranda. Evaluation of residual drift demands in regular multi-storey frames for performance-based seismic assessment. Earthquake Engineering and Structural Dynamics, 2006, 35(13): 1609-1629.
    [96] H. Moghaddam and I. Hajirasouliha. An investigation on the accuracy of pushover analysis for estimating the seismic deformation of braced steel frames. Journal of Constructional Steel Research, 2006, 62(4): 343-351.
    [97] J. R. Garcia, E. Miranda. Probabilistic estimation of maximum inelastic displacement demands for performance-based design. Earthquake Engineering and Structural Dynamics, early view, 2007.
    [98] 叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例.建筑结构学报,2000,21(1):37-43.
    [99] 王理,王亚勇,程绍革.空间结构非线性静力分析的工程应用.建筑结构学报,2000,21(1):57-62.
    [100] Q. S. Yu, R. Puggliesi, M. Allen,C. Bischoff. Assessment of Modal Pushover Analysis Procedure and Its Application to Seismic Evaluation of Existing Buildings. The 13th World Conference on Earthquake Engineering, Paper No. 1104, 2004.
    [101] R. Rana, L. Jin, A. Zekioglu. Pushover anlaysis of a 19 story concrete shear wall building. The 13th World Conference on Earthquake Engineering, Paper No. 133, 2004.
    [102] 毛华,丁洁民.某复杂高层钢结构静力弹塑性分析及性能评价.结构工程师,2006,22(1):22-33.
    [103] P. Fajfar, H. Krawinkler. Expanded papers from an international workshop on performance-based design-concepts and implementation. Earthquake Engineering and Structural Dynamics, 2006, 35(1): 1-2.
    [104] 钱稼茹等.静力弹塑性分析在工程中的应用研究.国家自然科学基金重大项目专题报告,1999.
    [105] K. Peter. Application of the Capacity Spectrum Method to R.C. Buidings with Bearing Walls. The 12th World Conference on Earthquake Engineering, 2000: 609-616.
    [106] A. S. Moghadam. Pushover Analysis for Asymmetric and Set-back Multi-story Buildings.The 12th World Conference on Earthquake Engineering, paper No. 1093, 2000.
    [107] M. Requena. Evaluation of a Simplified Method for the Determination of the Nonlinear Seismic Response of RC Frames.The 12th World Conference on Earthquake Engineering, paper No. 2109, 2000.
    [108] S. Kim. Seismic Evalucation of High-rise Buildings by Moditied Dynamic Inelastic Analysis Methods. The 12th World Conference on Earthquake Engineering, paper No. 2320, 2000.
    [109] 汪梦甫,周锡元.关于结构静力弹塑性分析((Push-over)方法中的几个问题.结构工程师,2002,(4):17-22.
    [110] A. K. Chopra, R. K. Goel. A Modal Pushover Analysis Procedure For Estimating Seismic Demands For Buildings. Earthquake Engineering and Structural Dynamics, 2002, 31: 561-582.
    [111] B. Gupta, S. K. Kunnath. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 2000, 16(2): 367-391.
    [112] H. Kuramoto, K. Matsumoto. Mode-adaptive Pushover Analysis for Multi-Story RC Buildings. The 13th World Conference of Earthquake Engineering, Paper No. 2500, 2004.
    [113] C. Chintanapakdee, A. K. Chopra. Evaluation of Modal Pushover Analysis Using Vertically Irregular Frames. The 13th World Conference of Earthquake Engineering, Paper No. 2139, 2004.
    [114] E. Kalkan, S. K. Kunnath. Method of Modal Combinations For Pushover Analysis of Buildings. The 13th World Conference of Earthquake Engineering, Paper No. 2713, 2004.
    [115] T. S. Paraskeva, A.J. Kappos, A.G. Sextos. Extension of modal pushover analysis to seismic assessment of bridges. Earthquake Engineering and Structural Dynamics, 2006,35(10): 1269-1293.
    [116] 沈蒲生,龚胡广.多模态静力推覆分析及其在高层混合结构体系抗震评估中的应用.工程力学,2006,23(8):69-73.
    [117] 毛建猛,谢礼立,翟长海.模态pushover分析方法的研究和改进地震工程与工程振动,2006,26(6):50-55.
    [118] H. Kuramoto. Predicting the Earthquake Response of Buildings Using Equivalent SingleDegree of Freedom System. The 12th World Conference on Earthquake Engineering, Paper No. 1039, 2000.
    [119] T. Tjhin, M. Aschheim. Estimates of peak roof displacement using equivalent single degree of freedom systems. Journal of Structural engineering, 2005, 131: 517-522.
    [120] Y. Zheng, T. Usami, H. Ge. Seismic response predictions of multi-span steel bridges through pushover analysis. Earthquake Engineering and Structural Dynamics, 2003, 32(8): 1259-1274.
    [121] S. W. Han, A. K. Chopra. Approximate incremental dynamic analysis using the modal pushover analysis procedure. Earthquake Engineering and Structural Dynamics, 2006, 35(15): 1853-1873.
    [122] A. Anthoine. A simple displacement control technique for pushover analyses. Earthquake Engineering and Structural Dynamics, 2006, 35(7): 851-866.
    [123] R. Pinho, C. Casarotti, S. Antoniou. A comparison of single-run pushover analysis techniques for seismic assessment of bridges, Earthquake Engineering and Structural Dynamics, early view, 2007.
    [124] V. Kilar, P. Fajfar. Simple pushover analysis of asymmetric buildings. Earthquake Engineering and Structural Dynamics, 1997, 26: 233-249.
    [125] A. S. Moghadam, W. K. Tso. Damage Assessment of Eccentric Multistory Building Using 3-D Pushover Analysis. The 11th World Conference of Earthquake Engineering, Paper No. 997, 1996.
    [126] P. Chen, K. R. Collins. Some Observations on Performance-based and Reliability-based Seismic Design of Asymmetric Building Stuctures, Engineering Strctures, 2001, 23: 1005-1010.
    [127] L. Menjivar. 3-D Pushover of Irregular Reinforced Concrete Buildings. pavia: European School of Advanced Studies In Reduction of Seismic Risk, 2003.
    [128] 李刚,刘永.三维偏心结构的Pushover分析.计算力学学报,2005,22(5):529-533.
    [129] 刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析.建筑科学与工程学报,2005,22(2):47-50.
    [130] N. M. Newmark, W. J. Hall. Earthquake Spectra and Design. EERI, Berkeley, California. 1982.
    [131] F. E. Elghadamsi, B. Mohraz. Inelastic Earthquake Spectra. Earthquake Engineering and Structural Dynamics. 1987, 15: 91-104.
    [132] H. Krawinkler, A. A. Nassar. Seismic design based on ductility and cumulative damage demands and capacities. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings. Elsevier Applied Science, London and New York, 1992: 23-29.
    [133] E. Miranda, V. V. Bertero. Evaluation of Strength Reduction Factors for Earthquake-resistant Design. Earthquake Spectra, 1994, 10(2): 357-379.
    [134] T. Vidic, P. Fajfar, M. Fishinger. Consistent Inelastic Design Spectra: Strength and Displacement. Earthquake Engineering and Structural Dynamics. 1994, 23: 507-521.
    [135] R. Riddell. Inelastic Design Spectra: Accounting for Soil Conditions. Earthquake Engineering and Structural Dynamics. 1995, 24: 1491-1510.
    [136] M. Ordaz, L. E. Perez-rocha. Estimation of Strength-reduction Factors for Elastoplastic Systems: A New Approach. Earthquake Engineering and Structural Dynamics. 1998, 27: 889-901.
    [137] 卓卫东,范立础.结构抗震设计中的强度折减系数研究.地震工程与工程振动,2001,21(1):84-88.
    [138] R. Riddell, J. E. Garcia., E. Garces. Inelastic Deformation Response of SDOF Systems Subjected to Earthquake. Earthquake Engineering Structural Dynamics. 2002, 31(3): 515-538.
    [139] 翟长海,公茂盛,张茂花等.212程结构等延性地震抗力谱研究.地震工程与工程振动,2004,24(1):22-29.
    [140] 吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004,24(1):39-48.
    [141] 韦承基.弹塑性结构的位移比谱.建筑结构学报,1983,4(1):40-48.
    [142] 肖明葵,王耀伟,严涛等.抗震结构的弹塑性位移谱.重庆建筑大学学报,2000,22:34-40.
    [143] B. Borzi, G. M. Calvi, E. Faccioli, J. J. Bommer. Inelastic Spectra for Displacement-based Seismic Design. Soil Dynamics and Earthquake Engineering. 2001, 21: 47-61
    [144] 杨松涛,叶列平,钱稼茹.地震位移反应谱特性的研究.建筑结构,2002,32(5):47-50.
    [145] A. K. Tiwari, K. Gupta. Scaling of Ductility and Damage-based Strength Reduction Factors for Horizontal Motions. Earthquake Engineering and Structural Dynamics, 2000, 29: 969-987.
    [146] Y. Bozorgnia, V. V. Bertero. Damage Spectra: Characteristics and Applications to Seismic Risk Reduction. Journal of Structural Engineering, ASCE, 2003, 129(10): 1330-1340.
    [147] 陈聃,王前信.非线性地震反应谱.北京:地震出版社,1989,55-56.
    [148] G. Haika. Overview of Elastic and Inelastic Response Spectra. University of Illinois at Urbana. Champaign, Champaign, 2003.
    [149] 王东升.双向地震动作用弹塑性反应谱及结构基于位移的抗震设计研究:(博士后研究工作报告).大连:大连理工大学,2004.
    [150] 王东升,李宏男,王国新.双向地震动作用弹塑性反应谱研究.大连理工大学学报,2005,45(2):248-254.
    [151] 王东升,李宏男,王国新.双向地震动作用的拟等延性系数谱.地震工程与工程振动,2004,24(4):25-31.
    [152] 王丰,李宏男.双向地震作用下偏心体系的拟强度折减系数谱.哈尔滨工业大学学报,2007.
    [153] A. W. Sadek, W. K. Tso. Strength eccentricity concept for inelastic analysis of asymmetrical structures. Engineering Structures, 1990, 11: 189-194.
    [154] M. D. Stefano, G. Faella, R. Ramasco. Inelastic response and design criteria of plan-wise asymmetric systems. Earthquake Engineering and Structural Dynamics, 1993, 22: 245-259.
    [155] W. K. Tso, H. S. Ying. Additional seismic inelastic deformation caused by structural asymmetry. Earthquake Engineering and Structural Dynamics, 1990, 19: 243-258.
    [156] A. M. Chandler, X. N. Duan. Performance of asymmetric code-designed buildings for service ability and ultimate limit states. Earthquake Engineering and Structural Dynamics, 1997, 26(7): 717-735.
    [157] W. K. Tso. Effective eccentricity for inelastic seismic response of buildings. Earthquake Engineering and Dynamics, 1986, 14: 413-427.
    [158] R. K. Goel and A. K. Chopra. Inelastic seismic response of one-story, asymmetric-plan systems: effects of system parameters and yielding. Earthquake Engineering and Structural Dynamics, 1991, 20: 201-222.
    [159] R. K. Goel, A. K. Chopra. Inelastic seismic response of one asymmetric-plan system: effects of stiffness and strength distribution. Earthquake Engineering and Structural Dynamics, 1990,19: 949-970.
    [160] X. N. Duan, A. M. Chandler. An optimized procedure for seismic design of torsionally unbalanced structures. Earthquake Engineering and Structural Dynamics, 1997, 26: 737-757.
    [161] R. K. Goel, A. K. Chopra. Dual-Level Approach for Seismic Design of Asymmetric-Plan Buildings. Journal of Structural Engineering, 1994, 120: 161-170.
    [162] J. C. Dela Llera. A. K. Chopra. Accidental and natural torsion in earthquake response and design of buildings. Report No.UCB/EERC-94/07.Univecsity of California at Berkeley 1994, 6.
    [163] X. N. Duan and A. M. Chandler. Inelastic Seismic Response of Code-Designed Multistory Frame Buildings With Regular Asymmetry. Earthquake Engineering and Structural Dynamics, 1993, 22: 431-445.
    [164] J. C. Correnza and A. M. Chandler. Effect of transverse load resisting elements on inelastic earthquake response of eccentric-plan. Earthquake Engineering and Structural Dynamics, 1994, 23: 75-89.
    [165] T. Paulay. Torsional mechanisms in ductile building systems. Earthquake Engineering and Structural Dynamics, 1998, 27: 1101-1121.
    [166] T. Paulay. A review of code provisions for torsinal seismic effects in buildings. Bulletin of the New Zealand National Society for Earthquake Engineering, 1997, 30: 1101-1121.
    [167] Llera, A. K. Chopra. A simplified model for analysis and design of asymmetric-plan buildings. Earthquake Engineering and Structural Dynamics, 1995, 24: 573-594.
    [168] V. Kilar and P. Fajfar. Simple Push-over Analysis of Asymmetric Buildings. Earthquake Engineering and Structural Dynamics. 1997, 26: 233-249.
    [169] Y. Bozorgnia and W. K. Tso. Inelastic earthquake response of asymmetric structures. Journal of Structural Engineering. ASCE, 1986, 112: 383-399.
    [170] 尹保江.地震作用下结构弹塑性位移反应规律的研究:(硕士学位论文).重庆:重庆建筑大学,1997.
    [171] 刘季.在多维地震动复合作用下结构的反应和建筑结构扭转地震效应.哈尔滨建筑工程学院学报,1986,2(2):59-70.
    [172] 李宏男,尹之潜.偏心结构在多维地震作用下扭转耦联反应分析.地震工程与工程动,1988,8(4):43-53.
    [173] 李宏男.地震动的转动分量及有关的结构反应分析.世界地震工程,1989,(4):44-51.
    [174] 李宏男,王苏岩.多维地震动作用下非对称结构扭转耦联随机反映分析.建筑结构学报.1992.13(6):12-20.
    [175] 李宏男,孙立晔.地震面波产生的地震动转动分量研究.地震工程与工程振动,2001,21(1):15-23.
    [176] H. N. Li, L. Y. Sun, S. Y. Wang. Frequency dispersion characteristics of phase velocities in surface wave for rotational components of seismic motion. Journal of Sound and Vibration, 2002, 258(5): 815-827.
    [177] H. N. Li, L. Y. Sun, S. Y. Wang. Improved approach for obtaining rotational components of seismic motion, An International Journal, Nuclear Engineering and Design. 2004, 232(2): 131-137.
    [178] 杜宏彪,沈聚敏.在任意加载路径下双轴弯曲钢筋混凝土柱的非线性分析.地震工程与工程振动,1990,10(3):41-55.
    [179] 张誉,王卫.双向地震作用下不规则框架的扭转分析.土木工程学报,1994,27(5):37-51.
    [180] 王耀伟.平面不规则结构非弹性地震反应规律研究:(博士学位论文).重庆:重庆大学,2003.
    [181] H. Banon, H. M. Irving, J. M. Biggs. Seismic damage in reinforced concrete frames. Journal of Structural Engineering, ASCE, 1981, 107(9): 1713-1729.
    [182] Y. J. Park, Ang. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, ASCE, 1985, 111 (4): 722-739.
    [183] Y. H. Chai, K. M. Romstad, S. M. Bird. Energy-based linear damage model for high-intensity seismic loading. Journal of Structural Engineering, ASCE, 1985, 121 (5): 857-864.
    [184] 陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则.建筑结构学,1986,7(1): 35-48.
    [185] 江近仁,孙景江.砖结构的地震破坏模型.地震工程与工程振动,1987,7(1):20-34.
    [186] 欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计.地震工程与工程振动,1990,10(4):27-37.
    [187] 牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型.地震工程与工程振动,1996,(4):44-54.
    [188] 韩东,方根生.建筑结构地震破坏准则研究的现状及发展.四川建筑,2003,23(3):39-40.
    [189] 杜修力,欧进萍.建筑结构地震破化评估模型.世界地震工程,1991,7(3):52-58.
    [190] 刘伯权,白绍良.抗震结构的等延性破化准则及其子结构试验验证.地震工程与工程振动,1997,17 (3):77-83.
    [191] M.E.Rodriguez, J.C. Aristizabal. Evaluation of a seismic damage parameter. Earthquake Engineering and Structural Dynamic, 1999, 28:463-477.
    [192] 吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法.土木工程学报,2001,34(1):44-49.
    [193] A. Ghobarah, H. A. Elfath, B. Ashraf. Response-based damage assessment of structures. Earthquake Engineering and Structural Dynamics, 1999, 28:79-104.
    [194] M.S.L. Roufaiel, C. Meyer. Analytical modeling of hysteretic behavior of R/C frames. Journal of Strucutral Engineering, ASCE, 1987,113(3):429-444.
    [195] 吴波,李惠,李玉华.结构损伤分析的力学方法.地震工程与工程振动,1997,17(1):14-22.
    [196] 吴波.主余震作用下钢筋混凝土结构的损伤试验与分析:(博士学位论文).哈尔滨:哈尔滨建筑大学,1993.
    [197] 邱法维.钢筋混凝土结构的地震损伤极限设计与损伤控制研究:(博士学位论文).哈尔滨:哈尔滨建筑大学,1996.
    [198] 李洪泉.钢筋混凝土结构地震损伤识别与耗能减振修复技术:(博士学位论文).哈尔滨:哈尔滨建筑大学,1996.
    [199] 李宏男,何浩详.利用能力谱法对结构地震损伤评估简化方法.大连理工大学学报,2004,44(2):267-270.
    [200] P. Fajfar. Equivalent ductility factors, taking into account low-cycle fatigue. Earthquake Engineering and Structural Dynamics. 1992,21:837-848.
    [201] P. Fajfar, T. Vidic. Consistent Inelastic Design Spectra: Hysteretic and input energy. Earthquake Engineering and Structural Dynamics. 1994, 23:523-537.
    [202] E. Cosenza, G. Manfredi, K. Ramasco. An evaluation of the use of damage functional in earthquakeresistant design. Proc. 9th Eur. Conf. Earthquake Engineering, Moscow, 1990,9:303-312.
    [203] 潘龙.基于推倒分析方法的桥梁结构地震损伤分析与性能设计:(博士学位论文).上海:同济大学,2001.
    [204] 范立础.桥梁抗震.上海:同济大学出版社,1997.
    [205] 江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社,2002.
    [206] 李宏男.结构多维抗震理论.北京:科学出版社,2006.
    [207] 刘大海,杨翠如,钟锡根.高层建筑抗震设计.北京:中国建筑工业出版设,1993.
    [208] 李秀领.非对称建筑结构的磁流变阻尼器半主动控制:(博士学位论文).大连:大连理工大学.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700